[478] | 1 | // -*- C++ -*- |
---|
| 2 | |
---|
| 3 | /* |
---|
[485] | 4 | Heuristics: |
---|
| 5 | 2 phase |
---|
| 6 | gap |
---|
| 7 | list 'level_list' on the nodes on level i implemented by hand |
---|
| 8 | stack 'active' on the active nodes on level i |
---|
| 9 | runs heuristic 'highest label' for H1*n relabels |
---|
| 10 | runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label' |
---|
[478] | 11 | |
---|
[485] | 12 | Parameters H0 and H1 are initialized to 20 and 1. |
---|
[478] | 13 | |
---|
[485] | 14 | Constructors: |
---|
[478] | 15 | |
---|
[485] | 16 | Preflow(Graph, Node, Node, CapMap, FlowMap, bool) : bool must be false if |
---|
| 17 | FlowMap is not constant zero, and should be true if it is |
---|
[478] | 18 | |
---|
[485] | 19 | Members: |
---|
[478] | 20 | |
---|
[485] | 21 | void run() |
---|
[478] | 22 | |
---|
[485] | 23 | Num flowValue() : returns the value of a maximum flow |
---|
[478] | 24 | |
---|
[485] | 25 | void minMinCut(CutMap& M) : sets M to the characteristic vector of the |
---|
| 26 | minimum min cut. M should be a map of bools initialized to false. ??Is it OK? |
---|
[478] | 27 | |
---|
[485] | 28 | void maxMinCut(CutMap& M) : sets M to the characteristic vector of the |
---|
| 29 | maximum min cut. M should be a map of bools initialized to false. |
---|
[478] | 30 | |
---|
[485] | 31 | void minCut(CutMap& M) : sets M to the characteristic vector of |
---|
| 32 | a min cut. M should be a map of bools initialized to false. |
---|
[478] | 33 | |
---|
| 34 | */ |
---|
| 35 | |
---|
[480] | 36 | #ifndef HUGO_MAX_FLOW_H |
---|
| 37 | #define HUGO_MAX_FLOW_H |
---|
[478] | 38 | |
---|
| 39 | #define H0 20 |
---|
| 40 | #define H1 1 |
---|
| 41 | |
---|
| 42 | #include <vector> |
---|
| 43 | #include <queue> |
---|
| 44 | #include <stack> |
---|
| 45 | |
---|
[557] | 46 | #include <hugo/graph_wrapper.h> |
---|
[478] | 47 | #include <bfs_iterator.h> |
---|
[555] | 48 | #include <hugo/invalid.h> |
---|
| 49 | #include <hugo/maps.h> |
---|
[478] | 50 | #include <for_each_macros.h> |
---|
| 51 | |
---|
[488] | 52 | /// \file |
---|
| 53 | /// \brief Dimacs file format reader. |
---|
[478] | 54 | |
---|
| 55 | namespace hugo { |
---|
| 56 | |
---|
[488] | 57 | |
---|
| 58 | // ///\author Marton Makai, Jacint Szabo |
---|
| 59 | /// A class for computing max flows and related quantities. |
---|
[478] | 60 | template <typename Graph, typename Num, |
---|
| 61 | typename CapMap=typename Graph::template EdgeMap<Num>, |
---|
| 62 | typename FlowMap=typename Graph::template EdgeMap<Num> > |
---|
| 63 | class MaxFlow { |
---|
| 64 | |
---|
| 65 | typedef typename Graph::Node Node; |
---|
| 66 | typedef typename Graph::NodeIt NodeIt; |
---|
| 67 | typedef typename Graph::OutEdgeIt OutEdgeIt; |
---|
| 68 | typedef typename Graph::InEdgeIt InEdgeIt; |
---|
| 69 | |
---|
| 70 | typedef typename std::vector<std::stack<Node> > VecStack; |
---|
| 71 | typedef typename Graph::template NodeMap<Node> NNMap; |
---|
| 72 | typedef typename std::vector<Node> VecNode; |
---|
| 73 | |
---|
| 74 | const Graph* g; |
---|
| 75 | Node s; |
---|
| 76 | Node t; |
---|
| 77 | const CapMap* capacity; |
---|
| 78 | FlowMap* flow; |
---|
| 79 | int n; //the number of nodes of G |
---|
| 80 | typedef ResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW; |
---|
| 81 | typedef typename ResGW::OutEdgeIt ResGWOutEdgeIt; |
---|
| 82 | typedef typename ResGW::Edge ResGWEdge; |
---|
| 83 | //typedef typename ResGW::template NodeMap<bool> ReachedMap; |
---|
| 84 | typedef typename Graph::template NodeMap<int> ReachedMap; |
---|
| 85 | ReachedMap level; |
---|
| 86 | //level works as a bool map in augmenting path algorithms |
---|
| 87 | //and is used by bfs for storing reached information. |
---|
| 88 | //In preflow, it shows levels of nodes. |
---|
| 89 | //typename Graph::template NodeMap<int> level; |
---|
| 90 | typename Graph::template NodeMap<Num> excess; |
---|
[510] | 91 | // protected: |
---|
| 92 | // MaxFlow() { } |
---|
| 93 | // void set(const Graph& _G, Node _s, Node _t, const CapMap& _capacity, |
---|
| 94 | // FlowMap& _flow) |
---|
| 95 | // { |
---|
| 96 | // g=&_G; |
---|
| 97 | // s=_s; |
---|
| 98 | // t=_t; |
---|
| 99 | // capacity=&_capacity; |
---|
| 100 | // flow=&_flow; |
---|
| 101 | // n=_G.nodeNum; |
---|
| 102 | // level.set (_G); //kellene vmi ilyesmi fv |
---|
| 103 | // excess(_G,0); //itt is |
---|
| 104 | // } |
---|
[478] | 105 | |
---|
| 106 | public: |
---|
| 107 | |
---|
[586] | 108 | ///\todo Document this. |
---|
| 109 | ///\todo Maybe, it should be PRE_FLOW instead. |
---|
| 110 | ///- \c ZERO_FLOW means something, |
---|
| 111 | ///- \c GEN_FLOW means something else, |
---|
| 112 | ///- \c PREFLOW is something different. |
---|
[478] | 113 | enum flowEnum{ |
---|
| 114 | ZERO_FLOW=0, |
---|
| 115 | GEN_FLOW=1, |
---|
| 116 | PREFLOW=2 |
---|
| 117 | }; |
---|
| 118 | |
---|
| 119 | MaxFlow(const Graph& _G, Node _s, Node _t, const CapMap& _capacity, |
---|
| 120 | FlowMap& _flow) : |
---|
| 121 | g(&_G), s(_s), t(_t), capacity(&_capacity), |
---|
| 122 | flow(&_flow), n(_G.nodeNum()), level(_G), excess(_G,0) {} |
---|
| 123 | |
---|
[485] | 124 | /// A max flow algorithm is run. |
---|
| 125 | ///\pre the flow have to be 0 at the beginning. |
---|
[478] | 126 | void run() { |
---|
[488] | 127 | preflow(ZERO_FLOW); |
---|
[478] | 128 | } |
---|
| 129 | |
---|
[487] | 130 | /// A preflow algorithm is run. |
---|
| 131 | ///\pre The initial edge-map have to be a |
---|
| 132 | /// zero flow if \c fe is \c ZERO_FLOW, |
---|
| 133 | /// a flow if \c fe is \c GEN_FLOW, |
---|
| 134 | /// and a pre-flow it is \c PREFLOW. |
---|
[488] | 135 | void preflow(flowEnum fe) { |
---|
[478] | 136 | preflowPhase0(fe); |
---|
| 137 | preflowPhase1(); |
---|
| 138 | } |
---|
| 139 | |
---|
[485] | 140 | /// Run the first phase of preflow, starting from a 0 flow, from a flow, |
---|
| 141 | /// or from a preflow, according to \c fe. |
---|
[478] | 142 | void preflowPhase0( flowEnum fe ); |
---|
| 143 | |
---|
[485] | 144 | /// Second phase of preflow. |
---|
[478] | 145 | void preflowPhase1(); |
---|
| 146 | |
---|
[485] | 147 | /// Starting from a flow, this method searches for an augmenting path |
---|
| 148 | /// according to the Edmonds-Karp algorithm |
---|
| 149 | /// and augments the flow on if any. |
---|
[487] | 150 | /// The return value shows if the augmentation was succesful. |
---|
[478] | 151 | bool augmentOnShortestPath(); |
---|
| 152 | |
---|
[485] | 153 | /// Starting from a flow, this method searches for an augmenting blockin |
---|
| 154 | /// flow according to Dinits' algorithm and augments the flow on if any. |
---|
| 155 | /// The blocking flow is computed in a physically constructed |
---|
| 156 | /// residual graph of type \c Mutablegraph. |
---|
[487] | 157 | /// The return value show sif the augmentation was succesful. |
---|
[478] | 158 | template<typename MutableGraph> bool augmentOnBlockingFlow(); |
---|
| 159 | |
---|
[485] | 160 | /// The same as \c augmentOnBlockingFlow<MutableGraph> but the |
---|
| 161 | /// residual graph is not constructed physically. |
---|
[487] | 162 | /// The return value shows if the augmentation was succesful. |
---|
[478] | 163 | bool augmentOnBlockingFlow2(); |
---|
| 164 | |
---|
| 165 | /// Returns the actual flow value. |
---|
| 166 | /// More precisely, it returns the negative excess of s, thus |
---|
| 167 | /// this works also for preflows. |
---|
| 168 | Num flowValue() { |
---|
| 169 | Num a=0; |
---|
| 170 | FOR_EACH_INC_LOC(OutEdgeIt, e, *g, s) a+=(*flow)[e]; |
---|
| 171 | FOR_EACH_INC_LOC(InEdgeIt, e, *g, s) a-=(*flow)[e]; |
---|
| 172 | return a; |
---|
| 173 | } |
---|
| 174 | |
---|
[485] | 175 | /// Should be used between preflowPhase0 and preflowPhase1. |
---|
| 176 | ///\todo We have to make some status variable which shows the actual state |
---|
| 177 | /// of the class. This enables us to determine which methods are valid |
---|
| 178 | /// for MinCut computation |
---|
[478] | 179 | template<typename _CutMap> |
---|
| 180 | void actMinCut(_CutMap& M) { |
---|
| 181 | NodeIt v; |
---|
[485] | 182 | for(g->first(v); g->valid(v); g->next(v)) { |
---|
| 183 | if ( level[v] < n ) { |
---|
| 184 | M.set(v,false); |
---|
| 185 | } else { |
---|
| 186 | M.set(v,true); |
---|
| 187 | } |
---|
[478] | 188 | } |
---|
| 189 | } |
---|
| 190 | |
---|
[485] | 191 | /// The unique inclusionwise minimum cut is computed by |
---|
| 192 | /// processing a bfs from s in the residual graph. |
---|
| 193 | ///\pre flow have to be a max flow otherwise it will the whole node-set. |
---|
[478] | 194 | template<typename _CutMap> |
---|
| 195 | void minMinCut(_CutMap& M) { |
---|
| 196 | |
---|
| 197 | std::queue<Node> queue; |
---|
| 198 | |
---|
| 199 | M.set(s,true); |
---|
| 200 | queue.push(s); |
---|
| 201 | |
---|
| 202 | while (!queue.empty()) { |
---|
| 203 | Node w=queue.front(); |
---|
| 204 | queue.pop(); |
---|
| 205 | |
---|
| 206 | OutEdgeIt e; |
---|
| 207 | for(g->first(e,w) ; g->valid(e); g->next(e)) { |
---|
| 208 | Node v=g->head(e); |
---|
| 209 | if (!M[v] && (*flow)[e] < (*capacity)[e] ) { |
---|
| 210 | queue.push(v); |
---|
| 211 | M.set(v, true); |
---|
| 212 | } |
---|
| 213 | } |
---|
| 214 | |
---|
| 215 | InEdgeIt f; |
---|
| 216 | for(g->first(f,w) ; g->valid(f); g->next(f)) { |
---|
| 217 | Node v=g->tail(f); |
---|
| 218 | if (!M[v] && (*flow)[f] > 0 ) { |
---|
| 219 | queue.push(v); |
---|
| 220 | M.set(v, true); |
---|
| 221 | } |
---|
| 222 | } |
---|
| 223 | } |
---|
| 224 | } |
---|
| 225 | |
---|
| 226 | |
---|
[485] | 227 | /// The unique inclusionwise maximum cut is computed by |
---|
| 228 | /// processing a reverse bfs from t in the residual graph. |
---|
| 229 | ///\pre flow have to be a max flow otherwise it will be empty. |
---|
[478] | 230 | template<typename _CutMap> |
---|
| 231 | void maxMinCut(_CutMap& M) { |
---|
| 232 | |
---|
| 233 | NodeIt v; |
---|
| 234 | for(g->first(v) ; g->valid(v); g->next(v)) { |
---|
| 235 | M.set(v, true); |
---|
| 236 | } |
---|
| 237 | |
---|
| 238 | std::queue<Node> queue; |
---|
| 239 | |
---|
| 240 | M.set(t,false); |
---|
| 241 | queue.push(t); |
---|
| 242 | |
---|
| 243 | while (!queue.empty()) { |
---|
| 244 | Node w=queue.front(); |
---|
| 245 | queue.pop(); |
---|
| 246 | |
---|
| 247 | |
---|
| 248 | InEdgeIt e; |
---|
| 249 | for(g->first(e,w) ; g->valid(e); g->next(e)) { |
---|
| 250 | Node v=g->tail(e); |
---|
| 251 | if (M[v] && (*flow)[e] < (*capacity)[e] ) { |
---|
| 252 | queue.push(v); |
---|
| 253 | M.set(v, false); |
---|
| 254 | } |
---|
| 255 | } |
---|
| 256 | |
---|
| 257 | OutEdgeIt f; |
---|
| 258 | for(g->first(f,w) ; g->valid(f); g->next(f)) { |
---|
| 259 | Node v=g->head(f); |
---|
| 260 | if (M[v] && (*flow)[f] > 0 ) { |
---|
| 261 | queue.push(v); |
---|
| 262 | M.set(v, false); |
---|
| 263 | } |
---|
| 264 | } |
---|
| 265 | } |
---|
| 266 | } |
---|
| 267 | |
---|
| 268 | |
---|
[485] | 269 | /// A minimum cut is computed. |
---|
[478] | 270 | template<typename CutMap> |
---|
[485] | 271 | void minCut(CutMap& M) { minMinCut(M); } |
---|
[478] | 272 | |
---|
[485] | 273 | /// |
---|
[487] | 274 | void resetSource(Node _s) { s=_s; } |
---|
| 275 | /// |
---|
| 276 | void resetTarget(Node _t) { t=_t; } |
---|
[478] | 277 | |
---|
[485] | 278 | /// capacity-map is changed. |
---|
| 279 | void resetCap(const CapMap& _cap) { capacity=&_cap; } |
---|
[478] | 280 | |
---|
[485] | 281 | /// flow-map is changed. |
---|
| 282 | void resetFlow(FlowMap& _flow) { flow=&_flow; } |
---|
[478] | 283 | |
---|
| 284 | |
---|
| 285 | private: |
---|
| 286 | |
---|
| 287 | int push(Node w, VecStack& active) { |
---|
| 288 | |
---|
| 289 | int lev=level[w]; |
---|
| 290 | Num exc=excess[w]; |
---|
| 291 | int newlevel=n; //bound on the next level of w |
---|
| 292 | |
---|
| 293 | OutEdgeIt e; |
---|
| 294 | for(g->first(e,w); g->valid(e); g->next(e)) { |
---|
| 295 | |
---|
| 296 | if ( (*flow)[e] >= (*capacity)[e] ) continue; |
---|
| 297 | Node v=g->head(e); |
---|
| 298 | |
---|
| 299 | if( lev > level[v] ) { //Push is allowed now |
---|
| 300 | |
---|
| 301 | if ( excess[v]<=0 && v!=t && v!=s ) { |
---|
| 302 | int lev_v=level[v]; |
---|
| 303 | active[lev_v].push(v); |
---|
| 304 | } |
---|
| 305 | |
---|
| 306 | Num cap=(*capacity)[e]; |
---|
| 307 | Num flo=(*flow)[e]; |
---|
| 308 | Num remcap=cap-flo; |
---|
| 309 | |
---|
| 310 | if ( remcap >= exc ) { //A nonsaturating push. |
---|
| 311 | |
---|
| 312 | flow->set(e, flo+exc); |
---|
| 313 | excess.set(v, excess[v]+exc); |
---|
| 314 | exc=0; |
---|
| 315 | break; |
---|
| 316 | |
---|
| 317 | } else { //A saturating push. |
---|
| 318 | flow->set(e, cap); |
---|
| 319 | excess.set(v, excess[v]+remcap); |
---|
| 320 | exc-=remcap; |
---|
| 321 | } |
---|
| 322 | } else if ( newlevel > level[v] ) newlevel = level[v]; |
---|
| 323 | } //for out edges wv |
---|
| 324 | |
---|
| 325 | if ( exc > 0 ) { |
---|
| 326 | InEdgeIt e; |
---|
| 327 | for(g->first(e,w); g->valid(e); g->next(e)) { |
---|
| 328 | |
---|
| 329 | if( (*flow)[e] <= 0 ) continue; |
---|
| 330 | Node v=g->tail(e); |
---|
| 331 | |
---|
| 332 | if( lev > level[v] ) { //Push is allowed now |
---|
| 333 | |
---|
| 334 | if ( excess[v]<=0 && v!=t && v!=s ) { |
---|
| 335 | int lev_v=level[v]; |
---|
| 336 | active[lev_v].push(v); |
---|
| 337 | } |
---|
| 338 | |
---|
| 339 | Num flo=(*flow)[e]; |
---|
| 340 | |
---|
| 341 | if ( flo >= exc ) { //A nonsaturating push. |
---|
| 342 | |
---|
| 343 | flow->set(e, flo-exc); |
---|
| 344 | excess.set(v, excess[v]+exc); |
---|
| 345 | exc=0; |
---|
| 346 | break; |
---|
| 347 | } else { //A saturating push. |
---|
| 348 | |
---|
| 349 | excess.set(v, excess[v]+flo); |
---|
| 350 | exc-=flo; |
---|
| 351 | flow->set(e,0); |
---|
| 352 | } |
---|
| 353 | } else if ( newlevel > level[v] ) newlevel = level[v]; |
---|
| 354 | } //for in edges vw |
---|
| 355 | |
---|
| 356 | } // if w still has excess after the out edge for cycle |
---|
| 357 | |
---|
| 358 | excess.set(w, exc); |
---|
| 359 | |
---|
| 360 | return newlevel; |
---|
[485] | 361 | } |
---|
[478] | 362 | |
---|
| 363 | |
---|
| 364 | void preflowPreproc ( flowEnum fe, VecStack& active, |
---|
| 365 | VecNode& level_list, NNMap& left, NNMap& right ) { |
---|
| 366 | |
---|
[485] | 367 | std::queue<Node> bfs_queue; |
---|
[478] | 368 | |
---|
[485] | 369 | switch ( fe ) { |
---|
| 370 | case ZERO_FLOW: |
---|
| 371 | { |
---|
| 372 | //Reverse_bfs from t, to find the starting level. |
---|
| 373 | level.set(t,0); |
---|
| 374 | bfs_queue.push(t); |
---|
[478] | 375 | |
---|
[485] | 376 | while (!bfs_queue.empty()) { |
---|
[478] | 377 | |
---|
[485] | 378 | Node v=bfs_queue.front(); |
---|
| 379 | bfs_queue.pop(); |
---|
| 380 | int l=level[v]+1; |
---|
[478] | 381 | |
---|
[485] | 382 | InEdgeIt e; |
---|
| 383 | for(g->first(e,v); g->valid(e); g->next(e)) { |
---|
| 384 | Node w=g->tail(e); |
---|
| 385 | if ( level[w] == n && w != s ) { |
---|
| 386 | bfs_queue.push(w); |
---|
| 387 | Node first=level_list[l]; |
---|
| 388 | if ( g->valid(first) ) left.set(first,w); |
---|
| 389 | right.set(w,first); |
---|
| 390 | level_list[l]=w; |
---|
| 391 | level.set(w, l); |
---|
| 392 | } |
---|
| 393 | } |
---|
| 394 | } |
---|
[478] | 395 | |
---|
[485] | 396 | //the starting flow |
---|
| 397 | OutEdgeIt e; |
---|
| 398 | for(g->first(e,s); g->valid(e); g->next(e)) |
---|
| 399 | { |
---|
| 400 | Num c=(*capacity)[e]; |
---|
| 401 | if ( c <= 0 ) continue; |
---|
| 402 | Node w=g->head(e); |
---|
| 403 | if ( level[w] < n ) { |
---|
| 404 | if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w); |
---|
| 405 | flow->set(e, c); |
---|
| 406 | excess.set(w, excess[w]+c); |
---|
| 407 | } |
---|
| 408 | } |
---|
| 409 | break; |
---|
| 410 | } |
---|
[478] | 411 | |
---|
[485] | 412 | case GEN_FLOW: |
---|
| 413 | case PREFLOW: |
---|
| 414 | { |
---|
| 415 | //Reverse_bfs from t in the residual graph, |
---|
| 416 | //to find the starting level. |
---|
| 417 | level.set(t,0); |
---|
| 418 | bfs_queue.push(t); |
---|
[478] | 419 | |
---|
[485] | 420 | while (!bfs_queue.empty()) { |
---|
[478] | 421 | |
---|
[485] | 422 | Node v=bfs_queue.front(); |
---|
| 423 | bfs_queue.pop(); |
---|
| 424 | int l=level[v]+1; |
---|
[478] | 425 | |
---|
[485] | 426 | InEdgeIt e; |
---|
| 427 | for(g->first(e,v); g->valid(e); g->next(e)) { |
---|
| 428 | if ( (*capacity)[e] <= (*flow)[e] ) continue; |
---|
| 429 | Node w=g->tail(e); |
---|
| 430 | if ( level[w] == n && w != s ) { |
---|
| 431 | bfs_queue.push(w); |
---|
| 432 | Node first=level_list[l]; |
---|
| 433 | if ( g->valid(first) ) left.set(first,w); |
---|
| 434 | right.set(w,first); |
---|
| 435 | level_list[l]=w; |
---|
| 436 | level.set(w, l); |
---|
| 437 | } |
---|
| 438 | } |
---|
[478] | 439 | |
---|
[485] | 440 | OutEdgeIt f; |
---|
| 441 | for(g->first(f,v); g->valid(f); g->next(f)) { |
---|
| 442 | if ( 0 >= (*flow)[f] ) continue; |
---|
| 443 | Node w=g->head(f); |
---|
| 444 | if ( level[w] == n && w != s ) { |
---|
| 445 | bfs_queue.push(w); |
---|
| 446 | Node first=level_list[l]; |
---|
| 447 | if ( g->valid(first) ) left.set(first,w); |
---|
| 448 | right.set(w,first); |
---|
| 449 | level_list[l]=w; |
---|
| 450 | level.set(w, l); |
---|
| 451 | } |
---|
| 452 | } |
---|
| 453 | } |
---|
[478] | 454 | |
---|
| 455 | |
---|
[485] | 456 | //the starting flow |
---|
| 457 | OutEdgeIt e; |
---|
| 458 | for(g->first(e,s); g->valid(e); g->next(e)) |
---|
| 459 | { |
---|
| 460 | Num rem=(*capacity)[e]-(*flow)[e]; |
---|
| 461 | if ( rem <= 0 ) continue; |
---|
| 462 | Node w=g->head(e); |
---|
| 463 | if ( level[w] < n ) { |
---|
| 464 | if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w); |
---|
| 465 | flow->set(e, (*capacity)[e]); |
---|
| 466 | excess.set(w, excess[w]+rem); |
---|
| 467 | } |
---|
| 468 | } |
---|
[478] | 469 | |
---|
[485] | 470 | InEdgeIt f; |
---|
| 471 | for(g->first(f,s); g->valid(f); g->next(f)) |
---|
| 472 | { |
---|
| 473 | if ( (*flow)[f] <= 0 ) continue; |
---|
| 474 | Node w=g->tail(f); |
---|
| 475 | if ( level[w] < n ) { |
---|
| 476 | if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w); |
---|
| 477 | excess.set(w, excess[w]+(*flow)[f]); |
---|
| 478 | flow->set(f, 0); |
---|
| 479 | } |
---|
| 480 | } |
---|
| 481 | break; |
---|
| 482 | } //case PREFLOW |
---|
| 483 | } |
---|
| 484 | } //preflowPreproc |
---|
[478] | 485 | |
---|
| 486 | |
---|
| 487 | |
---|
| 488 | void relabel(Node w, int newlevel, VecStack& active, |
---|
| 489 | VecNode& level_list, NNMap& left, |
---|
| 490 | NNMap& right, int& b, int& k, bool what_heur ) |
---|
| 491 | { |
---|
| 492 | |
---|
| 493 | Num lev=level[w]; |
---|
| 494 | |
---|
| 495 | Node right_n=right[w]; |
---|
| 496 | Node left_n=left[w]; |
---|
| 497 | |
---|
| 498 | //unlacing starts |
---|
| 499 | if ( g->valid(right_n) ) { |
---|
| 500 | if ( g->valid(left_n) ) { |
---|
| 501 | right.set(left_n, right_n); |
---|
| 502 | left.set(right_n, left_n); |
---|
| 503 | } else { |
---|
| 504 | level_list[lev]=right_n; |
---|
| 505 | left.set(right_n, INVALID); |
---|
| 506 | } |
---|
| 507 | } else { |
---|
| 508 | if ( g->valid(left_n) ) { |
---|
| 509 | right.set(left_n, INVALID); |
---|
| 510 | } else { |
---|
| 511 | level_list[lev]=INVALID; |
---|
| 512 | } |
---|
| 513 | } |
---|
| 514 | //unlacing ends |
---|
| 515 | |
---|
| 516 | if ( !g->valid(level_list[lev]) ) { |
---|
| 517 | |
---|
| 518 | //gapping starts |
---|
| 519 | for (int i=lev; i!=k ; ) { |
---|
| 520 | Node v=level_list[++i]; |
---|
| 521 | while ( g->valid(v) ) { |
---|
| 522 | level.set(v,n); |
---|
| 523 | v=right[v]; |
---|
| 524 | } |
---|
| 525 | level_list[i]=INVALID; |
---|
| 526 | if ( !what_heur ) { |
---|
| 527 | while ( !active[i].empty() ) { |
---|
| 528 | active[i].pop(); //FIXME: ezt szebben kene |
---|
| 529 | } |
---|
| 530 | } |
---|
| 531 | } |
---|
| 532 | |
---|
| 533 | level.set(w,n); |
---|
| 534 | b=lev-1; |
---|
| 535 | k=b; |
---|
| 536 | //gapping ends |
---|
| 537 | |
---|
| 538 | } else { |
---|
| 539 | |
---|
| 540 | if ( newlevel == n ) level.set(w,n); |
---|
| 541 | else { |
---|
| 542 | level.set(w,++newlevel); |
---|
| 543 | active[newlevel].push(w); |
---|
| 544 | if ( what_heur ) b=newlevel; |
---|
| 545 | if ( k < newlevel ) ++k; //now k=newlevel |
---|
| 546 | Node first=level_list[newlevel]; |
---|
| 547 | if ( g->valid(first) ) left.set(first,w); |
---|
| 548 | right.set(w,first); |
---|
| 549 | left.set(w,INVALID); |
---|
| 550 | level_list[newlevel]=w; |
---|
| 551 | } |
---|
| 552 | } |
---|
| 553 | |
---|
| 554 | } //relabel |
---|
| 555 | |
---|
| 556 | |
---|
| 557 | template<typename MapGraphWrapper> |
---|
| 558 | class DistanceMap { |
---|
| 559 | protected: |
---|
| 560 | const MapGraphWrapper* g; |
---|
| 561 | typename MapGraphWrapper::template NodeMap<int> dist; |
---|
| 562 | public: |
---|
| 563 | DistanceMap(MapGraphWrapper& _g) : g(&_g), dist(*g, g->nodeNum()) { } |
---|
| 564 | void set(const typename MapGraphWrapper::Node& n, int a) { |
---|
| 565 | dist.set(n, a); |
---|
| 566 | } |
---|
| 567 | int operator[](const typename MapGraphWrapper::Node& n) |
---|
[485] | 568 | { return dist[n]; } |
---|
| 569 | // int get(const typename MapGraphWrapper::Node& n) const { |
---|
| 570 | // return dist[n]; } |
---|
| 571 | // bool get(const typename MapGraphWrapper::Edge& e) const { |
---|
| 572 | // return (dist.get(g->tail(e))<dist.get(g->head(e))); } |
---|
[478] | 573 | bool operator[](const typename MapGraphWrapper::Edge& e) const { |
---|
| 574 | return (dist[g->tail(e)]<dist[g->head(e)]); |
---|
| 575 | } |
---|
| 576 | }; |
---|
| 577 | |
---|
| 578 | }; |
---|
| 579 | |
---|
| 580 | |
---|
| 581 | template <typename Graph, typename Num, typename CapMap, typename FlowMap> |
---|
| 582 | void MaxFlow<Graph, Num, CapMap, FlowMap>::preflowPhase0( flowEnum fe ) |
---|
| 583 | { |
---|
| 584 | |
---|
[485] | 585 | int heur0=(int)(H0*n); //time while running 'bound decrease' |
---|
| 586 | int heur1=(int)(H1*n); //time while running 'highest label' |
---|
| 587 | int heur=heur1; //starting time interval (#of relabels) |
---|
| 588 | int numrelabel=0; |
---|
[478] | 589 | |
---|
[485] | 590 | bool what_heur=1; |
---|
| 591 | //It is 0 in case 'bound decrease' and 1 in case 'highest label' |
---|
[478] | 592 | |
---|
[485] | 593 | bool end=false; |
---|
| 594 | //Needed for 'bound decrease', true means no active nodes are above bound b. |
---|
[478] | 595 | |
---|
[485] | 596 | int k=n-2; //bound on the highest level under n containing a node |
---|
| 597 | int b=k; //bound on the highest level under n of an active node |
---|
[478] | 598 | |
---|
[485] | 599 | VecStack active(n); |
---|
[478] | 600 | |
---|
[485] | 601 | NNMap left(*g, INVALID); |
---|
| 602 | NNMap right(*g, INVALID); |
---|
| 603 | VecNode level_list(n,INVALID); |
---|
| 604 | //List of the nodes in level i<n, set to n. |
---|
[478] | 605 | |
---|
[485] | 606 | NodeIt v; |
---|
| 607 | for(g->first(v); g->valid(v); g->next(v)) level.set(v,n); |
---|
| 608 | //setting each node to level n |
---|
[478] | 609 | |
---|
[485] | 610 | switch ( fe ) { |
---|
| 611 | case PREFLOW: |
---|
| 612 | { |
---|
| 613 | //counting the excess |
---|
| 614 | NodeIt v; |
---|
| 615 | for(g->first(v); g->valid(v); g->next(v)) { |
---|
[478] | 616 | Num exc=0; |
---|
| 617 | |
---|
| 618 | InEdgeIt e; |
---|
[485] | 619 | for(g->first(e,v); g->valid(e); g->next(e)) exc+=(*flow)[e]; |
---|
[478] | 620 | OutEdgeIt f; |
---|
[485] | 621 | for(g->first(f,v); g->valid(f); g->next(f)) exc-=(*flow)[f]; |
---|
| 622 | |
---|
| 623 | excess.set(v,exc); |
---|
| 624 | |
---|
| 625 | //putting the active nodes into the stack |
---|
| 626 | int lev=level[v]; |
---|
| 627 | if ( exc > 0 && lev < n && v != t ) active[lev].push(v); |
---|
[478] | 628 | } |
---|
| 629 | break; |
---|
| 630 | } |
---|
[485] | 631 | case GEN_FLOW: |
---|
| 632 | { |
---|
| 633 | //Counting the excess of t |
---|
| 634 | Num exc=0; |
---|
| 635 | |
---|
| 636 | InEdgeIt e; |
---|
| 637 | for(g->first(e,t); g->valid(e); g->next(e)) exc+=(*flow)[e]; |
---|
| 638 | OutEdgeIt f; |
---|
| 639 | for(g->first(f,t); g->valid(f); g->next(f)) exc-=(*flow)[f]; |
---|
| 640 | |
---|
| 641 | excess.set(t,exc); |
---|
| 642 | |
---|
| 643 | break; |
---|
| 644 | } |
---|
| 645 | default: |
---|
| 646 | break; |
---|
| 647 | } |
---|
[478] | 648 | |
---|
[485] | 649 | preflowPreproc( fe, active, level_list, left, right ); |
---|
| 650 | //End of preprocessing |
---|
[478] | 651 | |
---|
| 652 | |
---|
[485] | 653 | //Push/relabel on the highest level active nodes. |
---|
| 654 | while ( true ) { |
---|
| 655 | if ( b == 0 ) { |
---|
| 656 | if ( !what_heur && !end && k > 0 ) { |
---|
| 657 | b=k; |
---|
| 658 | end=true; |
---|
| 659 | } else break; |
---|
| 660 | } |
---|
| 661 | |
---|
| 662 | if ( active[b].empty() ) --b; |
---|
| 663 | else { |
---|
| 664 | end=false; |
---|
| 665 | Node w=active[b].top(); |
---|
| 666 | active[b].pop(); |
---|
| 667 | int newlevel=push(w,active); |
---|
| 668 | if ( excess[w] > 0 ) relabel(w, newlevel, active, level_list, |
---|
| 669 | left, right, b, k, what_heur); |
---|
| 670 | |
---|
| 671 | ++numrelabel; |
---|
| 672 | if ( numrelabel >= heur ) { |
---|
| 673 | numrelabel=0; |
---|
| 674 | if ( what_heur ) { |
---|
| 675 | what_heur=0; |
---|
| 676 | heur=heur0; |
---|
| 677 | end=false; |
---|
| 678 | } else { |
---|
| 679 | what_heur=1; |
---|
| 680 | heur=heur1; |
---|
| 681 | b=k; |
---|
| 682 | } |
---|
[478] | 683 | } |
---|
| 684 | } |
---|
[485] | 685 | } |
---|
| 686 | } |
---|
[478] | 687 | |
---|
| 688 | |
---|
| 689 | |
---|
| 690 | template <typename Graph, typename Num, typename CapMap, typename FlowMap> |
---|
| 691 | void MaxFlow<Graph, Num, CapMap, FlowMap>::preflowPhase1() |
---|
| 692 | { |
---|
| 693 | |
---|
[485] | 694 | int k=n-2; //bound on the highest level under n containing a node |
---|
| 695 | int b=k; //bound on the highest level under n of an active node |
---|
[478] | 696 | |
---|
[485] | 697 | VecStack active(n); |
---|
| 698 | level.set(s,0); |
---|
| 699 | std::queue<Node> bfs_queue; |
---|
| 700 | bfs_queue.push(s); |
---|
[478] | 701 | |
---|
[485] | 702 | while (!bfs_queue.empty()) { |
---|
[478] | 703 | |
---|
[485] | 704 | Node v=bfs_queue.front(); |
---|
| 705 | bfs_queue.pop(); |
---|
| 706 | int l=level[v]+1; |
---|
[478] | 707 | |
---|
[485] | 708 | InEdgeIt e; |
---|
| 709 | for(g->first(e,v); g->valid(e); g->next(e)) { |
---|
| 710 | if ( (*capacity)[e] <= (*flow)[e] ) continue; |
---|
| 711 | Node u=g->tail(e); |
---|
| 712 | if ( level[u] >= n ) { |
---|
| 713 | bfs_queue.push(u); |
---|
| 714 | level.set(u, l); |
---|
| 715 | if ( excess[u] > 0 ) active[l].push(u); |
---|
[478] | 716 | } |
---|
| 717 | } |
---|
[485] | 718 | |
---|
| 719 | OutEdgeIt f; |
---|
| 720 | for(g->first(f,v); g->valid(f); g->next(f)) { |
---|
| 721 | if ( 0 >= (*flow)[f] ) continue; |
---|
| 722 | Node u=g->head(f); |
---|
| 723 | if ( level[u] >= n ) { |
---|
| 724 | bfs_queue.push(u); |
---|
| 725 | level.set(u, l); |
---|
| 726 | if ( excess[u] > 0 ) active[l].push(u); |
---|
| 727 | } |
---|
| 728 | } |
---|
| 729 | } |
---|
| 730 | b=n-2; |
---|
[478] | 731 | |
---|
[485] | 732 | while ( true ) { |
---|
[478] | 733 | |
---|
[485] | 734 | if ( b == 0 ) break; |
---|
[478] | 735 | |
---|
[485] | 736 | if ( active[b].empty() ) --b; |
---|
| 737 | else { |
---|
| 738 | Node w=active[b].top(); |
---|
| 739 | active[b].pop(); |
---|
| 740 | int newlevel=push(w,active); |
---|
[478] | 741 | |
---|
[485] | 742 | //relabel |
---|
| 743 | if ( excess[w] > 0 ) { |
---|
| 744 | level.set(w,++newlevel); |
---|
| 745 | active[newlevel].push(w); |
---|
| 746 | b=newlevel; |
---|
| 747 | } |
---|
| 748 | } // if stack[b] is nonempty |
---|
| 749 | } // while(true) |
---|
| 750 | } |
---|
[478] | 751 | |
---|
| 752 | |
---|
| 753 | |
---|
| 754 | template <typename Graph, typename Num, typename CapMap, typename FlowMap> |
---|
| 755 | bool MaxFlow<Graph, Num, CapMap, FlowMap>::augmentOnShortestPath() |
---|
| 756 | { |
---|
[485] | 757 | ResGW res_graph(*g, *capacity, *flow); |
---|
| 758 | bool _augment=false; |
---|
[478] | 759 | |
---|
[485] | 760 | //ReachedMap level(res_graph); |
---|
| 761 | FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0); |
---|
| 762 | BfsIterator<ResGW, ReachedMap> bfs(res_graph, level); |
---|
| 763 | bfs.pushAndSetReached(s); |
---|
[478] | 764 | |
---|
[485] | 765 | typename ResGW::template NodeMap<ResGWEdge> pred(res_graph); |
---|
| 766 | pred.set(s, INVALID); |
---|
[478] | 767 | |
---|
[485] | 768 | typename ResGW::template NodeMap<Num> free(res_graph); |
---|
[478] | 769 | |
---|
[485] | 770 | //searching for augmenting path |
---|
| 771 | while ( !bfs.finished() ) { |
---|
| 772 | ResGWOutEdgeIt e=bfs; |
---|
| 773 | if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) { |
---|
| 774 | Node v=res_graph.tail(e); |
---|
| 775 | Node w=res_graph.head(e); |
---|
| 776 | pred.set(w, e); |
---|
| 777 | if (res_graph.valid(pred[v])) { |
---|
| 778 | free.set(w, std::min(free[v], res_graph.resCap(e))); |
---|
| 779 | } else { |
---|
| 780 | free.set(w, res_graph.resCap(e)); |
---|
[478] | 781 | } |
---|
[485] | 782 | if (res_graph.head(e)==t) { _augment=true; break; } |
---|
| 783 | } |
---|
[478] | 784 | |
---|
[485] | 785 | ++bfs; |
---|
| 786 | } //end of searching augmenting path |
---|
[478] | 787 | |
---|
[485] | 788 | if (_augment) { |
---|
| 789 | Node n=t; |
---|
| 790 | Num augment_value=free[t]; |
---|
| 791 | while (res_graph.valid(pred[n])) { |
---|
| 792 | ResGWEdge e=pred[n]; |
---|
| 793 | res_graph.augment(e, augment_value); |
---|
| 794 | n=res_graph.tail(e); |
---|
[478] | 795 | } |
---|
[485] | 796 | } |
---|
[478] | 797 | |
---|
[485] | 798 | return _augment; |
---|
| 799 | } |
---|
[478] | 800 | |
---|
| 801 | |
---|
| 802 | |
---|
| 803 | |
---|
| 804 | |
---|
| 805 | |
---|
| 806 | |
---|
| 807 | |
---|
| 808 | |
---|
| 809 | template <typename Graph, typename Num, typename CapMap, typename FlowMap> |
---|
| 810 | template<typename MutableGraph> |
---|
| 811 | bool MaxFlow<Graph, Num, CapMap, FlowMap>::augmentOnBlockingFlow() |
---|
| 812 | { |
---|
[485] | 813 | typedef MutableGraph MG; |
---|
| 814 | bool _augment=false; |
---|
[478] | 815 | |
---|
[485] | 816 | ResGW res_graph(*g, *capacity, *flow); |
---|
[478] | 817 | |
---|
[485] | 818 | //bfs for distances on the residual graph |
---|
| 819 | //ReachedMap level(res_graph); |
---|
| 820 | FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0); |
---|
| 821 | BfsIterator<ResGW, ReachedMap> bfs(res_graph, level); |
---|
| 822 | bfs.pushAndSetReached(s); |
---|
| 823 | typename ResGW::template NodeMap<int> |
---|
| 824 | dist(res_graph); //filled up with 0's |
---|
[478] | 825 | |
---|
[485] | 826 | //F will contain the physical copy of the residual graph |
---|
| 827 | //with the set of edges which are on shortest paths |
---|
| 828 | MG F; |
---|
| 829 | typename ResGW::template NodeMap<typename MG::Node> |
---|
| 830 | res_graph_to_F(res_graph); |
---|
| 831 | { |
---|
| 832 | typename ResGW::NodeIt n; |
---|
| 833 | for(res_graph.first(n); res_graph.valid(n); res_graph.next(n)) { |
---|
| 834 | res_graph_to_F.set(n, F.addNode()); |
---|
[478] | 835 | } |
---|
[485] | 836 | } |
---|
[478] | 837 | |
---|
[485] | 838 | typename MG::Node sF=res_graph_to_F[s]; |
---|
| 839 | typename MG::Node tF=res_graph_to_F[t]; |
---|
| 840 | typename MG::template EdgeMap<ResGWEdge> original_edge(F); |
---|
| 841 | typename MG::template EdgeMap<Num> residual_capacity(F); |
---|
[478] | 842 | |
---|
[485] | 843 | while ( !bfs.finished() ) { |
---|
| 844 | ResGWOutEdgeIt e=bfs; |
---|
| 845 | if (res_graph.valid(e)) { |
---|
| 846 | if (bfs.isBNodeNewlyReached()) { |
---|
| 847 | dist.set(res_graph.head(e), dist[res_graph.tail(e)]+1); |
---|
| 848 | typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.tail(e)], res_graph_to_F[res_graph.head(e)]); |
---|
| 849 | original_edge.update(); |
---|
| 850 | original_edge.set(f, e); |
---|
| 851 | residual_capacity.update(); |
---|
| 852 | residual_capacity.set(f, res_graph.resCap(e)); |
---|
| 853 | } else { |
---|
| 854 | if (dist[res_graph.head(e)]==(dist[res_graph.tail(e)]+1)) { |
---|
[478] | 855 | typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.tail(e)], res_graph_to_F[res_graph.head(e)]); |
---|
| 856 | original_edge.update(); |
---|
| 857 | original_edge.set(f, e); |
---|
| 858 | residual_capacity.update(); |
---|
| 859 | residual_capacity.set(f, res_graph.resCap(e)); |
---|
| 860 | } |
---|
| 861 | } |
---|
[485] | 862 | } |
---|
| 863 | ++bfs; |
---|
| 864 | } //computing distances from s in the residual graph |
---|
[478] | 865 | |
---|
[485] | 866 | bool __augment=true; |
---|
[478] | 867 | |
---|
[485] | 868 | while (__augment) { |
---|
| 869 | __augment=false; |
---|
| 870 | //computing blocking flow with dfs |
---|
| 871 | DfsIterator< MG, typename MG::template NodeMap<bool> > dfs(F); |
---|
| 872 | typename MG::template NodeMap<typename MG::Edge> pred(F); |
---|
| 873 | pred.set(sF, INVALID); |
---|
| 874 | //invalid iterators for sources |
---|
[478] | 875 | |
---|
[485] | 876 | typename MG::template NodeMap<Num> free(F); |
---|
[478] | 877 | |
---|
[485] | 878 | dfs.pushAndSetReached(sF); |
---|
| 879 | while (!dfs.finished()) { |
---|
| 880 | ++dfs; |
---|
| 881 | if (F.valid(/*typename MG::OutEdgeIt*/(dfs))) { |
---|
| 882 | if (dfs.isBNodeNewlyReached()) { |
---|
| 883 | typename MG::Node v=F.aNode(dfs); |
---|
| 884 | typename MG::Node w=F.bNode(dfs); |
---|
| 885 | pred.set(w, dfs); |
---|
| 886 | if (F.valid(pred[v])) { |
---|
| 887 | free.set(w, std::min(free[v], residual_capacity[dfs])); |
---|
| 888 | } else { |
---|
| 889 | free.set(w, residual_capacity[dfs]); |
---|
| 890 | } |
---|
| 891 | if (w==tF) { |
---|
| 892 | __augment=true; |
---|
| 893 | _augment=true; |
---|
| 894 | break; |
---|
| 895 | } |
---|
[478] | 896 | |
---|
[485] | 897 | } else { |
---|
| 898 | F.erase(/*typename MG::OutEdgeIt*/(dfs)); |
---|
| 899 | } |
---|
| 900 | } |
---|
| 901 | } |
---|
| 902 | |
---|
| 903 | if (__augment) { |
---|
| 904 | typename MG::Node n=tF; |
---|
| 905 | Num augment_value=free[tF]; |
---|
| 906 | while (F.valid(pred[n])) { |
---|
| 907 | typename MG::Edge e=pred[n]; |
---|
| 908 | res_graph.augment(original_edge[e], augment_value); |
---|
| 909 | n=F.tail(e); |
---|
| 910 | if (residual_capacity[e]==augment_value) |
---|
| 911 | F.erase(e); |
---|
| 912 | else |
---|
| 913 | residual_capacity.set(e, residual_capacity[e]-augment_value); |
---|
[478] | 914 | } |
---|
[485] | 915 | } |
---|
[478] | 916 | |
---|
[485] | 917 | } |
---|
[478] | 918 | |
---|
[485] | 919 | return _augment; |
---|
| 920 | } |
---|
[478] | 921 | |
---|
| 922 | |
---|
| 923 | |
---|
| 924 | |
---|
| 925 | |
---|
| 926 | |
---|
| 927 | template <typename Graph, typename Num, typename CapMap, typename FlowMap> |
---|
| 928 | bool MaxFlow<Graph, Num, CapMap, FlowMap>::augmentOnBlockingFlow2() |
---|
| 929 | { |
---|
[485] | 930 | bool _augment=false; |
---|
[478] | 931 | |
---|
[485] | 932 | ResGW res_graph(*g, *capacity, *flow); |
---|
[478] | 933 | |
---|
[485] | 934 | //ReachedMap level(res_graph); |
---|
| 935 | FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0); |
---|
| 936 | BfsIterator<ResGW, ReachedMap> bfs(res_graph, level); |
---|
[478] | 937 | |
---|
[485] | 938 | bfs.pushAndSetReached(s); |
---|
| 939 | DistanceMap<ResGW> dist(res_graph); |
---|
| 940 | while ( !bfs.finished() ) { |
---|
| 941 | ResGWOutEdgeIt e=bfs; |
---|
| 942 | if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) { |
---|
| 943 | dist.set(res_graph.head(e), dist[res_graph.tail(e)]+1); |
---|
| 944 | } |
---|
| 945 | ++bfs; |
---|
| 946 | } //computing distances from s in the residual graph |
---|
[478] | 947 | |
---|
| 948 | //Subgraph containing the edges on some shortest paths |
---|
[485] | 949 | ConstMap<typename ResGW::Node, bool> true_map(true); |
---|
| 950 | typedef SubGraphWrapper<ResGW, ConstMap<typename ResGW::Node, bool>, |
---|
| 951 | DistanceMap<ResGW> > FilterResGW; |
---|
| 952 | FilterResGW filter_res_graph(res_graph, true_map, dist); |
---|
[478] | 953 | |
---|
[485] | 954 | //Subgraph, which is able to delete edges which are already |
---|
| 955 | //met by the dfs |
---|
| 956 | typename FilterResGW::template NodeMap<typename FilterResGW::OutEdgeIt> |
---|
| 957 | first_out_edges(filter_res_graph); |
---|
| 958 | typename FilterResGW::NodeIt v; |
---|
| 959 | for(filter_res_graph.first(v); filter_res_graph.valid(v); |
---|
| 960 | filter_res_graph.next(v)) |
---|
[478] | 961 | { |
---|
| 962 | typename FilterResGW::OutEdgeIt e; |
---|
| 963 | filter_res_graph.first(e, v); |
---|
| 964 | first_out_edges.set(v, e); |
---|
| 965 | } |
---|
[485] | 966 | typedef ErasingFirstGraphWrapper<FilterResGW, typename FilterResGW:: |
---|
| 967 | template NodeMap<typename FilterResGW::OutEdgeIt> > ErasingResGW; |
---|
| 968 | ErasingResGW erasing_res_graph(filter_res_graph, first_out_edges); |
---|
[478] | 969 | |
---|
[485] | 970 | bool __augment=true; |
---|
[478] | 971 | |
---|
[485] | 972 | while (__augment) { |
---|
[478] | 973 | |
---|
[485] | 974 | __augment=false; |
---|
| 975 | //computing blocking flow with dfs |
---|
| 976 | DfsIterator< ErasingResGW, |
---|
| 977 | typename ErasingResGW::template NodeMap<bool> > |
---|
| 978 | dfs(erasing_res_graph); |
---|
| 979 | typename ErasingResGW:: |
---|
| 980 | template NodeMap<typename ErasingResGW::OutEdgeIt> |
---|
| 981 | pred(erasing_res_graph); |
---|
| 982 | pred.set(s, INVALID); |
---|
| 983 | //invalid iterators for sources |
---|
[478] | 984 | |
---|
[485] | 985 | typename ErasingResGW::template NodeMap<Num> |
---|
| 986 | free1(erasing_res_graph); |
---|
[478] | 987 | |
---|
[485] | 988 | dfs.pushAndSetReached( |
---|
| 989 | typename ErasingResGW::Node( |
---|
| 990 | typename FilterResGW::Node( |
---|
| 991 | typename ResGW::Node(s) |
---|
| 992 | ) |
---|
| 993 | ) |
---|
| 994 | ); |
---|
| 995 | while (!dfs.finished()) { |
---|
| 996 | ++dfs; |
---|
| 997 | if (erasing_res_graph.valid( |
---|
| 998 | typename ErasingResGW::OutEdgeIt(dfs))) |
---|
[478] | 999 | { |
---|
| 1000 | if (dfs.isBNodeNewlyReached()) { |
---|
| 1001 | |
---|
| 1002 | typename ErasingResGW::Node v=erasing_res_graph.aNode(dfs); |
---|
| 1003 | typename ErasingResGW::Node w=erasing_res_graph.bNode(dfs); |
---|
| 1004 | |
---|
| 1005 | pred.set(w, /*typename ErasingResGW::OutEdgeIt*/(dfs)); |
---|
| 1006 | if (erasing_res_graph.valid(pred[v])) { |
---|
| 1007 | free1.set(w, std::min(free1[v], res_graph.resCap( |
---|
[485] | 1008 | typename ErasingResGW::OutEdgeIt(dfs)))); |
---|
[478] | 1009 | } else { |
---|
| 1010 | free1.set(w, res_graph.resCap( |
---|
[485] | 1011 | typename ErasingResGW::OutEdgeIt(dfs))); |
---|
[478] | 1012 | } |
---|
| 1013 | |
---|
| 1014 | if (w==t) { |
---|
| 1015 | __augment=true; |
---|
| 1016 | _augment=true; |
---|
| 1017 | break; |
---|
| 1018 | } |
---|
| 1019 | } else { |
---|
| 1020 | erasing_res_graph.erase(dfs); |
---|
| 1021 | } |
---|
| 1022 | } |
---|
[485] | 1023 | } |
---|
[478] | 1024 | |
---|
[485] | 1025 | if (__augment) { |
---|
| 1026 | typename ErasingResGW::Node n=typename FilterResGW::Node(typename ResGW::Node(t)); |
---|
| 1027 | // typename ResGW::NodeMap<Num> a(res_graph); |
---|
| 1028 | // typename ResGW::Node b; |
---|
| 1029 | // Num j=a[b]; |
---|
| 1030 | // typename FilterResGW::NodeMap<Num> a1(filter_res_graph); |
---|
| 1031 | // typename FilterResGW::Node b1; |
---|
| 1032 | // Num j1=a1[b1]; |
---|
| 1033 | // typename ErasingResGW::NodeMap<Num> a2(erasing_res_graph); |
---|
| 1034 | // typename ErasingResGW::Node b2; |
---|
| 1035 | // Num j2=a2[b2]; |
---|
| 1036 | Num augment_value=free1[n]; |
---|
| 1037 | while (erasing_res_graph.valid(pred[n])) { |
---|
| 1038 | typename ErasingResGW::OutEdgeIt e=pred[n]; |
---|
| 1039 | res_graph.augment(e, augment_value); |
---|
| 1040 | n=erasing_res_graph.tail(e); |
---|
| 1041 | if (res_graph.resCap(e)==0) |
---|
| 1042 | erasing_res_graph.erase(e); |
---|
[478] | 1043 | } |
---|
| 1044 | } |
---|
| 1045 | |
---|
[485] | 1046 | } //while (__augment) |
---|
[478] | 1047 | |
---|
[485] | 1048 | return _augment; |
---|
| 1049 | } |
---|
[478] | 1050 | |
---|
| 1051 | |
---|
| 1052 | |
---|
| 1053 | |
---|
| 1054 | } //namespace hugo |
---|
| 1055 | |
---|
[480] | 1056 | #endif //HUGO_MAX_FLOW_H |
---|
[478] | 1057 | |
---|
| 1058 | |
---|
| 1059 | |
---|
| 1060 | |
---|