// -*- C++ -*- /* Heuristics: 2 phase gap list 'level_list' on the nodes on level i implemented by hand stack 'active' on the active nodes on level i runs heuristic 'highest label' for H1*n relabels runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label' Parameters H0 and H1 are initialized to 20 and 1. Constructors: Preflow(Graph, Node, Node, CapMap, FlowMap, bool) : bool must be false if FlowMap is not constant zero, and should be true if it is Members: void run() T flowValue() : returns the value of a maximum flow void minMinCut(CutMap& M) : sets M to the characteristic vector of the minimum min cut. M should be a map of bools initialized to false. ??Is it OK? void maxMinCut(CutMap& M) : sets M to the characteristic vector of the maximum min cut. M should be a map of bools initialized to false. void minCut(CutMap& M) : sets M to the characteristic vector of a min cut. M should be a map of bools initialized to false. */ #ifndef HUGO_PREFLOW_H #define HUGO_PREFLOW_H #define H0 20 #define H1 1 #include #include #include namespace hugo { template , typename FlowMap=typename Graph::template EdgeMap > class Preflow { typedef typename Graph::Node Node; typedef typename Graph::NodeIt NodeIt; typedef typename Graph::OutEdgeIt OutEdgeIt; typedef typename Graph::InEdgeIt InEdgeIt; typedef typename std::vector > VecStack; typedef typename Graph::template NodeMap NNMap; typedef typename std::vector VecNode; const Graph& G; Node s; Node t; CapMap* capacity; FlowMap* flow; int n; //the number of nodes of G typename Graph::template NodeMap level; typename Graph::template NodeMap excess; public: enum flowEnum{ ZERO_FLOW=0, GEN_FLOW=1, PREFLOW=2 }; Preflow(Graph& _G, Node _s, Node _t, CapMap& _capacity, FlowMap& _flow) : G(_G), s(_s), t(_t), capacity(&_capacity), flow(&_flow), n(_G.nodeNum()), level(_G), excess(_G,0) {} void run() { preflow( ZERO_FLOW ); } void preflow( flowEnum fe ) { preflowPhase0(fe); preflowPhase1(); } void preflowPhase0( flowEnum fe ) { int heur0=(int)(H0*n); //time while running 'bound decrease' int heur1=(int)(H1*n); //time while running 'highest label' int heur=heur1; //starting time interval (#of relabels) int numrelabel=0; bool what_heur=1; //It is 0 in case 'bound decrease' and 1 in case 'highest label' bool end=false; //Needed for 'bound decrease', true means no active nodes are above bound b. int k=n-2; //bound on the highest level under n containing a node int b=k; //bound on the highest level under n of an active node VecStack active(n); NNMap left(G,INVALID); NNMap right(G,INVALID); VecNode level_list(n,INVALID); //List of the nodes in level i 0 && lev < n && v != t ) active[lev].push(v); } break; } case GEN_FLOW: { //Counting the excess of t T exc=0; InEdgeIt e; for(G.first(e,t); G.valid(e); G.next(e)) exc+=(*flow)[e]; OutEdgeIt f; for(G.first(f,t); G.valid(f); G.next(f)) exc-=(*flow)[f]; excess.set(t,exc); break; } } preflowPreproc( fe, active, level_list, left, right ); //End of preprocessing //Push/relabel on the highest level active nodes. while ( true ) { if ( b == 0 ) { if ( !what_heur && !end && k > 0 ) { b=k; end=true; } else break; } if ( active[b].empty() ) --b; else { end=false; Node w=active[b].top(); active[b].pop(); int newlevel=push(w,active); if ( excess[w] > 0 ) relabel(w, newlevel, active, level_list, left, right, b, k, what_heur); ++numrelabel; if ( numrelabel >= heur ) { numrelabel=0; if ( what_heur ) { what_heur=0; heur=heur0; end=false; } else { what_heur=1; heur=heur1; b=k; } } } } } void preflowPhase1() { int k=n-2; //bound on the highest level under n containing a node int b=k; //bound on the highest level under n of an active node VecStack active(n); level.set(s,0); std::queue bfs_queue; bfs_queue.push(s); while (!bfs_queue.empty()) { Node v=bfs_queue.front(); bfs_queue.pop(); int l=level[v]+1; InEdgeIt e; for(G.first(e,v); G.valid(e); G.next(e)) { if ( (*capacity)[e] == (*flow)[e] ) continue; Node u=G.tail(e); if ( level[u] >= n ) { bfs_queue.push(u); level.set(u, l); if ( excess[u] > 0 ) active[l].push(u); } } OutEdgeIt f; for(G.first(f,v); G.valid(f); G.next(f)) { if ( 0 == (*flow)[f] ) continue; Node u=G.head(f); if ( level[u] >= n ) { bfs_queue.push(u); level.set(u, l); if ( excess[u] > 0 ) active[l].push(u); } } } b=n-2; while ( true ) { if ( b == 0 ) break; if ( active[b].empty() ) --b; else { Node w=active[b].top(); active[b].pop(); int newlevel=push(w,active); //relabel if ( excess[w] > 0 ) { level.set(w,++newlevel); active[newlevel].push(w); b=newlevel; } } // if stack[b] is nonempty } // while(true) } //Returns the maximum value of a flow. T flowValue() { return excess[t]; } //should be used only between preflowPhase0 and preflowPhase1 template void actMinCut(_CutMap& M) { NodeIt v; for(G.first(v); G.valid(v); G.next(v)) if ( level[v] < n ) M.set(v,false); else M.set(v,true); } /* Returns the minimum min cut, by a bfs from s in the residual graph. */ template void minMinCut(_CutMap& M) { std::queue queue; M.set(s,true); queue.push(s); while (!queue.empty()) { Node w=queue.front(); queue.pop(); OutEdgeIt e; for(G.first(e,w) ; G.valid(e); G.next(e)) { Node v=G.head(e); if (!M[v] && (*flow)[e] < (*capacity)[e] ) { queue.push(v); M.set(v, true); } } InEdgeIt f; for(G.first(f,w) ; G.valid(f); G.next(f)) { Node v=G.tail(f); if (!M[v] && (*flow)[f] > 0 ) { queue.push(v); M.set(v, true); } } } } /* Returns the maximum min cut, by a reverse bfs from t in the residual graph. */ template void maxMinCut(_CutMap& M) { NodeIt v; for(G.first(v) ; G.valid(v); G.next(v)) { M.set(v, true); } std::queue queue; M.set(t,false); queue.push(t); while (!queue.empty()) { Node w=queue.front(); queue.pop(); InEdgeIt e; for(G.first(e,w) ; G.valid(e); G.next(e)) { Node v=G.tail(e); if (M[v] && (*flow)[e] < (*capacity)[e] ) { queue.push(v); M.set(v, false); } } OutEdgeIt f; for(G.first(f,w) ; G.valid(f); G.next(f)) { Node v=G.head(f); if (M[v] && (*flow)[f] > 0 ) { queue.push(v); M.set(v, false); } } } } template void minCut(CutMap& M) { minMinCut(M); } void resetTarget (const Node _t) {t=_t;} void resetSource (const Node _s) {s=_s;} void resetCap (const CapMap& _cap) { capacity=&_cap; } void resetFlow (FlowMap& _flow) { flow=&_flow; } private: int push(const Node w, VecStack& active) { int lev=level[w]; T exc=excess[w]; int newlevel=n; //bound on the next level of w OutEdgeIt e; for(G.first(e,w); G.valid(e); G.next(e)) { if ( (*flow)[e] == (*capacity)[e] ) continue; Node v=G.head(e); if( lev > level[v] ) { //Push is allowed now if ( excess[v]==0 && v!=t && v!=s ) { int lev_v=level[v]; active[lev_v].push(v); } T cap=(*capacity)[e]; T flo=(*flow)[e]; T remcap=cap-flo; if ( remcap >= exc ) { //A nonsaturating push. flow->set(e, flo+exc); excess.set(v, excess[v]+exc); exc=0; break; } else { //A saturating push. flow->set(e, cap); excess.set(v, excess[v]+remcap); exc-=remcap; } } else if ( newlevel > level[v] ) newlevel = level[v]; } //for out edges wv if ( exc > 0 ) { InEdgeIt e; for(G.first(e,w); G.valid(e); G.next(e)) { if( (*flow)[e] == 0 ) continue; Node v=G.tail(e); if( lev > level[v] ) { //Push is allowed now if ( excess[v]==0 && v!=t && v!=s ) { int lev_v=level[v]; active[lev_v].push(v); } T flo=(*flow)[e]; if ( flo >= exc ) { //A nonsaturating push. flow->set(e, flo-exc); excess.set(v, excess[v]+exc); exc=0; break; } else { //A saturating push. excess.set(v, excess[v]+flo); exc-=flo; flow->set(e,0); } } else if ( newlevel > level[v] ) newlevel = level[v]; } //for in edges vw } // if w still has excess after the out edge for cycle excess.set(w, exc); return newlevel; } void preflowPreproc ( flowEnum fe, VecStack& active, VecNode& level_list, NNMap& left, NNMap& right ) { std::queue bfs_queue; switch ( fe ) { case ZERO_FLOW: { //Reverse_bfs from t, to find the starting level. level.set(t,0); bfs_queue.push(t); while (!bfs_queue.empty()) { Node v=bfs_queue.front(); bfs_queue.pop(); int l=level[v]+1; InEdgeIt e; for(G.first(e,v); G.valid(e); G.next(e)) { Node w=G.tail(e); if ( level[w] == n && w != s ) { bfs_queue.push(w); Node first=level_list[l]; if ( G.valid(first) ) left.set(first,w); right.set(w,first); level_list[l]=w; level.set(w, l); } } } //the starting flow OutEdgeIt e; for(G.first(e,s); G.valid(e); G.next(e)) { T c=(*capacity)[e]; if ( c == 0 ) continue; Node w=G.head(e); if ( level[w] < n ) { if ( excess[w] == 0 && w!=t ) active[level[w]].push(w); flow->set(e, c); excess.set(w, excess[w]+c); } } break; } case GEN_FLOW: case PREFLOW: { //Reverse_bfs from t in the residual graph, //to find the starting level. level.set(t,0); bfs_queue.push(t); while (!bfs_queue.empty()) { Node v=bfs_queue.front(); bfs_queue.pop(); int l=level[v]+1; InEdgeIt e; for(G.first(e,v); G.valid(e); G.next(e)) { if ( (*capacity)[e] == (*flow)[e] ) continue; Node w=G.tail(e); if ( level[w] == n && w != s ) { bfs_queue.push(w); Node first=level_list[l]; if ( G.valid(first) ) left.set(first,w); right.set(w,first); level_list[l]=w; level.set(w, l); } } OutEdgeIt f; for(G.first(f,v); G.valid(f); G.next(f)) { if ( 0 == (*flow)[f] ) continue; Node w=G.head(f); if ( level[w] == n && w != s ) { bfs_queue.push(w); Node first=level_list[l]; if ( G.valid(first) ) left.set(first,w); right.set(w,first); level_list[l]=w; level.set(w, l); } } } //the starting flow OutEdgeIt e; for(G.first(e,s); G.valid(e); G.next(e)) { T rem=(*capacity)[e]-(*flow)[e]; if ( rem == 0 ) continue; Node w=G.head(e); if ( level[w] < n ) { if ( excess[w] == 0 && w!=t ) active[level[w]].push(w); flow->set(e, (*capacity)[e]); excess.set(w, excess[w]+rem); } } InEdgeIt f; for(G.first(f,s); G.valid(f); G.next(f)) { if ( (*flow)[f] == 0 ) continue; Node w=G.tail(f); if ( level[w] < n ) { if ( excess[w] == 0 && w!=t ) active[level[w]].push(w); excess.set(w, excess[w]+(*flow)[f]); flow->set(f, 0); } } break; } //case PREFLOW } } //preflowPreproc void relabel( const Node w, int newlevel, VecStack& active, VecNode& level_list, NNMap& left, NNMap& right, int& b, int& k, const bool what_heur ) { T lev=level[w]; Node right_n=right[w]; Node left_n=left[w]; //unlacing starts if ( G.valid(right_n) ) { if ( G.valid(left_n) ) { right.set(left_n, right_n); left.set(right_n, left_n); } else { level_list[lev]=right_n; left.set(right_n, INVALID); } } else { if ( G.valid(left_n) ) { right.set(left_n, INVALID); } else { level_list[lev]=INVALID; } } //unlacing ends if ( !G.valid(level_list[lev]) ) { //gapping starts for (int i=lev; i!=k ; ) { Node v=level_list[++i]; while ( G.valid(v) ) { level.set(v,n); v=right[v]; } level_list[i]=INVALID; if ( !what_heur ) { while ( !active[i].empty() ) { active[i].pop(); //FIXME: ezt szebben kene } } } level.set(w,n); b=lev-1; k=b; //gapping ends } else { if ( newlevel == n ) level.set(w,n); else { level.set(w,++newlevel); active[newlevel].push(w); if ( what_heur ) b=newlevel; if ( k < newlevel ) ++k; //now k=newlevel Node first=level_list[newlevel]; if ( G.valid(first) ) left.set(first,w); right.set(w,first); left.set(w,INVALID); level_list[newlevel]=w; } } } //relabel }; } //namespace hugo #endif //HUGO_PREFLOW_H