1 | // -*- C++ -*- |
---|
2 | /* |
---|
3 | preflow_hl2.h |
---|
4 | by jacint. |
---|
5 | Runs the highest label variant of the preflow push algorithm with |
---|
6 | running time O(n^2\sqrt(m)), with the 'empty level' and with the |
---|
7 | heuristic that the bound b on the active nodes is not increased |
---|
8 | only when b=0, when we put b=2*n-2. |
---|
9 | |
---|
10 | 'A' is a parameter for the empty_level heuristic |
---|
11 | |
---|
12 | Member functions: |
---|
13 | |
---|
14 | void run() : runs the algorithm |
---|
15 | |
---|
16 | The following functions should be used after run() was already run. |
---|
17 | |
---|
18 | T maxflow() : returns the value of a maximum flow |
---|
19 | |
---|
20 | T flowonedge(EdgeIt e) : for a fixed maximum flow x it returns x(e) |
---|
21 | |
---|
22 | FlowMap allflow() : returns the fixed maximum flow x |
---|
23 | |
---|
24 | void mincut(CutMap& M) : sets M to the characteristic vector of a |
---|
25 | minimum cut. M should be a map of bools initialized to false. |
---|
26 | |
---|
27 | void min_mincut(CutMap& M) : sets M to the characteristic vector of the |
---|
28 | minimum min cut. M should be a map of bools initialized to false. |
---|
29 | |
---|
30 | void max_mincut(CutMap& M) : sets M to the characteristic vector of the |
---|
31 | maximum min cut. M should be a map of bools initialized to false. |
---|
32 | |
---|
33 | */ |
---|
34 | |
---|
35 | #ifndef PREFLOW_HL2_H |
---|
36 | #define PREFLOW_HL2_H |
---|
37 | |
---|
38 | #define A 1 |
---|
39 | |
---|
40 | #include <vector> |
---|
41 | #include <stack> |
---|
42 | #include <queue> |
---|
43 | |
---|
44 | namespace hugo { |
---|
45 | |
---|
46 | template <typename Graph, typename T, |
---|
47 | typename FlowMap=typename Graph::EdgeMap<T>, typename CapMap=typename Graph::EdgeMap<T>, |
---|
48 | typename IntMap=typename Graph::NodeMap<int>, typename TMap=typename Graph::NodeMap<T> > |
---|
49 | class preflow_hl2 { |
---|
50 | |
---|
51 | typedef typename Graph::NodeIt NodeIt; |
---|
52 | typedef typename Graph::EdgeIt EdgeIt; |
---|
53 | typedef typename Graph::EachNodeIt EachNodeIt; |
---|
54 | typedef typename Graph::OutEdgeIt OutEdgeIt; |
---|
55 | typedef typename Graph::InEdgeIt InEdgeIt; |
---|
56 | |
---|
57 | Graph& G; |
---|
58 | NodeIt s; |
---|
59 | NodeIt t; |
---|
60 | FlowMap flow; |
---|
61 | CapMap& capacity; |
---|
62 | T value; |
---|
63 | |
---|
64 | public: |
---|
65 | |
---|
66 | preflow_hl2(Graph& _G, NodeIt _s, NodeIt _t, CapMap& _capacity) : |
---|
67 | G(_G), s(_s), t(_t), flow(_G, 0), capacity(_capacity) { } |
---|
68 | |
---|
69 | |
---|
70 | void run() { |
---|
71 | |
---|
72 | bool no_end=true; |
---|
73 | int n=G.nodeNum(); |
---|
74 | int b=n-2; |
---|
75 | /* |
---|
76 | b is a bound on the highest level of an active node. |
---|
77 | In the beginning it is at most n-2. |
---|
78 | */ |
---|
79 | |
---|
80 | IntMap level(G,n); |
---|
81 | TMap excess(G); |
---|
82 | |
---|
83 | std::vector<int> numb(n); |
---|
84 | /* |
---|
85 | The number of nodes on level i < n. It is |
---|
86 | initialized to n+1, because of the reverse_bfs-part. |
---|
87 | */ |
---|
88 | |
---|
89 | std::vector<std::stack<NodeIt> > stack(2*n-1); |
---|
90 | //Stack of the active nodes in level i. |
---|
91 | |
---|
92 | |
---|
93 | /*Reverse_bfs from t, to find the starting level.*/ |
---|
94 | level.set(t,0); |
---|
95 | std::queue<NodeIt> bfs_queue; |
---|
96 | bfs_queue.push(t); |
---|
97 | |
---|
98 | while (!bfs_queue.empty()) { |
---|
99 | |
---|
100 | NodeIt v=bfs_queue.front(); |
---|
101 | bfs_queue.pop(); |
---|
102 | int l=level.get(v)+1; |
---|
103 | |
---|
104 | for(InEdgeIt e=G.template first<InEdgeIt>(v); e.valid(); ++e) { |
---|
105 | NodeIt w=G.tail(e); |
---|
106 | if ( level.get(w) == n ) { |
---|
107 | bfs_queue.push(w); |
---|
108 | ++numb[l]; |
---|
109 | level.set(w, l); |
---|
110 | } |
---|
111 | } |
---|
112 | } |
---|
113 | |
---|
114 | level.set(s,n); |
---|
115 | |
---|
116 | |
---|
117 | |
---|
118 | /* Starting flow. It is everywhere 0 at the moment. */ |
---|
119 | for(OutEdgeIt e=G.template first<OutEdgeIt>(s); e.valid(); ++e) |
---|
120 | { |
---|
121 | T c=capacity.get(e); |
---|
122 | if ( c == 0 ) continue; |
---|
123 | NodeIt w=G.head(e); |
---|
124 | if ( w!=s ) { |
---|
125 | if ( excess.get(w) == 0 && w!=t ) stack[level.get(w)].push(w); |
---|
126 | flow.set(e, c); |
---|
127 | excess.set(w, excess.get(w)+c); |
---|
128 | } |
---|
129 | } |
---|
130 | |
---|
131 | /* |
---|
132 | End of preprocessing |
---|
133 | */ |
---|
134 | |
---|
135 | |
---|
136 | |
---|
137 | /* |
---|
138 | Push/relabel on the highest level active nodes. |
---|
139 | */ |
---|
140 | /*While there exists an active node.*/ |
---|
141 | while (b) { |
---|
142 | if ( stack[b].empty() ) { |
---|
143 | if ( b==1 ) { |
---|
144 | if ( !no_end ) break; |
---|
145 | else { |
---|
146 | b=2*n-2; |
---|
147 | no_end=false; |
---|
148 | } |
---|
149 | } |
---|
150 | --b; |
---|
151 | } else { |
---|
152 | |
---|
153 | no_end=true; |
---|
154 | |
---|
155 | NodeIt w=stack[b].top(); //w is a highest label active node. |
---|
156 | stack[b].pop(); |
---|
157 | int lev=level.get(w); |
---|
158 | int exc=excess.get(w); |
---|
159 | int newlevel=2*n; //In newlevel we bound the next level of w. |
---|
160 | |
---|
161 | // if ( level.get(w) < n ) { //Nem tudom ez mukodik-e |
---|
162 | for(OutEdgeIt e=G.template first<OutEdgeIt>(w); e.valid(); ++e) { |
---|
163 | |
---|
164 | if ( flow.get(e) == capacity.get(e) ) continue; |
---|
165 | NodeIt v=G.head(e); |
---|
166 | //e=wv |
---|
167 | |
---|
168 | if( lev > level.get(v) ) { |
---|
169 | /*Push is allowed now*/ |
---|
170 | |
---|
171 | if ( excess.get(v)==0 && v != s && v !=t ) |
---|
172 | stack[level.get(v)].push(v); |
---|
173 | /*v becomes active.*/ |
---|
174 | |
---|
175 | int cap=capacity.get(e); |
---|
176 | int flo=flow.get(e); |
---|
177 | int remcap=cap-flo; |
---|
178 | |
---|
179 | if ( remcap >= exc ) { |
---|
180 | /*A nonsaturating push.*/ |
---|
181 | |
---|
182 | flow.set(e, flo+exc); |
---|
183 | excess.set(v, excess.get(v)+exc); |
---|
184 | exc=0; |
---|
185 | break; |
---|
186 | |
---|
187 | } else { |
---|
188 | /*A saturating push.*/ |
---|
189 | |
---|
190 | flow.set(e, cap ); |
---|
191 | excess.set(v, excess.get(v)+remcap); |
---|
192 | exc-=remcap; |
---|
193 | } |
---|
194 | } else if ( newlevel > level.get(v) ) newlevel = level.get(v); |
---|
195 | |
---|
196 | } //for out edges wv |
---|
197 | |
---|
198 | |
---|
199 | if ( exc > 0 ) { |
---|
200 | for( InEdgeIt e=G.template first<InEdgeIt>(w); e.valid(); ++e) { |
---|
201 | |
---|
202 | if( flow.get(e) == 0 ) continue; |
---|
203 | NodeIt v=G.tail(e); |
---|
204 | //e=vw |
---|
205 | |
---|
206 | if( lev > level.get(v) ) { |
---|
207 | /*Push is allowed now*/ |
---|
208 | |
---|
209 | if ( excess.get(v)==0 && v != s && v !=t) |
---|
210 | stack[level.get(v)].push(v); |
---|
211 | /*v becomes active.*/ |
---|
212 | |
---|
213 | int flo=flow.get(e); |
---|
214 | |
---|
215 | if ( flo >= exc ) { |
---|
216 | /*A nonsaturating push.*/ |
---|
217 | |
---|
218 | flow.set(e, flo-exc); |
---|
219 | excess.set(v, excess.get(v)+exc); |
---|
220 | exc=0; |
---|
221 | break; |
---|
222 | } else { |
---|
223 | /*A saturating push.*/ |
---|
224 | |
---|
225 | excess.set(v, excess.get(v)+flo); |
---|
226 | exc-=flo; |
---|
227 | flow.set(e,0); |
---|
228 | } |
---|
229 | } else if ( newlevel > level.get(v) ) newlevel = level.get(v); |
---|
230 | |
---|
231 | } //for in edges vw |
---|
232 | |
---|
233 | } // if w still has excess after the out edge for cycle |
---|
234 | |
---|
235 | excess.set(w, exc); |
---|
236 | |
---|
237 | |
---|
238 | /* |
---|
239 | Relabel |
---|
240 | */ |
---|
241 | |
---|
242 | if ( exc > 0 ) { |
---|
243 | //now 'lev' is the old level of w |
---|
244 | level.set(w,++newlevel); |
---|
245 | |
---|
246 | if ( lev < n ) { |
---|
247 | --numb[lev]; |
---|
248 | |
---|
249 | if ( !numb[lev] && lev < A*n ) { //If the level of w gets empty. |
---|
250 | |
---|
251 | for (EachNodeIt v=G.template first<EachNodeIt>(); v.valid() ; ++v) { |
---|
252 | if (level.get(v) > lev && level.get(v) < n ) level.set(v,n); |
---|
253 | } |
---|
254 | for (int i=lev+1 ; i!=n ; ++i) numb[i]=0; |
---|
255 | if ( newlevel < n ) newlevel=n; |
---|
256 | } else { |
---|
257 | if ( newlevel < n ) ++numb[newlevel]; |
---|
258 | } |
---|
259 | } |
---|
260 | |
---|
261 | stack[newlevel].push(w); |
---|
262 | |
---|
263 | } |
---|
264 | |
---|
265 | } // if stack[b] is nonempty |
---|
266 | |
---|
267 | } // while(b) |
---|
268 | |
---|
269 | |
---|
270 | value = excess.get(t); |
---|
271 | /*Max flow value.*/ |
---|
272 | |
---|
273 | |
---|
274 | } //void run() |
---|
275 | |
---|
276 | |
---|
277 | |
---|
278 | |
---|
279 | |
---|
280 | /* |
---|
281 | Returns the maximum value of a flow. |
---|
282 | */ |
---|
283 | |
---|
284 | T maxflow() { |
---|
285 | return value; |
---|
286 | } |
---|
287 | |
---|
288 | |
---|
289 | |
---|
290 | /* |
---|
291 | For the maximum flow x found by the algorithm, it returns the flow value on Edge e, i.e. x(e). |
---|
292 | */ |
---|
293 | |
---|
294 | T flowonedge(EdgeIt e) { |
---|
295 | return flow.get(e); |
---|
296 | } |
---|
297 | |
---|
298 | |
---|
299 | |
---|
300 | /* |
---|
301 | Returns the maximum flow x found by the algorithm. |
---|
302 | */ |
---|
303 | |
---|
304 | FlowMap allflow() { |
---|
305 | return flow; |
---|
306 | } |
---|
307 | |
---|
308 | |
---|
309 | |
---|
310 | |
---|
311 | /* |
---|
312 | Returns the minimum min cut, by a bfs from s in the residual graph. |
---|
313 | */ |
---|
314 | |
---|
315 | template<typename CutMap> |
---|
316 | void mincut(CutMap& M) { |
---|
317 | |
---|
318 | std::queue<NodeIt> queue; |
---|
319 | |
---|
320 | M.set(s,true); |
---|
321 | queue.push(s); |
---|
322 | |
---|
323 | while (!queue.empty()) { |
---|
324 | NodeIt w=queue.front(); |
---|
325 | queue.pop(); |
---|
326 | |
---|
327 | for(OutEdgeIt e=G.template first<OutEdgeIt>(w) ; e.valid(); ++e) { |
---|
328 | NodeIt v=G.head(e); |
---|
329 | if (!M.get(v) && flow.get(e) < capacity.get(e) ) { |
---|
330 | queue.push(v); |
---|
331 | M.set(v, true); |
---|
332 | } |
---|
333 | } |
---|
334 | |
---|
335 | for(InEdgeIt e=G.template first<InEdgeIt>(w) ; e.valid(); ++e) { |
---|
336 | NodeIt v=G.tail(e); |
---|
337 | if (!M.get(v) && flow.get(e) > 0 ) { |
---|
338 | queue.push(v); |
---|
339 | M.set(v, true); |
---|
340 | } |
---|
341 | } |
---|
342 | |
---|
343 | } |
---|
344 | |
---|
345 | } |
---|
346 | |
---|
347 | |
---|
348 | |
---|
349 | /* |
---|
350 | Returns the maximum min cut, by a reverse bfs |
---|
351 | from t in the residual graph. |
---|
352 | */ |
---|
353 | |
---|
354 | template<typename CutMap> |
---|
355 | void max_mincut(CutMap& M) { |
---|
356 | |
---|
357 | std::queue<NodeIt> queue; |
---|
358 | |
---|
359 | M.set(t,true); |
---|
360 | queue.push(t); |
---|
361 | |
---|
362 | while (!queue.empty()) { |
---|
363 | NodeIt w=queue.front(); |
---|
364 | queue.pop(); |
---|
365 | |
---|
366 | for(InEdgeIt e=G.template first<InEdgeIt>(w) ; e.valid(); ++e) { |
---|
367 | NodeIt v=G.tail(e); |
---|
368 | if (!M.get(v) && flow.get(e) < capacity.get(e) ) { |
---|
369 | queue.push(v); |
---|
370 | M.set(v, true); |
---|
371 | } |
---|
372 | } |
---|
373 | |
---|
374 | for(OutEdgeIt e=G.template first<OutEdgeIt>(w) ; e.valid(); ++e) { |
---|
375 | NodeIt v=G.head(e); |
---|
376 | if (!M.get(v) && flow.get(e) > 0 ) { |
---|
377 | queue.push(v); |
---|
378 | M.set(v, true); |
---|
379 | } |
---|
380 | } |
---|
381 | } |
---|
382 | |
---|
383 | for(EachNodeIt v=G.template first<EachNodeIt>() ; v.valid(); ++v) { |
---|
384 | M.set(v, !M.get(v)); |
---|
385 | } |
---|
386 | |
---|
387 | } |
---|
388 | |
---|
389 | |
---|
390 | |
---|
391 | template<typename CutMap> |
---|
392 | void min_mincut(CutMap& M) { |
---|
393 | mincut(M); |
---|
394 | } |
---|
395 | |
---|
396 | |
---|
397 | |
---|
398 | }; |
---|
399 | }//namespace hugo |
---|
400 | #endif |
---|
401 | |
---|
402 | |
---|
403 | |
---|
404 | |
---|