1 | // -*- C++ -*- |
---|
2 | //The same as preflow.h, using ResGraphWrapper |
---|
3 | #ifndef HUGO_PREFLOW_RES_H |
---|
4 | #define HUGO_PREFLOW_RES_H |
---|
5 | |
---|
6 | #define H0 20 |
---|
7 | #define H1 1 |
---|
8 | |
---|
9 | #include <vector> |
---|
10 | #include <queue> |
---|
11 | #include <graph_wrapper.h> |
---|
12 | |
---|
13 | #include<iostream> |
---|
14 | |
---|
15 | namespace hugo { |
---|
16 | |
---|
17 | template <typename Graph, typename T, |
---|
18 | typename CapMap=typename Graph::EdgeMap<T>, |
---|
19 | typename FlowMap=typename Graph::EdgeMap<T> > |
---|
20 | class PreflowRes { |
---|
21 | |
---|
22 | typedef typename Graph::Node Node; |
---|
23 | typedef typename Graph::Edge Edge; |
---|
24 | typedef typename Graph::NodeIt NodeIt; |
---|
25 | typedef typename Graph::OutEdgeIt OutEdgeIt; |
---|
26 | typedef typename Graph::InEdgeIt InEdgeIt; |
---|
27 | |
---|
28 | const Graph& G; |
---|
29 | Node s; |
---|
30 | Node t; |
---|
31 | const CapMap& capacity; |
---|
32 | FlowMap& flow; |
---|
33 | T value; |
---|
34 | bool constzero; |
---|
35 | |
---|
36 | typedef ResGraphWrapper<const Graph, T, CapMap, FlowMap> ResGW; |
---|
37 | typedef typename ResGW::OutEdgeIt ResOutEdgeIt; |
---|
38 | typedef typename ResGW::InEdgeIt ResInEdgeIt; |
---|
39 | typedef typename ResGW::Edge ResEdge; |
---|
40 | |
---|
41 | public: |
---|
42 | PreflowRes(Graph& _G, Node _s, Node _t, CapMap& _capacity, |
---|
43 | FlowMap& _flow, bool _constzero ) : |
---|
44 | G(_G), s(_s), t(_t), capacity(_capacity), flow(_flow), constzero(_constzero) {} |
---|
45 | |
---|
46 | |
---|
47 | void run() { |
---|
48 | |
---|
49 | ResGW res_graph(G, capacity, flow); |
---|
50 | |
---|
51 | value=0; //for the subsequent runs |
---|
52 | |
---|
53 | bool phase=0; //phase 0 is the 1st phase, phase 1 is the 2nd |
---|
54 | int n=G.nodeNum(); |
---|
55 | int heur0=(int)(H0*n); //time while running 'bound decrease' |
---|
56 | int heur1=(int)(H1*n); //time while running 'highest label' |
---|
57 | int heur=heur1; //starting time interval (#of relabels) |
---|
58 | bool what_heur=1; |
---|
59 | /* |
---|
60 | what_heur is 0 in case 'bound decrease' |
---|
61 | and 1 in case 'highest label' |
---|
62 | */ |
---|
63 | bool end=false; |
---|
64 | /* |
---|
65 | Needed for 'bound decrease', 'true' |
---|
66 | means no active nodes are above bound b. |
---|
67 | */ |
---|
68 | int relabel=0; |
---|
69 | int k=n-2; //bound on the highest level under n containing a node |
---|
70 | int b=k; //bound on the highest level under n of an active node |
---|
71 | |
---|
72 | typename Graph::NodeMap<int> level(G,n); |
---|
73 | typename Graph::NodeMap<T> excess(G); |
---|
74 | |
---|
75 | std::vector<Node> active(n-1,INVALID); |
---|
76 | typename Graph::NodeMap<Node> next(G,INVALID); |
---|
77 | //Stack of the active nodes in level i < n. |
---|
78 | //We use it in both phases. |
---|
79 | |
---|
80 | typename Graph::NodeMap<Node> left(G,INVALID); |
---|
81 | typename Graph::NodeMap<Node> right(G,INVALID); |
---|
82 | std::vector<Node> level_list(n,INVALID); |
---|
83 | /* |
---|
84 | List of the nodes in level i<n. |
---|
85 | */ |
---|
86 | |
---|
87 | |
---|
88 | /* |
---|
89 | Reverse_bfs from t in the residual graph, |
---|
90 | to find the starting level. |
---|
91 | */ |
---|
92 | level.set(t,0); |
---|
93 | std::queue<Node> bfs_queue; |
---|
94 | bfs_queue.push(t); |
---|
95 | |
---|
96 | while (!bfs_queue.empty()) { |
---|
97 | |
---|
98 | Node v=bfs_queue.front(); |
---|
99 | bfs_queue.pop(); |
---|
100 | int l=level[v]+1; |
---|
101 | |
---|
102 | ResInEdgeIt e; |
---|
103 | for(res_graph.first(e,v); res_graph.valid(e); |
---|
104 | res_graph.next(e)) { |
---|
105 | Node w=res_graph.tail(e); |
---|
106 | if ( level[w] == n && w != s ) { |
---|
107 | bfs_queue.push(w); |
---|
108 | Node first=level_list[l]; |
---|
109 | if ( G.valid(first) ) left.set(first,w); |
---|
110 | right.set(w,first); |
---|
111 | level_list[l]=w; |
---|
112 | level.set(w, l); |
---|
113 | } |
---|
114 | } |
---|
115 | } |
---|
116 | |
---|
117 | |
---|
118 | if ( !constzero ) { |
---|
119 | /* |
---|
120 | Counting the excess |
---|
121 | */ |
---|
122 | NodeIt v; |
---|
123 | for(G.first(v); G.valid(v); G.next(v)) { |
---|
124 | T exc=0; |
---|
125 | |
---|
126 | InEdgeIt e; |
---|
127 | for(G.first(e,v); G.valid(e); G.next(e)) exc+=flow[e]; |
---|
128 | OutEdgeIt f; |
---|
129 | for(G.first(f,v); G.valid(f); G.next(f)) exc-=flow[e]; |
---|
130 | |
---|
131 | excess.set(v,exc); |
---|
132 | |
---|
133 | //putting the active nodes into the stack |
---|
134 | int lev=level[v]; |
---|
135 | if ( exc > 0 && lev < n ) { |
---|
136 | next.set(v,active[lev]); |
---|
137 | active[lev]=v; |
---|
138 | } |
---|
139 | } |
---|
140 | } |
---|
141 | |
---|
142 | |
---|
143 | |
---|
144 | //the starting flow |
---|
145 | ResOutEdgeIt e; |
---|
146 | for(res_graph.first(e,s); res_graph.valid(e); |
---|
147 | res_graph.next(e)) { |
---|
148 | Node w=res_graph.head(e); |
---|
149 | if ( level[w] < n ) { |
---|
150 | if ( excess[w] == 0 && w!=t ) { |
---|
151 | next.set(w,active[level[w]]); |
---|
152 | active[level[w]]=w; |
---|
153 | } |
---|
154 | T rem=res_graph.resCap(e); |
---|
155 | excess.set(w, excess[w]+rem); |
---|
156 | res_graph.augment(e, rem ); |
---|
157 | } |
---|
158 | } |
---|
159 | |
---|
160 | |
---|
161 | /* |
---|
162 | End of preprocessing |
---|
163 | */ |
---|
164 | |
---|
165 | |
---|
166 | |
---|
167 | /* |
---|
168 | Push/relabel on the highest level active nodes. |
---|
169 | */ |
---|
170 | while ( true ) { |
---|
171 | |
---|
172 | if ( b == 0 ) { |
---|
173 | if ( phase ) break; |
---|
174 | |
---|
175 | if ( !what_heur && !end && k > 0 ) { |
---|
176 | b=k; |
---|
177 | end=true; |
---|
178 | } else { |
---|
179 | phase=1; |
---|
180 | level.set(s,0); |
---|
181 | std::queue<Node> bfs_queue; |
---|
182 | bfs_queue.push(s); |
---|
183 | |
---|
184 | while (!bfs_queue.empty()) { |
---|
185 | |
---|
186 | Node v=bfs_queue.front(); |
---|
187 | bfs_queue.pop(); |
---|
188 | int l=level[v]+1; |
---|
189 | |
---|
190 | ResInEdgeIt e; |
---|
191 | for(res_graph.first(e,v); |
---|
192 | res_graph.valid(e); res_graph.next(e)) { |
---|
193 | Node u=res_graph.tail(e); |
---|
194 | if ( level[u] >= n ) { |
---|
195 | bfs_queue.push(u); |
---|
196 | level.set(u, l); |
---|
197 | if ( excess[u] > 0 ) { |
---|
198 | next.set(u,active[l]); |
---|
199 | active[l]=u; |
---|
200 | } |
---|
201 | } |
---|
202 | } |
---|
203 | |
---|
204 | } |
---|
205 | b=n-2; |
---|
206 | } |
---|
207 | |
---|
208 | } |
---|
209 | |
---|
210 | |
---|
211 | if ( !G.valid(active[b]) ) --b; |
---|
212 | else { |
---|
213 | end=false; |
---|
214 | |
---|
215 | Node w=active[b]; |
---|
216 | active[b]=next[w]; |
---|
217 | int lev=level[w]; |
---|
218 | T exc=excess[w]; |
---|
219 | int newlevel=n; //bound on the next level of w |
---|
220 | |
---|
221 | ResOutEdgeIt e; |
---|
222 | for(res_graph.first(e,w); res_graph.valid(e); res_graph.next(e)) { |
---|
223 | |
---|
224 | Node v=res_graph.head(e); |
---|
225 | if( lev > level[v] ) { |
---|
226 | /*Push is allowed now*/ |
---|
227 | |
---|
228 | if ( excess[v]==0 && v!=t && v!=s ) { |
---|
229 | int lev_v=level[v]; |
---|
230 | next.set(v,active[lev_v]); |
---|
231 | active[lev_v]=v; |
---|
232 | } |
---|
233 | |
---|
234 | T remcap=res_graph.resCap(e); |
---|
235 | |
---|
236 | if ( remcap >= exc ) { |
---|
237 | /*A nonsaturating push.*/ |
---|
238 | res_graph.augment(e, exc); |
---|
239 | excess.set(v, excess[v]+exc); |
---|
240 | exc=0; |
---|
241 | break; |
---|
242 | |
---|
243 | } else { |
---|
244 | /*A saturating push.*/ |
---|
245 | |
---|
246 | res_graph.augment(e, remcap); |
---|
247 | excess.set(v, excess[v]+remcap); |
---|
248 | exc-=remcap; |
---|
249 | } |
---|
250 | } else if ( newlevel > level[v] ){ |
---|
251 | newlevel = level[v]; |
---|
252 | } |
---|
253 | |
---|
254 | } |
---|
255 | |
---|
256 | excess.set(w, exc); |
---|
257 | |
---|
258 | /* |
---|
259 | Relabel |
---|
260 | */ |
---|
261 | |
---|
262 | |
---|
263 | if ( exc > 0 ) { |
---|
264 | //now 'lev' is the old level of w |
---|
265 | |
---|
266 | if ( phase ) { |
---|
267 | level.set(w,++newlevel); |
---|
268 | next.set(w,active[newlevel]); |
---|
269 | active[newlevel]=w; |
---|
270 | b=newlevel; |
---|
271 | } else { |
---|
272 | //unlacing starts |
---|
273 | Node right_n=right[w]; |
---|
274 | Node left_n=left[w]; |
---|
275 | |
---|
276 | if ( G.valid(right_n) ) { |
---|
277 | if ( G.valid(left_n) ) { |
---|
278 | right.set(left_n, right_n); |
---|
279 | left.set(right_n, left_n); |
---|
280 | } else { |
---|
281 | level_list[lev]=right_n; |
---|
282 | left.set(right_n, INVALID); |
---|
283 | } |
---|
284 | } else { |
---|
285 | if ( G.valid(left_n) ) { |
---|
286 | right.set(left_n, INVALID); |
---|
287 | } else { |
---|
288 | level_list[lev]=INVALID; |
---|
289 | } |
---|
290 | } |
---|
291 | //unlacing ends |
---|
292 | |
---|
293 | if ( !G.valid(level_list[lev]) ) { |
---|
294 | |
---|
295 | //gapping starts |
---|
296 | for (int i=lev; i!=k ; ) { |
---|
297 | Node v=level_list[++i]; |
---|
298 | while ( G.valid(v) ) { |
---|
299 | level.set(v,n); |
---|
300 | v=right[v]; |
---|
301 | } |
---|
302 | level_list[i]=INVALID; |
---|
303 | if ( !what_heur ) active[i]=INVALID; |
---|
304 | } |
---|
305 | |
---|
306 | level.set(w,n); |
---|
307 | b=lev-1; |
---|
308 | k=b; |
---|
309 | //gapping ends |
---|
310 | |
---|
311 | } else { |
---|
312 | |
---|
313 | if ( newlevel == n ) level.set(w,n); |
---|
314 | else { |
---|
315 | level.set(w,++newlevel); |
---|
316 | next.set(w,active[newlevel]); |
---|
317 | active[newlevel]=w; |
---|
318 | if ( what_heur ) b=newlevel; |
---|
319 | if ( k < newlevel ) ++k; //now k=newlevel |
---|
320 | Node first=level_list[newlevel]; |
---|
321 | if ( G.valid(first) ) left.set(first,w); |
---|
322 | right.set(w,first); |
---|
323 | left.set(w,INVALID); |
---|
324 | level_list[newlevel]=w; |
---|
325 | } |
---|
326 | } |
---|
327 | |
---|
328 | |
---|
329 | ++relabel; |
---|
330 | if ( relabel >= heur ) { |
---|
331 | relabel=0; |
---|
332 | if ( what_heur ) { |
---|
333 | what_heur=0; |
---|
334 | heur=heur0; |
---|
335 | end=false; |
---|
336 | } else { |
---|
337 | what_heur=1; |
---|
338 | heur=heur1; |
---|
339 | b=k; |
---|
340 | } |
---|
341 | } |
---|
342 | } //phase 0 |
---|
343 | |
---|
344 | |
---|
345 | } // if ( exc > 0 ) |
---|
346 | |
---|
347 | |
---|
348 | } // if stack[b] is nonempty |
---|
349 | |
---|
350 | } // while(true) |
---|
351 | |
---|
352 | |
---|
353 | value = excess[t]; |
---|
354 | /*Max flow value.*/ |
---|
355 | |
---|
356 | } //void run() |
---|
357 | |
---|
358 | |
---|
359 | |
---|
360 | |
---|
361 | |
---|
362 | /* |
---|
363 | Returns the maximum value of a flow. |
---|
364 | */ |
---|
365 | |
---|
366 | T flowValue() { |
---|
367 | return value; |
---|
368 | } |
---|
369 | |
---|
370 | |
---|
371 | FlowMap Flow() { |
---|
372 | return flow; |
---|
373 | } |
---|
374 | |
---|
375 | |
---|
376 | |
---|
377 | void Flow(FlowMap& _flow ) { |
---|
378 | NodeIt v; |
---|
379 | for(G.first(v) ; G.valid(v); G.next(v)) |
---|
380 | _flow.set(v,flow[v]); |
---|
381 | } |
---|
382 | |
---|
383 | |
---|
384 | |
---|
385 | /* |
---|
386 | Returns the minimum min cut, by a bfs from s in the residual graph. |
---|
387 | */ |
---|
388 | |
---|
389 | template<typename _CutMap> |
---|
390 | void minMinCut(_CutMap& M) { |
---|
391 | |
---|
392 | std::queue<Node> queue; |
---|
393 | |
---|
394 | M.set(s,true); |
---|
395 | queue.push(s); |
---|
396 | |
---|
397 | while (!queue.empty()) { |
---|
398 | Node w=queue.front(); |
---|
399 | queue.pop(); |
---|
400 | |
---|
401 | OutEdgeIt e; |
---|
402 | for(G.first(e,w) ; G.valid(e); G.next(e)) { |
---|
403 | Node v=G.head(e); |
---|
404 | if (!M[v] && flow[e] < capacity[e] ) { |
---|
405 | queue.push(v); |
---|
406 | M.set(v, true); |
---|
407 | } |
---|
408 | } |
---|
409 | |
---|
410 | InEdgeIt f; |
---|
411 | for(G.first(f,w) ; G.valid(f); G.next(f)) { |
---|
412 | Node v=G.tail(f); |
---|
413 | if (!M[v] && flow[f] > 0 ) { |
---|
414 | queue.push(v); |
---|
415 | M.set(v, true); |
---|
416 | } |
---|
417 | } |
---|
418 | } |
---|
419 | } |
---|
420 | |
---|
421 | |
---|
422 | |
---|
423 | /* |
---|
424 | Returns the maximum min cut, by a reverse bfs |
---|
425 | from t in the residual graph. |
---|
426 | */ |
---|
427 | |
---|
428 | template<typename _CutMap> |
---|
429 | void maxMinCut(_CutMap& M) { |
---|
430 | |
---|
431 | std::queue<Node> queue; |
---|
432 | |
---|
433 | M.set(t,true); |
---|
434 | queue.push(t); |
---|
435 | |
---|
436 | while (!queue.empty()) { |
---|
437 | Node w=queue.front(); |
---|
438 | queue.pop(); |
---|
439 | |
---|
440 | |
---|
441 | InEdgeIt e; |
---|
442 | for(G.first(e,w) ; G.valid(e); G.next(e)) { |
---|
443 | Node v=G.tail(e); |
---|
444 | if (!M[v] && flow[e] < capacity[e] ) { |
---|
445 | queue.push(v); |
---|
446 | M.set(v, true); |
---|
447 | } |
---|
448 | } |
---|
449 | |
---|
450 | OutEdgeIt f; |
---|
451 | for(G.first(f,w) ; G.valid(f); G.next(f)) { |
---|
452 | Node v=G.head(f); |
---|
453 | if (!M[v] && flow[f] > 0 ) { |
---|
454 | queue.push(v); |
---|
455 | M.set(v, true); |
---|
456 | } |
---|
457 | } |
---|
458 | } |
---|
459 | |
---|
460 | NodeIt v; |
---|
461 | for(G.first(v) ; G.valid(v); G.next(v)) { |
---|
462 | M.set(v, !M[v]); |
---|
463 | } |
---|
464 | |
---|
465 | } |
---|
466 | |
---|
467 | |
---|
468 | |
---|
469 | template<typename CutMap> |
---|
470 | void minCut(CutMap& M) { |
---|
471 | minMinCut(M); |
---|
472 | } |
---|
473 | |
---|
474 | |
---|
475 | void reset_target (Node _t) {t=_t;} |
---|
476 | void reset_source (Node _s) {s=_s;} |
---|
477 | |
---|
478 | template<typename _CapMap> |
---|
479 | void reset_cap (_CapMap _cap) {capacity=_cap;} |
---|
480 | |
---|
481 | template<typename _FlowMap> |
---|
482 | void reset_cap (_FlowMap _flow, bool _constzero) { |
---|
483 | flow=_flow; |
---|
484 | constzero=_constzero; |
---|
485 | } |
---|
486 | |
---|
487 | |
---|
488 | |
---|
489 | }; |
---|
490 | |
---|
491 | } //namespace hugo |
---|
492 | |
---|
493 | #endif //PREFLOW_H |
---|
494 | |
---|
495 | |
---|
496 | |
---|
497 | |
---|