[173] | 1 | // -*- C++ -*- |
---|
| 2 | /* |
---|
[211] | 3 | *template <Graph, T, Heap=FibHeap, LengthMap=Graph::EdgeMap<T> > |
---|
[173] | 4 | * |
---|
| 5 | *Constructor: |
---|
| 6 | * |
---|
[211] | 7 | *Prim(Graph G, LengthMap weight) |
---|
[173] | 8 | * |
---|
| 9 | * |
---|
| 10 | *Methods: |
---|
| 11 | * |
---|
[211] | 12 | *void run() : Runs the Prim-algorithm from a random node |
---|
[173] | 13 | * |
---|
[211] | 14 | *void run(Node r) : Runs the Prim-algorithm from node s |
---|
[173] | 15 | * |
---|
[211] | 16 | *T weight() : After run(r) was run, it returns the minimum |
---|
| 17 | * weight of a spanning tree of the component of the root. |
---|
[173] | 18 | * |
---|
[211] | 19 | *Edge tree(Node v) : After run(r) was run, it returns the |
---|
| 20 | * first edge in the path from v to the root. Returns |
---|
| 21 | * INVALID if v=r or v is not reachable from the root. |
---|
[173] | 22 | * |
---|
[211] | 23 | *bool conn() : After run(r) was run, it is true iff G is connected |
---|
[173] | 24 | * |
---|
[211] | 25 | *bool reached(Node v) : After run(r) was run, it is true |
---|
| 26 | * iff v is in the same component as the root |
---|
[173] | 27 | * |
---|
[211] | 28 | *Node root() : returns the root |
---|
[173] | 29 | * |
---|
| 30 | */ |
---|
| 31 | |
---|
[921] | 32 | #ifndef LEMON_PRIM_H |
---|
| 33 | #define LEMON_PRIM_H |
---|
[173] | 34 | |
---|
| 35 | #include <fib_heap.h> |
---|
[211] | 36 | #include <invalid.h> |
---|
[173] | 37 | |
---|
[921] | 38 | namespace lemon { |
---|
[173] | 39 | |
---|
| 40 | template <typename Graph, typename T, |
---|
[211] | 41 | typename Heap=FibHeap<typename Graph::Node, T, |
---|
| 42 | typename Graph::NodeMap<int> >, |
---|
| 43 | typename LengthMap=typename Graph::EdgeMap<T> > |
---|
[173] | 44 | class Prim{ |
---|
[211] | 45 | typedef typename Graph::Node Node; |
---|
[173] | 46 | typedef typename Graph::NodeIt NodeIt; |
---|
[211] | 47 | typedef typename Graph::Edge Edge; |
---|
[173] | 48 | typedef typename Graph::OutEdgeIt OutEdgeIt; |
---|
| 49 | typedef typename Graph::InEdgeIt InEdgeIt; |
---|
| 50 | |
---|
[211] | 51 | const Graph& G; |
---|
| 52 | const LengthMap& edge_weight; |
---|
| 53 | typename Graph::NodeMap<Edge> tree_edge; |
---|
[173] | 54 | typename Graph::NodeMap<T> min_weight; |
---|
[211] | 55 | typename Graph::NodeMap<bool> reach; |
---|
[173] | 56 | |
---|
| 57 | public : |
---|
| 58 | |
---|
[211] | 59 | Prim(Graph& _G, LengthMap& _edge_weight) : |
---|
| 60 | G(_G), edge_weight(_edge_weight), |
---|
| 61 | tree_edge(_G,INVALID), min_weight(_G), reach(_G, false) { } |
---|
[173] | 62 | |
---|
[211] | 63 | |
---|
| 64 | void run() { |
---|
| 65 | NodeIt _r; |
---|
| 66 | G.first(_r); |
---|
| 67 | run(_r); |
---|
[173] | 68 | } |
---|
| 69 | |
---|
| 70 | |
---|
[211] | 71 | void run(Node r) { |
---|
| 72 | |
---|
| 73 | NodeIt u; |
---|
| 74 | for ( G.first(u) ; G.valid(u) ; G.next(u) ) { |
---|
| 75 | tree_edge.set(u,INVALID); |
---|
| 76 | min_weight.set(u,0); |
---|
| 77 | reach.set(u,false); |
---|
| 78 | } |
---|
| 79 | |
---|
[173] | 80 | |
---|
| 81 | typename Graph::NodeMap<bool> scanned(G, false); |
---|
| 82 | typename Graph::NodeMap<int> heap_map(G,-1); |
---|
| 83 | |
---|
| 84 | Heap heap(heap_map); |
---|
| 85 | |
---|
| 86 | heap.push(r,0); |
---|
[211] | 87 | reach.set(r, true); |
---|
[173] | 88 | |
---|
| 89 | while ( !heap.empty() ) { |
---|
| 90 | |
---|
[211] | 91 | Node v=heap.top(); |
---|
[173] | 92 | min_weight.set(v, heap.get(v)); |
---|
| 93 | heap.pop(); |
---|
| 94 | scanned.set(v,true); |
---|
| 95 | |
---|
| 96 | OutEdgeIt e; |
---|
[211] | 97 | for( G.first(e,v); G.valid(e); G.next(e)) { |
---|
| 98 | Node w=G.head(e); |
---|
[173] | 99 | |
---|
[211] | 100 | if ( !scanned[w] ) { |
---|
| 101 | if ( !reach[w] ) { |
---|
| 102 | reach.set(w,true); |
---|
| 103 | heap.push(w, edge_weight[e]); |
---|
[173] | 104 | tree_edge.set(w,e); |
---|
[211] | 105 | } else if ( edge_weight[e] < heap.get(w) ) { |
---|
[173] | 106 | tree_edge.set(w,e); |
---|
[211] | 107 | heap.decrease(w, edge_weight[e]); |
---|
[173] | 108 | } |
---|
| 109 | } |
---|
| 110 | } |
---|
| 111 | |
---|
| 112 | InEdgeIt f; |
---|
[211] | 113 | for( G.first(f,v); G.valid(f); G.next(f)) { |
---|
| 114 | Node w=G.tail(f); |
---|
[173] | 115 | |
---|
[211] | 116 | if ( !scanned[w] ) { |
---|
| 117 | if ( !reach[w] ) { |
---|
| 118 | reach.set(w,true); |
---|
| 119 | heap.push(w, edge_weight[f]); |
---|
[173] | 120 | tree_edge.set(w,f); |
---|
[211] | 121 | } else if ( edge_weight[f] < heap.get(w) ) { |
---|
[173] | 122 | tree_edge.set(w,f); |
---|
[211] | 123 | heap.decrease(w, edge_weight[f]); |
---|
[173] | 124 | } |
---|
| 125 | } |
---|
| 126 | } |
---|
| 127 | } |
---|
| 128 | } |
---|
| 129 | |
---|
| 130 | |
---|
| 131 | T weight() { |
---|
| 132 | T w=0; |
---|
[211] | 133 | NodeIt u; |
---|
| 134 | for ( G.first(u) ; G.valid(u) ; G.next(u) ) w+=min_weight[u]; |
---|
[173] | 135 | return w; |
---|
| 136 | } |
---|
| 137 | |
---|
| 138 | |
---|
[211] | 139 | Edge tree(Node v) { |
---|
| 140 | return tree_edge[v]; |
---|
[173] | 141 | } |
---|
| 142 | |
---|
| 143 | |
---|
| 144 | bool conn() { |
---|
| 145 | bool c=true; |
---|
[211] | 146 | NodeIt u; |
---|
| 147 | for ( G.first(u) ; G.valid(u) ; G.next(u) ) |
---|
| 148 | if ( !reached[u] ) { |
---|
[173] | 149 | c=false; |
---|
| 150 | break; |
---|
| 151 | } |
---|
| 152 | return c; |
---|
| 153 | } |
---|
| 154 | |
---|
| 155 | |
---|
[211] | 156 | bool reached(Node v) { |
---|
| 157 | return reached[v]; |
---|
[173] | 158 | } |
---|
| 159 | |
---|
| 160 | |
---|
[211] | 161 | Node root() { |
---|
[173] | 162 | return r; |
---|
| 163 | } |
---|
| 164 | |
---|
| 165 | }; |
---|
| 166 | |
---|
| 167 | } |
---|
| 168 | |
---|
| 169 | #endif |
---|
| 170 | |
---|
| 171 | |
---|