1 | // -*- c++ -*- // |
---|
2 | |
---|
3 | #ifndef LEMON_ITER_MAP |
---|
4 | #define LEMON_ITER_MAP |
---|
5 | |
---|
6 | #include <vector> |
---|
7 | #include <algorithm> |
---|
8 | // for uint8_t |
---|
9 | #include <stdint.h> |
---|
10 | // for memset |
---|
11 | #include <cstring> |
---|
12 | |
---|
13 | #include <lemon/invalid.h> |
---|
14 | |
---|
15 | namespace lemon { |
---|
16 | |
---|
17 | /// \brief A map with "small integers" as value set which can enumarate it |
---|
18 | /// value classes |
---|
19 | |
---|
20 | /// \todo Decide whether we need all the range checkings!!! |
---|
21 | |
---|
22 | /// \todo Implement dynamic map behaviour. Is it necessary? Yes it is. |
---|
23 | |
---|
24 | template<typename KeyIntMap, uint8_t N, typename Val = uint8_t> |
---|
25 | class IterableMap { |
---|
26 | public: |
---|
27 | |
---|
28 | typedef typename KeyIntMap::KeyType KeyType; |
---|
29 | typedef Val ValueType; |
---|
30 | |
---|
31 | typedef typename std::vector<KeyType>::const_iterator iterator; |
---|
32 | |
---|
33 | protected: |
---|
34 | KeyIntMap &base; |
---|
35 | std::vector<KeyType> data; |
---|
36 | size_t bounds[N]; |
---|
37 | Val def_val; |
---|
38 | |
---|
39 | Val find(size_t a) const { |
---|
40 | for(uint8_t n=0; n<N; ++n) { |
---|
41 | if(bounds[n] > a) |
---|
42 | return n; |
---|
43 | } |
---|
44 | return def_val; |
---|
45 | } |
---|
46 | |
---|
47 | void half_swap(size_t &a, size_t b) { |
---|
48 | if(a != b) { |
---|
49 | base.set(data[b],a); |
---|
50 | data[a] = data[b]; |
---|
51 | a = b; |
---|
52 | } |
---|
53 | } |
---|
54 | |
---|
55 | size_t move(size_t a, uint8_t m, uint8_t n) { |
---|
56 | if(m != n) { |
---|
57 | size_t orig_a = a; |
---|
58 | KeyType orig_key = data[a]; |
---|
59 | while(m > n) { |
---|
60 | --m; |
---|
61 | half_swap(a, bounds[m]++); |
---|
62 | } |
---|
63 | // FIXME: range check ide? |
---|
64 | while(m < n) { |
---|
65 | half_swap(a, --bounds[m]); |
---|
66 | ++m; |
---|
67 | } |
---|
68 | if(a != orig_a) { |
---|
69 | base.set(orig_key, a); |
---|
70 | data[a]=orig_key; |
---|
71 | } |
---|
72 | } |
---|
73 | return a; |
---|
74 | } |
---|
75 | |
---|
76 | public: |
---|
77 | |
---|
78 | IterableMap(KeyIntMap &_base, Val d = N+1) : base(_base), def_val(d) { |
---|
79 | memset(bounds, 0, sizeof(bounds)); |
---|
80 | // for(int i=0; i<N; ++i) { bounds[i]=0; } |
---|
81 | } |
---|
82 | |
---|
83 | Val operator[](const KeyType& k) const { |
---|
84 | return find(base[k]); |
---|
85 | } |
---|
86 | |
---|
87 | void set(const KeyType& k, Val n) { |
---|
88 | // FIXME: range check? |
---|
89 | size_t a = base[k]; |
---|
90 | if(a < bounds[N-1]) { |
---|
91 | move(a, find(a), n); |
---|
92 | } |
---|
93 | else { |
---|
94 | insert(k, n); |
---|
95 | } |
---|
96 | } |
---|
97 | |
---|
98 | void insert(const KeyType& k, Val n) { |
---|
99 | data.push_back(k); |
---|
100 | base.set(k, move(bounds[N-1]++, N-1, n)); |
---|
101 | } |
---|
102 | |
---|
103 | /// This func is not very usable, but necessary to implement |
---|
104 | /// dynamic map behaviour. |
---|
105 | void remove(const KeyType& k) { |
---|
106 | size_t a = base[k]; |
---|
107 | if(a < bounds[N-1]) { |
---|
108 | move(a, find(a), N); |
---|
109 | data.pop_back(); |
---|
110 | base.set(k, -1); |
---|
111 | } |
---|
112 | } |
---|
113 | |
---|
114 | iterator begin(Val n) const { |
---|
115 | return data.begin() + (n ? bounds[n-1] : 0); |
---|
116 | } |
---|
117 | |
---|
118 | iterator end(Val n) const { |
---|
119 | return data.begin() + bounds[n]; |
---|
120 | } |
---|
121 | |
---|
122 | size_t size(Val n) const { |
---|
123 | return bounds[n] - (n ? bounds[n-1] : 0); |
---|
124 | } |
---|
125 | |
---|
126 | size_t size() const { |
---|
127 | // assert(bounds[N-1] == data.size()); |
---|
128 | return bounds[N-1]; |
---|
129 | } |
---|
130 | |
---|
131 | |
---|
132 | /// For use as an iterator... |
---|
133 | KeyType& first(KeyType &k, Val n) { |
---|
134 | size_t i = (n ? bounds[n-1] : 0); |
---|
135 | if( i < bounds[n] ) { |
---|
136 | k = data[i]; |
---|
137 | } |
---|
138 | else { |
---|
139 | k = INVALID; |
---|
140 | } |
---|
141 | return k; |
---|
142 | } |
---|
143 | |
---|
144 | /// For use as an iterator... |
---|
145 | KeyType& next(KeyType &k) { |
---|
146 | size_t i = base[k]; |
---|
147 | uint8_t n = find(i); |
---|
148 | ++i; |
---|
149 | if( i < bounds[n] ) { |
---|
150 | k = data[i]; |
---|
151 | } |
---|
152 | else { |
---|
153 | k = INVALID; |
---|
154 | } |
---|
155 | return k; |
---|
156 | } |
---|
157 | |
---|
158 | }; |
---|
159 | |
---|
160 | |
---|
161 | |
---|
162 | |
---|
163 | template<typename KeyIntMap> |
---|
164 | class IterableBoolMap : public IterableMap<KeyIntMap, 2, bool> { |
---|
165 | typedef IterableMap<KeyIntMap, 2, bool> Parent; |
---|
166 | |
---|
167 | public: |
---|
168 | IterableBoolMap(KeyIntMap &_base, bool d = false) : Parent(_base, d) {} |
---|
169 | }; |
---|
170 | |
---|
171 | } |
---|
172 | #endif |
---|