[762] | 1 | // -*- C++ -*- |
---|
| 2 | #ifndef HUGO_AUGMENTING_FLOW_H |
---|
| 3 | #define HUGO_AUGMENTING_FLOW_H |
---|
| 4 | |
---|
| 5 | #include <vector> |
---|
| 6 | #include <iostream> |
---|
| 7 | |
---|
| 8 | #include <hugo/graph_wrapper.h> |
---|
| 9 | #include <bfs_dfs.h> |
---|
| 10 | #include <hugo/invalid.h> |
---|
| 11 | #include <hugo/maps.h> |
---|
[888] | 12 | #include <hugo/tight_edge_filter_map.h> |
---|
[762] | 13 | |
---|
| 14 | /// \file |
---|
| 15 | /// \brief Maximum flow algorithms. |
---|
| 16 | /// \ingroup galgs |
---|
| 17 | |
---|
| 18 | namespace hugo { |
---|
| 19 | |
---|
| 20 | /// \addtogroup galgs |
---|
| 21 | /// @{ |
---|
[862] | 22 | /// Class for augmenting path flow algorithms. |
---|
[762] | 23 | |
---|
[862] | 24 | /// This class provides various algorithms for finding a flow of |
---|
| 25 | /// maximum value in a directed graph. The \e source node, the \e |
---|
| 26 | /// target node, the \e capacity of the edges and the \e starting \e |
---|
| 27 | /// flow value of the edges should be passed to the algorithm through the |
---|
| 28 | /// constructor. |
---|
| 29 | // /// It is possible to change these quantities using the |
---|
| 30 | // /// functions \ref resetSource, \ref resetTarget, \ref resetCap and |
---|
| 31 | // /// \ref resetFlow. Before any subsequent runs of any algorithm of |
---|
| 32 | // /// the class \ref resetFlow should be called. |
---|
[762] | 33 | |
---|
[862] | 34 | /// After running an algorithm of the class, the actual flow value |
---|
| 35 | /// can be obtained by calling \ref flowValue(). The minimum |
---|
| 36 | /// value cut can be written into a \c node map of \c bools by |
---|
| 37 | /// calling \ref minCut. (\ref minMinCut and \ref maxMinCut writes |
---|
| 38 | /// the inclusionwise minimum and maximum of the minimum value |
---|
| 39 | /// cuts, resp.) |
---|
[762] | 40 | ///\param Graph The directed graph type the algorithm runs on. |
---|
| 41 | ///\param Num The number type of the capacities and the flow values. |
---|
| 42 | ///\param CapMap The capacity map type. |
---|
| 43 | ///\param FlowMap The flow map type. |
---|
[862] | 44 | ///\author Marton Makai |
---|
[762] | 45 | template <typename Graph, typename Num, |
---|
| 46 | typename CapMap=typename Graph::template EdgeMap<Num>, |
---|
| 47 | typename FlowMap=typename Graph::template EdgeMap<Num> > |
---|
| 48 | class AugmentingFlow { |
---|
| 49 | protected: |
---|
| 50 | typedef typename Graph::Node Node; |
---|
| 51 | typedef typename Graph::NodeIt NodeIt; |
---|
| 52 | typedef typename Graph::EdgeIt EdgeIt; |
---|
| 53 | typedef typename Graph::OutEdgeIt OutEdgeIt; |
---|
| 54 | typedef typename Graph::InEdgeIt InEdgeIt; |
---|
| 55 | |
---|
| 56 | const Graph* g; |
---|
| 57 | Node s; |
---|
| 58 | Node t; |
---|
| 59 | const CapMap* capacity; |
---|
| 60 | FlowMap* flow; |
---|
| 61 | // int n; //the number of nodes of G |
---|
| 62 | typedef ResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW; |
---|
| 63 | //typedef ExpResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW; |
---|
| 64 | typedef typename ResGW::OutEdgeIt ResGWOutEdgeIt; |
---|
| 65 | typedef typename ResGW::Edge ResGWEdge; |
---|
| 66 | //typedef typename ResGW::template NodeMap<bool> ReachedMap; |
---|
| 67 | typedef typename Graph::template NodeMap<int> ReachedMap; |
---|
| 68 | |
---|
| 69 | //level works as a bool map in augmenting path algorithms and is |
---|
| 70 | //used by bfs for storing reached information. In preflow, it |
---|
| 71 | //shows the levels of nodes. |
---|
| 72 | ReachedMap level; |
---|
| 73 | |
---|
| 74 | public: |
---|
| 75 | ///Indicates the property of the starting flow. |
---|
| 76 | |
---|
| 77 | ///Indicates the property of the starting flow. The meanings are as follows: |
---|
| 78 | ///- \c ZERO_FLOW: constant zero flow |
---|
| 79 | ///- \c GEN_FLOW: any flow, i.e. the sum of the in-flows equals to |
---|
| 80 | ///the sum of the out-flows in every node except the \e source and |
---|
| 81 | ///the \e target. |
---|
| 82 | ///- \c PRE_FLOW: any preflow, i.e. the sum of the in-flows is at |
---|
| 83 | ///least the sum of the out-flows in every node except the \e source. |
---|
| 84 | ///- \c NO_FLOW: indicates an unspecified edge map. \ref flow will be |
---|
| 85 | ///set to the constant zero flow in the beginning of the algorithm in this case. |
---|
| 86 | enum FlowEnum{ |
---|
| 87 | ZERO_FLOW, |
---|
| 88 | GEN_FLOW, |
---|
| 89 | PRE_FLOW, |
---|
| 90 | NO_FLOW |
---|
| 91 | }; |
---|
| 92 | |
---|
| 93 | enum StatusEnum { |
---|
| 94 | AFTER_NOTHING, |
---|
| 95 | AFTER_AUGMENTING, |
---|
| 96 | AFTER_FAST_AUGMENTING, |
---|
| 97 | AFTER_PRE_FLOW_PHASE_1, |
---|
| 98 | AFTER_PRE_FLOW_PHASE_2 |
---|
| 99 | }; |
---|
| 100 | |
---|
| 101 | /// Don not needle this flag only if necessary. |
---|
| 102 | StatusEnum status; |
---|
| 103 | int number_of_augmentations; |
---|
| 104 | |
---|
| 105 | |
---|
| 106 | template<typename IntMap> |
---|
| 107 | class TrickyReachedMap { |
---|
| 108 | protected: |
---|
| 109 | IntMap* map; |
---|
| 110 | int* number_of_augmentations; |
---|
| 111 | public: |
---|
| 112 | TrickyReachedMap(IntMap& _map, int& _number_of_augmentations) : |
---|
| 113 | map(&_map), number_of_augmentations(&_number_of_augmentations) { } |
---|
| 114 | void set(const Node& n, bool b) { |
---|
| 115 | if (b) |
---|
| 116 | map->set(n, *number_of_augmentations); |
---|
| 117 | else |
---|
| 118 | map->set(n, *number_of_augmentations-1); |
---|
| 119 | } |
---|
| 120 | bool operator[](const Node& n) const { |
---|
| 121 | return (*map)[n]==*number_of_augmentations; |
---|
| 122 | } |
---|
| 123 | }; |
---|
| 124 | |
---|
| 125 | AugmentingFlow(const Graph& _G, Node _s, Node _t, const CapMap& _capacity, |
---|
| 126 | FlowMap& _flow) : |
---|
| 127 | g(&_G), s(_s), t(_t), capacity(&_capacity), |
---|
| 128 | flow(&_flow), //n(_G.nodeNum()), |
---|
| 129 | level(_G), //excess(_G,0), |
---|
| 130 | status(AFTER_NOTHING), number_of_augmentations(0) { } |
---|
| 131 | |
---|
| 132 | /// Starting from a flow, this method searches for an augmenting path |
---|
| 133 | /// according to the Edmonds-Karp algorithm |
---|
| 134 | /// and augments the flow on if any. |
---|
| 135 | /// The return value shows if the augmentation was succesful. |
---|
| 136 | bool augmentOnShortestPath(); |
---|
| 137 | bool augmentOnShortestPath2(); |
---|
| 138 | |
---|
| 139 | /// Starting from a flow, this method searches for an augmenting blocking |
---|
| 140 | /// flow according to Dinits' algorithm and augments the flow on if any. |
---|
| 141 | /// The blocking flow is computed in a physically constructed |
---|
| 142 | /// residual graph of type \c Mutablegraph. |
---|
| 143 | /// The return value show sif the augmentation was succesful. |
---|
| 144 | template<typename MutableGraph> bool augmentOnBlockingFlow(); |
---|
| 145 | |
---|
| 146 | /// The same as \c augmentOnBlockingFlow<MutableGraph> but the |
---|
| 147 | /// residual graph is not constructed physically. |
---|
| 148 | /// The return value shows if the augmentation was succesful. |
---|
| 149 | bool augmentOnBlockingFlow2(); |
---|
| 150 | |
---|
| 151 | template<typename _CutMap> |
---|
| 152 | void actMinCut(_CutMap& M) const { |
---|
| 153 | NodeIt v; |
---|
| 154 | switch (status) { |
---|
| 155 | case AFTER_PRE_FLOW_PHASE_1: |
---|
| 156 | // std::cout << "AFTER_PRE_FLOW_PHASE_1" << std::endl; |
---|
| 157 | // for(g->first(v); g->valid(v); g->next(v)) { |
---|
| 158 | // if (level[v] < n) { |
---|
| 159 | // M.set(v, false); |
---|
| 160 | // } else { |
---|
| 161 | // M.set(v, true); |
---|
| 162 | // } |
---|
| 163 | // } |
---|
| 164 | break; |
---|
| 165 | case AFTER_PRE_FLOW_PHASE_2: |
---|
| 166 | // std::cout << "AFTER_PRE_FLOW_PHASE_2" << std::endl; |
---|
| 167 | break; |
---|
| 168 | case AFTER_NOTHING: |
---|
| 169 | // std::cout << "AFTER_NOTHING" << std::endl; |
---|
| 170 | minMinCut(M); |
---|
| 171 | break; |
---|
| 172 | case AFTER_AUGMENTING: |
---|
| 173 | // std::cout << "AFTER_AUGMENTING" << std::endl; |
---|
[775] | 174 | for(g->first(v); v!=INVALID; ++v) { |
---|
[762] | 175 | if (level[v]) { |
---|
| 176 | M.set(v, true); |
---|
| 177 | } else { |
---|
| 178 | M.set(v, false); |
---|
| 179 | } |
---|
| 180 | } |
---|
| 181 | break; |
---|
| 182 | case AFTER_FAST_AUGMENTING: |
---|
| 183 | // std::cout << "AFTER_FAST_AUGMENTING" << std::endl; |
---|
[775] | 184 | for(g->first(v); v!=INVALID; ++v) { |
---|
[762] | 185 | if (level[v]==number_of_augmentations) { |
---|
| 186 | M.set(v, true); |
---|
| 187 | } else { |
---|
| 188 | M.set(v, false); |
---|
| 189 | } |
---|
| 190 | } |
---|
| 191 | break; |
---|
| 192 | } |
---|
| 193 | } |
---|
| 194 | |
---|
| 195 | template<typename _CutMap> |
---|
| 196 | void minMinCut(_CutMap& M) const { |
---|
| 197 | std::queue<Node> queue; |
---|
| 198 | |
---|
| 199 | M.set(s,true); |
---|
| 200 | queue.push(s); |
---|
| 201 | |
---|
| 202 | while (!queue.empty()) { |
---|
| 203 | Node w=queue.front(); |
---|
| 204 | queue.pop(); |
---|
| 205 | |
---|
| 206 | OutEdgeIt e; |
---|
[775] | 207 | for(g->first(e,w) ; e!=INVALID; ++e) { |
---|
[762] | 208 | Node v=g->head(e); |
---|
| 209 | if (!M[v] && (*flow)[e] < (*capacity)[e] ) { |
---|
| 210 | queue.push(v); |
---|
| 211 | M.set(v, true); |
---|
| 212 | } |
---|
| 213 | } |
---|
| 214 | |
---|
| 215 | InEdgeIt f; |
---|
[775] | 216 | for(g->first(f,w) ; f!=INVALID; ++f) { |
---|
[762] | 217 | Node v=g->tail(f); |
---|
| 218 | if (!M[v] && (*flow)[f] > 0 ) { |
---|
| 219 | queue.push(v); |
---|
| 220 | M.set(v, true); |
---|
| 221 | } |
---|
| 222 | } |
---|
| 223 | } |
---|
| 224 | } |
---|
| 225 | |
---|
| 226 | template<typename _CutMap> |
---|
| 227 | void minMinCut2(_CutMap& M) const { |
---|
| 228 | ResGW res_graph(*g, *capacity, *flow); |
---|
| 229 | BfsIterator<ResGW, _CutMap> bfs(res_graph, M); |
---|
| 230 | bfs.pushAndSetReached(s); |
---|
| 231 | while (!bfs.finished()) ++bfs; |
---|
| 232 | } |
---|
| 233 | |
---|
| 234 | Num flowValue() const { |
---|
| 235 | Num a=0; |
---|
[777] | 236 | for (InEdgeIt e(*g, t); e!=INVALID; ++e) a+=(*flow)[e]; |
---|
| 237 | for (OutEdgeIt e(*g, t); e!=INVALID; ++e) a-=(*flow)[e]; |
---|
[762] | 238 | return a; |
---|
| 239 | //marci figyu: excess[t] epp ezt adja preflow 1. fazisa utan |
---|
| 240 | } |
---|
| 241 | |
---|
| 242 | }; |
---|
| 243 | |
---|
| 244 | |
---|
| 245 | |
---|
| 246 | template <typename Graph, typename Num, typename CapMap, typename FlowMap> |
---|
| 247 | bool AugmentingFlow<Graph, Num, CapMap, FlowMap>::augmentOnShortestPath() |
---|
| 248 | { |
---|
| 249 | ResGW res_graph(*g, *capacity, *flow); |
---|
[888] | 250 | typename ResGW::ResCap res_cap(res_graph); |
---|
| 251 | |
---|
[762] | 252 | bool _augment=false; |
---|
| 253 | |
---|
| 254 | //ReachedMap level(res_graph); |
---|
[777] | 255 | for (typename Graph::NodeIt n(*g); n!=INVALID; ++n) level.set(n, 0); |
---|
[762] | 256 | BfsIterator<ResGW, ReachedMap> bfs(res_graph, level); |
---|
| 257 | bfs.pushAndSetReached(s); |
---|
| 258 | |
---|
| 259 | typename ResGW::template NodeMap<ResGWEdge> pred(res_graph); |
---|
| 260 | pred.set(s, INVALID); |
---|
| 261 | |
---|
| 262 | typename ResGW::template NodeMap<Num> free(res_graph); |
---|
| 263 | |
---|
| 264 | //searching for augmenting path |
---|
| 265 | while ( !bfs.finished() ) { |
---|
[777] | 266 | ResGWEdge e=bfs; |
---|
[775] | 267 | if (e!=INVALID && bfs.isBNodeNewlyReached()) { |
---|
[762] | 268 | Node v=res_graph.tail(e); |
---|
| 269 | Node w=res_graph.head(e); |
---|
| 270 | pred.set(w, e); |
---|
[775] | 271 | if (pred[v]!=INVALID) { |
---|
[888] | 272 | free.set(w, std::min(free[v], res_cap[e])); |
---|
[762] | 273 | } else { |
---|
[888] | 274 | free.set(w, res_cap[e]); |
---|
[762] | 275 | } |
---|
| 276 | if (res_graph.head(e)==t) { _augment=true; break; } |
---|
| 277 | } |
---|
| 278 | |
---|
| 279 | ++bfs; |
---|
| 280 | } //end of searching augmenting path |
---|
| 281 | |
---|
| 282 | if (_augment) { |
---|
| 283 | Node n=t; |
---|
| 284 | Num augment_value=free[t]; |
---|
[775] | 285 | while (pred[n]!=INVALID) { |
---|
[762] | 286 | ResGWEdge e=pred[n]; |
---|
| 287 | res_graph.augment(e, augment_value); |
---|
| 288 | n=res_graph.tail(e); |
---|
| 289 | } |
---|
| 290 | } |
---|
| 291 | |
---|
| 292 | status=AFTER_AUGMENTING; |
---|
| 293 | return _augment; |
---|
| 294 | } |
---|
| 295 | |
---|
| 296 | template <typename Graph, typename Num, typename CapMap, typename FlowMap> |
---|
| 297 | bool AugmentingFlow<Graph, Num, CapMap, FlowMap>::augmentOnShortestPath2() |
---|
| 298 | { |
---|
| 299 | ResGW res_graph(*g, *capacity, *flow); |
---|
[888] | 300 | typename ResGW::ResCap res_cap(res_graph); |
---|
| 301 | |
---|
[762] | 302 | bool _augment=false; |
---|
| 303 | |
---|
| 304 | if (status!=AFTER_FAST_AUGMENTING) { |
---|
[777] | 305 | for (typename Graph::NodeIt n(*g); n!=INVALID; ++n) level.set(n, 0); |
---|
[762] | 306 | number_of_augmentations=1; |
---|
| 307 | } else { |
---|
| 308 | ++number_of_augmentations; |
---|
| 309 | } |
---|
| 310 | TrickyReachedMap<ReachedMap> |
---|
| 311 | tricky_reached_map(level, number_of_augmentations); |
---|
| 312 | //ReachedMap level(res_graph); |
---|
| 313 | // FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0); |
---|
| 314 | BfsIterator<ResGW, TrickyReachedMap<ReachedMap> > |
---|
| 315 | bfs(res_graph, tricky_reached_map); |
---|
| 316 | bfs.pushAndSetReached(s); |
---|
| 317 | |
---|
| 318 | typename ResGW::template NodeMap<ResGWEdge> pred(res_graph); |
---|
| 319 | pred.set(s, INVALID); |
---|
| 320 | |
---|
| 321 | typename ResGW::template NodeMap<Num> free(res_graph); |
---|
| 322 | |
---|
| 323 | //searching for augmenting path |
---|
| 324 | while ( !bfs.finished() ) { |
---|
[777] | 325 | ResGWEdge e=bfs; |
---|
[775] | 326 | if (e!=INVALID && bfs.isBNodeNewlyReached()) { |
---|
[762] | 327 | Node v=res_graph.tail(e); |
---|
| 328 | Node w=res_graph.head(e); |
---|
| 329 | pred.set(w, e); |
---|
[775] | 330 | if (pred[v]!=INVALID) { |
---|
[888] | 331 | free.set(w, std::min(free[v], res_cap[e])); |
---|
[762] | 332 | } else { |
---|
[888] | 333 | free.set(w, res_cap[e]); |
---|
[762] | 334 | } |
---|
| 335 | if (res_graph.head(e)==t) { _augment=true; break; } |
---|
| 336 | } |
---|
| 337 | |
---|
| 338 | ++bfs; |
---|
| 339 | } //end of searching augmenting path |
---|
| 340 | |
---|
| 341 | if (_augment) { |
---|
| 342 | Node n=t; |
---|
| 343 | Num augment_value=free[t]; |
---|
[775] | 344 | while (pred[n]!=INVALID) { |
---|
[762] | 345 | ResGWEdge e=pred[n]; |
---|
| 346 | res_graph.augment(e, augment_value); |
---|
| 347 | n=res_graph.tail(e); |
---|
| 348 | } |
---|
| 349 | } |
---|
| 350 | |
---|
| 351 | status=AFTER_FAST_AUGMENTING; |
---|
| 352 | return _augment; |
---|
| 353 | } |
---|
| 354 | |
---|
| 355 | |
---|
| 356 | template <typename Graph, typename Num, typename CapMap, typename FlowMap> |
---|
| 357 | template<typename MutableGraph> |
---|
| 358 | bool AugmentingFlow<Graph, Num, CapMap, FlowMap>::augmentOnBlockingFlow() |
---|
| 359 | { |
---|
| 360 | typedef MutableGraph MG; |
---|
| 361 | bool _augment=false; |
---|
| 362 | |
---|
| 363 | ResGW res_graph(*g, *capacity, *flow); |
---|
[888] | 364 | typename ResGW::ResCap res_cap(res_graph); |
---|
[762] | 365 | |
---|
| 366 | //bfs for distances on the residual graph |
---|
| 367 | //ReachedMap level(res_graph); |
---|
[777] | 368 | for (typename Graph::NodeIt n(*g); n!=INVALID; ++n) level.set(n, 0); |
---|
[762] | 369 | BfsIterator<ResGW, ReachedMap> bfs(res_graph, level); |
---|
| 370 | bfs.pushAndSetReached(s); |
---|
| 371 | typename ResGW::template NodeMap<int> |
---|
| 372 | dist(res_graph); //filled up with 0's |
---|
| 373 | |
---|
| 374 | //F will contain the physical copy of the residual graph |
---|
| 375 | //with the set of edges which are on shortest paths |
---|
| 376 | MG F; |
---|
| 377 | typename ResGW::template NodeMap<typename MG::Node> |
---|
| 378 | res_graph_to_F(res_graph); |
---|
| 379 | { |
---|
| 380 | typename ResGW::NodeIt n; |
---|
[862] | 381 | for(res_graph.first(n); n!=INVALID; ++n) |
---|
[762] | 382 | res_graph_to_F.set(n, F.addNode()); |
---|
| 383 | } |
---|
| 384 | |
---|
| 385 | typename MG::Node sF=res_graph_to_F[s]; |
---|
| 386 | typename MG::Node tF=res_graph_to_F[t]; |
---|
| 387 | typename MG::template EdgeMap<ResGWEdge> original_edge(F); |
---|
| 388 | typename MG::template EdgeMap<Num> residual_capacity(F); |
---|
| 389 | |
---|
| 390 | while ( !bfs.finished() ) { |
---|
[777] | 391 | ResGWEdge e=bfs; |
---|
[775] | 392 | if (e!=INVALID) { |
---|
[762] | 393 | if (bfs.isBNodeNewlyReached()) { |
---|
| 394 | dist.set(res_graph.head(e), dist[res_graph.tail(e)]+1); |
---|
| 395 | typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.tail(e)], |
---|
| 396 | res_graph_to_F[res_graph.head(e)]); |
---|
[854] | 397 | //original_edge.update(); |
---|
[762] | 398 | original_edge.set(f, e); |
---|
[854] | 399 | //residual_capacity.update(); |
---|
[888] | 400 | residual_capacity.set(f, res_cap[e]); |
---|
[762] | 401 | } else { |
---|
| 402 | if (dist[res_graph.head(e)]==(dist[res_graph.tail(e)]+1)) { |
---|
| 403 | typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.tail(e)], |
---|
| 404 | res_graph_to_F[res_graph.head(e)]); |
---|
[854] | 405 | //original_edge.update(); |
---|
[762] | 406 | original_edge.set(f, e); |
---|
[854] | 407 | //residual_capacity.update(); |
---|
[888] | 408 | residual_capacity.set(f, res_cap[e]); |
---|
[762] | 409 | } |
---|
| 410 | } |
---|
| 411 | } |
---|
| 412 | ++bfs; |
---|
| 413 | } //computing distances from s in the residual graph |
---|
| 414 | |
---|
| 415 | bool __augment=true; |
---|
| 416 | |
---|
| 417 | while (__augment) { |
---|
| 418 | __augment=false; |
---|
| 419 | //computing blocking flow with dfs |
---|
| 420 | DfsIterator< MG, typename MG::template NodeMap<bool> > dfs(F); |
---|
| 421 | typename MG::template NodeMap<typename MG::Edge> pred(F); |
---|
| 422 | pred.set(sF, INVALID); |
---|
| 423 | //invalid iterators for sources |
---|
| 424 | |
---|
| 425 | typename MG::template NodeMap<Num> free(F); |
---|
| 426 | |
---|
| 427 | dfs.pushAndSetReached(sF); |
---|
| 428 | while (!dfs.finished()) { |
---|
| 429 | ++dfs; |
---|
[854] | 430 | if (typename MG::Edge(dfs)!=INVALID) { |
---|
[762] | 431 | if (dfs.isBNodeNewlyReached()) { |
---|
[777] | 432 | typename MG::Node v=F.tail(dfs); |
---|
| 433 | typename MG::Node w=F.head(dfs); |
---|
[762] | 434 | pred.set(w, dfs); |
---|
[775] | 435 | if (pred[v]!=INVALID) { |
---|
[762] | 436 | free.set(w, std::min(free[v], residual_capacity[dfs])); |
---|
| 437 | } else { |
---|
| 438 | free.set(w, residual_capacity[dfs]); |
---|
| 439 | } |
---|
| 440 | if (w==tF) { |
---|
| 441 | __augment=true; |
---|
| 442 | _augment=true; |
---|
| 443 | break; |
---|
| 444 | } |
---|
| 445 | |
---|
| 446 | } else { |
---|
[854] | 447 | F.erase(typename MG::Edge(dfs)); |
---|
[762] | 448 | } |
---|
| 449 | } |
---|
| 450 | } |
---|
| 451 | |
---|
| 452 | if (__augment) { |
---|
| 453 | typename MG::Node n=tF; |
---|
| 454 | Num augment_value=free[tF]; |
---|
[775] | 455 | while (pred[n]!=INVALID) { |
---|
[762] | 456 | typename MG::Edge e=pred[n]; |
---|
| 457 | res_graph.augment(original_edge[e], augment_value); |
---|
| 458 | n=F.tail(e); |
---|
| 459 | if (residual_capacity[e]==augment_value) |
---|
| 460 | F.erase(e); |
---|
| 461 | else |
---|
| 462 | residual_capacity.set(e, residual_capacity[e]-augment_value); |
---|
| 463 | } |
---|
| 464 | } |
---|
| 465 | |
---|
| 466 | } |
---|
| 467 | |
---|
| 468 | status=AFTER_AUGMENTING; |
---|
| 469 | return _augment; |
---|
| 470 | } |
---|
| 471 | |
---|
[862] | 472 | /// Blocking flow augmentation without constructing the layered |
---|
| 473 | /// graph physically in which the blocking flow is computed. |
---|
[762] | 474 | template <typename Graph, typename Num, typename CapMap, typename FlowMap> |
---|
| 475 | bool AugmentingFlow<Graph, Num, CapMap, FlowMap>::augmentOnBlockingFlow2() |
---|
| 476 | { |
---|
| 477 | bool _augment=false; |
---|
| 478 | |
---|
| 479 | ResGW res_graph(*g, *capacity, *flow); |
---|
[888] | 480 | typename ResGW::ResCap res_cap(res_graph); |
---|
[762] | 481 | |
---|
[862] | 482 | //Potential map, for distances from s |
---|
| 483 | typename ResGW::template NodeMap<int> potential(res_graph, 0); |
---|
| 484 | typedef ConstMap<typename ResGW::Edge, int> Const1Map; |
---|
| 485 | Const1Map const_1_map(1); |
---|
| 486 | TightEdgeFilterMap<ResGW, typename ResGW::template NodeMap<int>, |
---|
| 487 | Const1Map> tight_edge_filter(res_graph, potential, const_1_map); |
---|
| 488 | |
---|
[777] | 489 | for (typename Graph::NodeIt n(*g); n!=INVALID; ++n) level.set(n, 0); |
---|
[762] | 490 | BfsIterator<ResGW, ReachedMap> bfs(res_graph, level); |
---|
[862] | 491 | bfs.pushAndSetReached(s); |
---|
[762] | 492 | |
---|
[862] | 493 | //computing distances from s in the residual graph |
---|
[762] | 494 | while ( !bfs.finished() ) { |
---|
[777] | 495 | ResGWEdge e=bfs; |
---|
[862] | 496 | if (e!=INVALID && bfs.isBNodeNewlyReached()) |
---|
| 497 | potential.set(res_graph.head(e), potential[res_graph.tail(e)]+1); |
---|
[762] | 498 | ++bfs; |
---|
[862] | 499 | } |
---|
[762] | 500 | |
---|
[862] | 501 | //Subgraph containing the edges on some shortest paths |
---|
| 502 | //(i.e. tight edges) |
---|
[762] | 503 | ConstMap<typename ResGW::Node, bool> true_map(true); |
---|
| 504 | typedef SubGraphWrapper<ResGW, ConstMap<typename ResGW::Node, bool>, |
---|
[862] | 505 | TightEdgeFilterMap<ResGW, typename ResGW::template NodeMap<int>, |
---|
| 506 | Const1Map> > FilterResGW; |
---|
| 507 | FilterResGW filter_res_graph(res_graph, true_map, tight_edge_filter); |
---|
[762] | 508 | |
---|
| 509 | //Subgraph, which is able to delete edges which are already |
---|
| 510 | //met by the dfs |
---|
[777] | 511 | typename FilterResGW::template NodeMap<typename FilterResGW::Edge> |
---|
[762] | 512 | first_out_edges(filter_res_graph); |
---|
[862] | 513 | for (typename FilterResGW::NodeIt v(filter_res_graph); v!=INVALID; ++v) |
---|
| 514 | first_out_edges.set |
---|
| 515 | (v, typename FilterResGW::OutEdgeIt(filter_res_graph, v)); |
---|
| 516 | |
---|
[762] | 517 | typedef ErasingFirstGraphWrapper<FilterResGW, typename FilterResGW:: |
---|
[777] | 518 | template NodeMap<typename FilterResGW::Edge> > ErasingResGW; |
---|
[762] | 519 | ErasingResGW erasing_res_graph(filter_res_graph, first_out_edges); |
---|
| 520 | |
---|
| 521 | bool __augment=true; |
---|
| 522 | |
---|
| 523 | while (__augment) { |
---|
| 524 | |
---|
| 525 | __augment=false; |
---|
| 526 | //computing blocking flow with dfs |
---|
| 527 | DfsIterator< ErasingResGW, |
---|
| 528 | typename ErasingResGW::template NodeMap<bool> > |
---|
| 529 | dfs(erasing_res_graph); |
---|
| 530 | typename ErasingResGW:: |
---|
[777] | 531 | template NodeMap<typename ErasingResGW::Edge> pred(erasing_res_graph); |
---|
[762] | 532 | pred.set(s, INVALID); |
---|
| 533 | //invalid iterators for sources |
---|
| 534 | |
---|
| 535 | typename ErasingResGW::template NodeMap<Num> |
---|
| 536 | free1(erasing_res_graph); |
---|
| 537 | |
---|
| 538 | dfs.pushAndSetReached |
---|
[777] | 539 | /// \bug hugo 0.2 |
---|
[762] | 540 | (typename ErasingResGW::Node |
---|
| 541 | (typename FilterResGW::Node |
---|
| 542 | (typename ResGW::Node(s) |
---|
| 543 | ) |
---|
| 544 | ) |
---|
| 545 | ); |
---|
[777] | 546 | |
---|
[762] | 547 | while (!dfs.finished()) { |
---|
| 548 | ++dfs; |
---|
[862] | 549 | if (typename ErasingResGW::Edge(dfs)!=INVALID) { |
---|
| 550 | if (dfs.isBNodeNewlyReached()) { |
---|
| 551 | |
---|
| 552 | typename ErasingResGW::Node v=erasing_res_graph.tail(dfs); |
---|
| 553 | typename ErasingResGW::Node w=erasing_res_graph.head(dfs); |
---|
[762] | 554 | |
---|
[862] | 555 | pred.set(w, typename ErasingResGW::Edge(dfs)); |
---|
| 556 | if (pred[v]!=INVALID) { |
---|
| 557 | free1.set |
---|
[888] | 558 | (w, std::min(free1[v], res_cap |
---|
| 559 | [typename ErasingResGW::Edge(dfs)])); |
---|
[862] | 560 | } else { |
---|
| 561 | free1.set |
---|
[888] | 562 | (w, res_cap |
---|
| 563 | [typename ErasingResGW::Edge(dfs)]); |
---|
[862] | 564 | } |
---|
[762] | 565 | |
---|
[862] | 566 | if (w==t) { |
---|
| 567 | __augment=true; |
---|
| 568 | _augment=true; |
---|
| 569 | break; |
---|
[762] | 570 | } |
---|
[862] | 571 | } else { |
---|
| 572 | erasing_res_graph.erase(dfs); |
---|
[762] | 573 | } |
---|
[862] | 574 | } |
---|
[762] | 575 | } |
---|
| 576 | |
---|
| 577 | if (__augment) { |
---|
| 578 | typename ErasingResGW::Node |
---|
| 579 | n=typename FilterResGW::Node(typename ResGW::Node(t)); |
---|
| 580 | Num augment_value=free1[n]; |
---|
[777] | 581 | while (pred[n]!=INVALID) { |
---|
| 582 | typename ErasingResGW::Edge e=pred[n]; |
---|
[762] | 583 | res_graph.augment(e, augment_value); |
---|
| 584 | n=erasing_res_graph.tail(e); |
---|
[888] | 585 | if (res_cap[e]==0) |
---|
[762] | 586 | erasing_res_graph.erase(e); |
---|
| 587 | } |
---|
| 588 | } |
---|
| 589 | |
---|
| 590 | } //while (__augment) |
---|
| 591 | |
---|
| 592 | status=AFTER_AUGMENTING; |
---|
| 593 | return _augment; |
---|
| 594 | } |
---|
| 595 | |
---|
| 596 | |
---|
| 597 | } //namespace hugo |
---|
| 598 | |
---|
| 599 | #endif //HUGO_AUGMENTING_FLOW_H |
---|
| 600 | |
---|
| 601 | |
---|