COIN-OR::LEMON - Graph Library

source: lemon-0.x/src/work/marci/augmenting_flow.h @ 875:fda944f15ca7

Last change on this file since 875:fda944f15ca7 was 863:d27bbe17b0b8, checked in by marci, 20 years ago

An edge-map which shows the tight edges w.r.t a potential and an edge-distance function.

File size: 17.7 KB
RevLine 
[762]1// -*- C++ -*-
2#ifndef HUGO_AUGMENTING_FLOW_H
3#define HUGO_AUGMENTING_FLOW_H
4
5#include <vector>
6#include <iostream>
7
8#include <hugo/graph_wrapper.h>
9#include <bfs_dfs.h>
10#include <hugo/invalid.h>
11#include <hugo/maps.h>
[863]12#include <tight_edge_filter_map.h>
[762]13
14/// \file
15/// \brief Maximum flow algorithms.
16/// \ingroup galgs
17
18namespace hugo {
19
20  /// \addtogroup galgs
21  /// @{                                                                                                                                       
[862]22  /// Class for augmenting path flow algorithms.
[762]23
[862]24  /// This class provides various algorithms for finding a flow of
25  /// maximum value in a directed graph. The \e source node, the \e
26  /// target node, the \e capacity of the edges and the \e starting \e
27  /// flow value of the edges should be passed to the algorithm through the
28  /// constructor.
29//   /// It is possible to change these quantities using the
30//   /// functions \ref resetSource, \ref resetTarget, \ref resetCap and
31//   /// \ref resetFlow. Before any subsequent runs of any algorithm of
32//   /// the class \ref resetFlow should be called.
[762]33
[862]34  /// After running an algorithm of the class, the actual flow value
35  /// can be obtained by calling \ref flowValue(). The minimum
36  /// value cut can be written into a \c node map of \c bools by
37  /// calling \ref minCut. (\ref minMinCut and \ref maxMinCut writes
38  /// the inclusionwise minimum and maximum of the minimum value
39  /// cuts, resp.)                                                                                                                               
[762]40  ///\param Graph The directed graph type the algorithm runs on.
41  ///\param Num The number type of the capacities and the flow values.
42  ///\param CapMap The capacity map type.
43  ///\param FlowMap The flow map type.                                                                                                           
[862]44  ///\author Marton Makai
[762]45  template <typename Graph, typename Num,
46            typename CapMap=typename Graph::template EdgeMap<Num>,
47            typename FlowMap=typename Graph::template EdgeMap<Num> >
48  class AugmentingFlow {
49  protected:
50    typedef typename Graph::Node Node;
51    typedef typename Graph::NodeIt NodeIt;
52    typedef typename Graph::EdgeIt EdgeIt;
53    typedef typename Graph::OutEdgeIt OutEdgeIt;
54    typedef typename Graph::InEdgeIt InEdgeIt;
55
56    const Graph* g;
57    Node s;
58    Node t;
59    const CapMap* capacity;
60    FlowMap* flow;
61//    int n;      //the number of nodes of G
62    typedef ResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW;   
63    //typedef ExpResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW;
64    typedef typename ResGW::OutEdgeIt ResGWOutEdgeIt;
65    typedef typename ResGW::Edge ResGWEdge;
66    //typedef typename ResGW::template NodeMap<bool> ReachedMap;
67    typedef typename Graph::template NodeMap<int> ReachedMap;
68
69    //level works as a bool map in augmenting path algorithms and is
70    //used by bfs for storing reached information.  In preflow, it
71    //shows the levels of nodes.     
72    ReachedMap level;
73
74  public:
75    ///Indicates the property of the starting flow.
76
77    ///Indicates the property of the starting flow. The meanings are as follows:
78    ///- \c ZERO_FLOW: constant zero flow
79    ///- \c GEN_FLOW: any flow, i.e. the sum of the in-flows equals to
80    ///the sum of the out-flows in every node except the \e source and
81    ///the \e target.
82    ///- \c PRE_FLOW: any preflow, i.e. the sum of the in-flows is at
83    ///least the sum of the out-flows in every node except the \e source.
84    ///- \c NO_FLOW: indicates an unspecified edge map. \ref flow will be
85    ///set to the constant zero flow in the beginning of the algorithm in this case.
86    enum FlowEnum{
87      ZERO_FLOW,
88      GEN_FLOW,
89      PRE_FLOW,
90      NO_FLOW
91    };
92
93    enum StatusEnum {
94      AFTER_NOTHING,
95      AFTER_AUGMENTING,
96      AFTER_FAST_AUGMENTING,
97      AFTER_PRE_FLOW_PHASE_1,     
98      AFTER_PRE_FLOW_PHASE_2
99    };
100
101    /// Don not needle this flag only if necessary.
102    StatusEnum status;
103    int number_of_augmentations;
104
105
106    template<typename IntMap>
107    class TrickyReachedMap {
108    protected:
109      IntMap* map;
110      int* number_of_augmentations;
111    public:
112      TrickyReachedMap(IntMap& _map, int& _number_of_augmentations) :
113        map(&_map), number_of_augmentations(&_number_of_augmentations) { }
114      void set(const Node& n, bool b) {
115        if (b)
116          map->set(n, *number_of_augmentations);
117        else
118          map->set(n, *number_of_augmentations-1);
119      }
120      bool operator[](const Node& n) const {
121        return (*map)[n]==*number_of_augmentations;
122      }
123    };
124   
125    AugmentingFlow(const Graph& _G, Node _s, Node _t, const CapMap& _capacity,
126                   FlowMap& _flow) :
127      g(&_G), s(_s), t(_t), capacity(&_capacity),
128      flow(&_flow), //n(_G.nodeNum()),
129      level(_G), //excess(_G,0),
130      status(AFTER_NOTHING), number_of_augmentations(0) { }
131
132    /// Starting from a flow, this method searches for an augmenting path
133    /// according to the Edmonds-Karp algorithm
134    /// and augments the flow on if any.
135    /// The return value shows if the augmentation was succesful.
136    bool augmentOnShortestPath();
137    bool augmentOnShortestPath2();
138
139    /// Starting from a flow, this method searches for an augmenting blocking
140    /// flow according to Dinits' algorithm and augments the flow on if any.
141    /// The blocking flow is computed in a physically constructed
142    /// residual graph of type \c Mutablegraph.
143    /// The return value show sif the augmentation was succesful.
144    template<typename MutableGraph> bool augmentOnBlockingFlow();
145
146    /// The same as \c augmentOnBlockingFlow<MutableGraph> but the
147    /// residual graph is not constructed physically.
148    /// The return value shows if the augmentation was succesful.
149    bool augmentOnBlockingFlow2();
150
151    template<typename _CutMap>
152    void actMinCut(_CutMap& M) const {
153      NodeIt v;
154      switch (status) {
155        case AFTER_PRE_FLOW_PHASE_1:
156//      std::cout << "AFTER_PRE_FLOW_PHASE_1" << std::endl;
157//      for(g->first(v); g->valid(v); g->next(v)) {
158//        if (level[v] < n) {
159//          M.set(v, false);
160//        } else {
161//          M.set(v, true);
162//        }
163//      }
164        break;
165      case AFTER_PRE_FLOW_PHASE_2:
166//      std::cout << "AFTER_PRE_FLOW_PHASE_2" << std::endl;
167        break;
168      case AFTER_NOTHING:
169//      std::cout << "AFTER_NOTHING" << std::endl;
170        minMinCut(M);
171        break;
172      case AFTER_AUGMENTING:
173//      std::cout << "AFTER_AUGMENTING" << std::endl;
[775]174        for(g->first(v); v!=INVALID; ++v) {
[762]175          if (level[v]) {
176            M.set(v, true);
177          } else {
178            M.set(v, false);
179          }
180        }
181        break;
182      case AFTER_FAST_AUGMENTING:
183//      std::cout << "AFTER_FAST_AUGMENTING" << std::endl;
[775]184        for(g->first(v); v!=INVALID; ++v) {
[762]185          if (level[v]==number_of_augmentations) {
186            M.set(v, true);
187          } else {
188            M.set(v, false);
189          }
190        }
191        break;
192      }
193    }
194
195    template<typename _CutMap>
196    void minMinCut(_CutMap& M) const {
197      std::queue<Node> queue;
198
199      M.set(s,true);
200      queue.push(s);
201
202      while (!queue.empty()) {
203        Node w=queue.front();
204        queue.pop();
205
206        OutEdgeIt e;
[775]207        for(g->first(e,w) ; e!=INVALID; ++e) {
[762]208          Node v=g->head(e);
209          if (!M[v] && (*flow)[e] < (*capacity)[e] ) {
210            queue.push(v);
211            M.set(v, true);
212          }
213        }
214
215        InEdgeIt f;
[775]216        for(g->first(f,w) ; f!=INVALID; ++f) {
[762]217          Node v=g->tail(f);
218          if (!M[v] && (*flow)[f] > 0 ) {
219            queue.push(v);
220            M.set(v, true);
221          }
222        }
223      }
224    }
225
226    template<typename _CutMap>
227    void minMinCut2(_CutMap& M) const {
228      ResGW res_graph(*g, *capacity, *flow);
229      BfsIterator<ResGW, _CutMap> bfs(res_graph, M);
230      bfs.pushAndSetReached(s);
231      while (!bfs.finished()) ++bfs;
232    }
233
234    Num flowValue() const {
235      Num a=0;
[777]236      for (InEdgeIt e(*g, t); e!=INVALID; ++e) a+=(*flow)[e];
237      for (OutEdgeIt e(*g, t); e!=INVALID; ++e) a-=(*flow)[e];
[762]238      return a;
239      //marci figyu: excess[t] epp ezt adja preflow 1. fazisa utan   
240    }
241
242  };
243
244
245
246  template <typename Graph, typename Num, typename CapMap, typename FlowMap>
247  bool AugmentingFlow<Graph, Num, CapMap, FlowMap>::augmentOnShortestPath()
248  {
249    ResGW res_graph(*g, *capacity, *flow);
250    bool _augment=false;
251
252    //ReachedMap level(res_graph);
[777]253    for (typename Graph::NodeIt n(*g); n!=INVALID; ++n) level.set(n, 0);
[762]254    BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
255    bfs.pushAndSetReached(s);
256
257    typename ResGW::template NodeMap<ResGWEdge> pred(res_graph);
258    pred.set(s, INVALID);
259
260    typename ResGW::template NodeMap<Num> free(res_graph);
261
262    //searching for augmenting path
263    while ( !bfs.finished() ) {
[777]264      ResGWEdge e=bfs;
[775]265      if (e!=INVALID && bfs.isBNodeNewlyReached()) {
[762]266        Node v=res_graph.tail(e);
267        Node w=res_graph.head(e);
268        pred.set(w, e);
[775]269        if (pred[v]!=INVALID) {
[762]270          free.set(w, std::min(free[v], res_graph.resCap(e)));
271        } else {
272          free.set(w, res_graph.resCap(e));
273        }
274        if (res_graph.head(e)==t) { _augment=true; break; }
275      }
276
277      ++bfs;
278    } //end of searching augmenting path
279
280    if (_augment) {
281      Node n=t;
282      Num augment_value=free[t];
[775]283      while (pred[n]!=INVALID) {
[762]284        ResGWEdge e=pred[n];
285        res_graph.augment(e, augment_value);
286        n=res_graph.tail(e);
287      }
288    }
289
290    status=AFTER_AUGMENTING;
291    return _augment;
292  }
293
294  template <typename Graph, typename Num, typename CapMap, typename FlowMap>
295  bool AugmentingFlow<Graph, Num, CapMap, FlowMap>::augmentOnShortestPath2()
296  {
297    ResGW res_graph(*g, *capacity, *flow);
298    bool _augment=false;
299
300    if (status!=AFTER_FAST_AUGMENTING) {
[777]301      for (typename Graph::NodeIt n(*g); n!=INVALID; ++n) level.set(n, 0);
[762]302      number_of_augmentations=1;
303    } else {
304      ++number_of_augmentations;
305    }
306    TrickyReachedMap<ReachedMap>
307      tricky_reached_map(level, number_of_augmentations);
308    //ReachedMap level(res_graph);
309//    FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
310    BfsIterator<ResGW, TrickyReachedMap<ReachedMap> >
311      bfs(res_graph, tricky_reached_map);
312    bfs.pushAndSetReached(s);
313
314    typename ResGW::template NodeMap<ResGWEdge> pred(res_graph);
315    pred.set(s, INVALID);
316
317    typename ResGW::template NodeMap<Num> free(res_graph);
318
319    //searching for augmenting path
320    while ( !bfs.finished() ) {
[777]321      ResGWEdge e=bfs;
[775]322      if (e!=INVALID && bfs.isBNodeNewlyReached()) {
[762]323        Node v=res_graph.tail(e);
324        Node w=res_graph.head(e);
325        pred.set(w, e);
[775]326        if (pred[v]!=INVALID) {
[762]327          free.set(w, std::min(free[v], res_graph.resCap(e)));
328        } else {
329          free.set(w, res_graph.resCap(e));
330        }
331        if (res_graph.head(e)==t) { _augment=true; break; }
332      }
333
334      ++bfs;
335    } //end of searching augmenting path
336
337    if (_augment) {
338      Node n=t;
339      Num augment_value=free[t];
[775]340      while (pred[n]!=INVALID) {
[762]341        ResGWEdge e=pred[n];
342        res_graph.augment(e, augment_value);
343        n=res_graph.tail(e);
344      }
345    }
346
347    status=AFTER_FAST_AUGMENTING;
348    return _augment;
349  }
350
351
352  template <typename Graph, typename Num, typename CapMap, typename FlowMap>
353  template<typename MutableGraph>
354  bool AugmentingFlow<Graph, Num, CapMap, FlowMap>::augmentOnBlockingFlow()
355  {
356    typedef MutableGraph MG;
357    bool _augment=false;
358
359    ResGW res_graph(*g, *capacity, *flow);
360
361    //bfs for distances on the residual graph
362    //ReachedMap level(res_graph);
[777]363    for (typename Graph::NodeIt n(*g); n!=INVALID; ++n) level.set(n, 0);
[762]364    BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
365    bfs.pushAndSetReached(s);
366    typename ResGW::template NodeMap<int>
367      dist(res_graph); //filled up with 0's
368
369    //F will contain the physical copy of the residual graph
370    //with the set of edges which are on shortest paths
371    MG F;
372    typename ResGW::template NodeMap<typename MG::Node>
373      res_graph_to_F(res_graph);
374    {
375      typename ResGW::NodeIt n;
[862]376      for(res_graph.first(n); n!=INVALID; ++n)
[762]377        res_graph_to_F.set(n, F.addNode());
378    }
379
380    typename MG::Node sF=res_graph_to_F[s];
381    typename MG::Node tF=res_graph_to_F[t];
382    typename MG::template EdgeMap<ResGWEdge> original_edge(F);
383    typename MG::template EdgeMap<Num> residual_capacity(F);
384
385    while ( !bfs.finished() ) {
[777]386      ResGWEdge e=bfs;
[775]387      if (e!=INVALID) {
[762]388        if (bfs.isBNodeNewlyReached()) {
389          dist.set(res_graph.head(e), dist[res_graph.tail(e)]+1);
390          typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.tail(e)],
391                                        res_graph_to_F[res_graph.head(e)]);
[854]392          //original_edge.update();
[762]393          original_edge.set(f, e);
[854]394          //residual_capacity.update();
[762]395          residual_capacity.set(f, res_graph.resCap(e));
396        } else {
397          if (dist[res_graph.head(e)]==(dist[res_graph.tail(e)]+1)) {
398            typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.tail(e)],
399                                          res_graph_to_F[res_graph.head(e)]);
[854]400            //original_edge.update();
[762]401            original_edge.set(f, e);
[854]402            //residual_capacity.update();
[762]403            residual_capacity.set(f, res_graph.resCap(e));
404          }
405        }
406      }
407      ++bfs;
408    } //computing distances from s in the residual graph
409
410    bool __augment=true;
411
412    while (__augment) {
413      __augment=false;
414      //computing blocking flow with dfs
415      DfsIterator< MG, typename MG::template NodeMap<bool> > dfs(F);
416      typename MG::template NodeMap<typename MG::Edge> pred(F);
417      pred.set(sF, INVALID);
418      //invalid iterators for sources
419
420      typename MG::template NodeMap<Num> free(F);
421
422      dfs.pushAndSetReached(sF);
423      while (!dfs.finished()) {
424        ++dfs;
[854]425        if (typename MG::Edge(dfs)!=INVALID) {
[762]426          if (dfs.isBNodeNewlyReached()) {
[777]427            typename MG::Node v=F.tail(dfs);
428            typename MG::Node w=F.head(dfs);
[762]429            pred.set(w, dfs);
[775]430            if (pred[v]!=INVALID) {
[762]431              free.set(w, std::min(free[v], residual_capacity[dfs]));
432            } else {
433              free.set(w, residual_capacity[dfs]);
434            }
435            if (w==tF) {
436              __augment=true;
437              _augment=true;
438              break;
439            }
440
441          } else {
[854]442            F.erase(typename MG::Edge(dfs));
[762]443          }
444        }
445      }
446
447      if (__augment) {
448        typename MG::Node n=tF;
449        Num augment_value=free[tF];
[775]450        while (pred[n]!=INVALID) {
[762]451          typename MG::Edge e=pred[n];
452          res_graph.augment(original_edge[e], augment_value);
453          n=F.tail(e);
454          if (residual_capacity[e]==augment_value)
455            F.erase(e);
456          else
457            residual_capacity.set(e, residual_capacity[e]-augment_value);
458        }
459      }
460
461    }
462
463    status=AFTER_AUGMENTING;
464    return _augment;
465  }
466
[862]467  /// Blocking flow augmentation without constructing the layered
468  /// graph physically in which the blocking flow is computed.
[762]469  template <typename Graph, typename Num, typename CapMap, typename FlowMap>
470  bool AugmentingFlow<Graph, Num, CapMap, FlowMap>::augmentOnBlockingFlow2()
471  {
472    bool _augment=false;
473
474    ResGW res_graph(*g, *capacity, *flow);
475
[862]476    //Potential map, for distances from s
477    typename ResGW::template NodeMap<int> potential(res_graph, 0);
478    typedef ConstMap<typename ResGW::Edge, int> Const1Map;
479    Const1Map const_1_map(1);
480    TightEdgeFilterMap<ResGW, typename ResGW::template NodeMap<int>,
481      Const1Map> tight_edge_filter(res_graph, potential, const_1_map);
482
[777]483    for (typename Graph::NodeIt n(*g); n!=INVALID; ++n) level.set(n, 0);
[762]484    BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
[862]485    bfs.pushAndSetReached(s);
[762]486
[862]487    //computing distances from s in the residual graph
[762]488    while ( !bfs.finished() ) {
[777]489      ResGWEdge e=bfs;
[862]490      if (e!=INVALID && bfs.isBNodeNewlyReached())
491        potential.set(res_graph.head(e), potential[res_graph.tail(e)]+1);
[762]492      ++bfs;
[862]493    }
[762]494
[862]495    //Subgraph containing the edges on some shortest paths
496    //(i.e. tight edges)
[762]497    ConstMap<typename ResGW::Node, bool> true_map(true);
498    typedef SubGraphWrapper<ResGW, ConstMap<typename ResGW::Node, bool>,
[862]499      TightEdgeFilterMap<ResGW, typename ResGW::template NodeMap<int>,
500      Const1Map> > FilterResGW;
501    FilterResGW filter_res_graph(res_graph, true_map, tight_edge_filter);
[762]502
503    //Subgraph, which is able to delete edges which are already
504    //met by the dfs
[777]505    typename FilterResGW::template NodeMap<typename FilterResGW::Edge>
[762]506      first_out_edges(filter_res_graph);
[862]507    for (typename FilterResGW::NodeIt v(filter_res_graph); v!=INVALID; ++v)
508      first_out_edges.set
509        (v, typename FilterResGW::OutEdgeIt(filter_res_graph, v));
510
[762]511    typedef ErasingFirstGraphWrapper<FilterResGW, typename FilterResGW::
[777]512      template NodeMap<typename FilterResGW::Edge> > ErasingResGW;
[762]513    ErasingResGW erasing_res_graph(filter_res_graph, first_out_edges);
514
515    bool __augment=true;
516
517    while (__augment) {
518
519      __augment=false;
520      //computing blocking flow with dfs
521      DfsIterator< ErasingResGW,
522        typename ErasingResGW::template NodeMap<bool> >
523        dfs(erasing_res_graph);
524      typename ErasingResGW::
[777]525        template NodeMap<typename ErasingResGW::Edge> pred(erasing_res_graph);
[762]526      pred.set(s, INVALID);
527      //invalid iterators for sources
528
529      typename ErasingResGW::template NodeMap<Num>
530        free1(erasing_res_graph);
531
532      dfs.pushAndSetReached
[777]533        /// \bug hugo 0.2
[762]534        (typename ErasingResGW::Node
535         (typename FilterResGW::Node
536          (typename ResGW::Node(s)
537           )
538          )
539         );
[777]540       
[762]541      while (!dfs.finished()) {
542        ++dfs;
[862]543        if (typename ErasingResGW::Edge(dfs)!=INVALID) {
544          if (dfs.isBNodeNewlyReached()) {
545           
546            typename ErasingResGW::Node v=erasing_res_graph.tail(dfs);
547            typename ErasingResGW::Node w=erasing_res_graph.head(dfs);
[762]548
[862]549            pred.set(w, typename ErasingResGW::Edge(dfs));
550            if (pred[v]!=INVALID) {
551              free1.set
552                (w, std::min(free1[v], res_graph.resCap
553                             (typename ErasingResGW::Edge(dfs))));
554            } else {
555              free1.set
556                (w, res_graph.resCap
557                 (typename ErasingResGW::Edge(dfs)));
558            }
[762]559
[862]560            if (w==t) {
561              __augment=true;
562              _augment=true;
563              break;
[762]564            }
[862]565          } else {
566            erasing_res_graph.erase(dfs);
[762]567          }
[862]568        }
[762]569      }
570
571      if (__augment) {
572        typename ErasingResGW::Node
573          n=typename FilterResGW::Node(typename ResGW::Node(t));
574        Num augment_value=free1[n];
[777]575        while (pred[n]!=INVALID) {
576          typename ErasingResGW::Edge e=pred[n];
[762]577          res_graph.augment(e, augment_value);
578          n=erasing_res_graph.tail(e);
579          if (res_graph.resCap(e)==0)
580            erasing_res_graph.erase(e);
581        }
582      }
583
584    } //while (__augment)
585
586    status=AFTER_AUGMENTING;
587    return _augment;
588  }
589
590
591} //namespace hugo
592
593#endif //HUGO_AUGMENTING_FLOW_H
594
595
Note: See TracBrowser for help on using the repository browser.