1 | // -*- C++ -*- |
---|
2 | #ifndef HUGO_AUGMENTING_FLOW_H |
---|
3 | #define HUGO_AUGMENTING_FLOW_H |
---|
4 | |
---|
5 | #include <vector> |
---|
6 | //#include <queue> |
---|
7 | //#include <stack> |
---|
8 | #include <iostream> |
---|
9 | |
---|
10 | #include <hugo/graph_wrapper.h> |
---|
11 | #include <bfs_dfs.h> |
---|
12 | #include <hugo/invalid.h> |
---|
13 | #include <hugo/maps.h> |
---|
14 | |
---|
15 | /// \file |
---|
16 | /// \brief Maximum flow algorithms. |
---|
17 | /// \ingroup galgs |
---|
18 | |
---|
19 | namespace hugo { |
---|
20 | |
---|
21 | /// \brief A map for filtering the edge-set to those edges |
---|
22 | /// which are tight w.r.t. some node_potential map and |
---|
23 | /// edge_distance map. |
---|
24 | /// |
---|
25 | /// A node-map node_potential is said to be a potential w.r.t. |
---|
26 | /// an edge-map edge_distance |
---|
27 | /// if and only if for each edge e, node_potential[g.head(e)] |
---|
28 | /// <= edge_distance[e]+node_potential[g.tail(e)] |
---|
29 | /// (or the reverse inequality holds for each edge). |
---|
30 | /// An edge is said to be tight if this inequality holds with equality, |
---|
31 | /// and the map returns true exactly for those edges. |
---|
32 | /// To avoid rounding errors, it is recommended to use this class with exact |
---|
33 | /// types, e.g. with int. |
---|
34 | template<typename Graph, |
---|
35 | typename NodePotentialMap, typename EdgeDistanceMap> |
---|
36 | class TightEdgeFilterMap { |
---|
37 | protected: |
---|
38 | const Graph* g; |
---|
39 | NodePotentialMap* node_potential; |
---|
40 | EdgeDistanceMap* edge_distance; |
---|
41 | public: |
---|
42 | TightEdgeFilterMap(Graph& _g, NodePotentialMap& _node_potential, |
---|
43 | EdgeDistanceMap& _edge_distance) : |
---|
44 | g(&_g), node_potential(&_node_potential), |
---|
45 | edge_distance(&_edge_distance) { } |
---|
46 | // void set(const typename Graph::Node& n, int a) { |
---|
47 | // pot->set(n, a); |
---|
48 | // } |
---|
49 | // int operator[](const typename Graph::Node& n) const { |
---|
50 | // return (*node_potential)[n]; |
---|
51 | // } |
---|
52 | bool operator[](const typename Graph::Edge& e) const { |
---|
53 | return ((*node_potential)[g->head(e)] == |
---|
54 | (*edge_distance)[e]+(*node_potential)[g->tail(e)]); |
---|
55 | } |
---|
56 | }; |
---|
57 | |
---|
58 | /// \addtogroup galgs |
---|
59 | /// @{ |
---|
60 | /// Class for augmenting path flow algorithms. |
---|
61 | |
---|
62 | /// This class provides various algorithms for finding a flow of |
---|
63 | /// maximum value in a directed graph. The \e source node, the \e |
---|
64 | /// target node, the \e capacity of the edges and the \e starting \e |
---|
65 | /// flow value of the edges should be passed to the algorithm through the |
---|
66 | /// constructor. |
---|
67 | // /// It is possible to change these quantities using the |
---|
68 | // /// functions \ref resetSource, \ref resetTarget, \ref resetCap and |
---|
69 | // /// \ref resetFlow. Before any subsequent runs of any algorithm of |
---|
70 | // /// the class \ref resetFlow should be called. |
---|
71 | |
---|
72 | /// After running an algorithm of the class, the actual flow value |
---|
73 | /// can be obtained by calling \ref flowValue(). The minimum |
---|
74 | /// value cut can be written into a \c node map of \c bools by |
---|
75 | /// calling \ref minCut. (\ref minMinCut and \ref maxMinCut writes |
---|
76 | /// the inclusionwise minimum and maximum of the minimum value |
---|
77 | /// cuts, resp.) |
---|
78 | ///\param Graph The directed graph type the algorithm runs on. |
---|
79 | ///\param Num The number type of the capacities and the flow values. |
---|
80 | ///\param CapMap The capacity map type. |
---|
81 | ///\param FlowMap The flow map type. |
---|
82 | ///\author Marton Makai |
---|
83 | template <typename Graph, typename Num, |
---|
84 | typename CapMap=typename Graph::template EdgeMap<Num>, |
---|
85 | typename FlowMap=typename Graph::template EdgeMap<Num> > |
---|
86 | class AugmentingFlow { |
---|
87 | protected: |
---|
88 | typedef typename Graph::Node Node; |
---|
89 | typedef typename Graph::NodeIt NodeIt; |
---|
90 | typedef typename Graph::EdgeIt EdgeIt; |
---|
91 | typedef typename Graph::OutEdgeIt OutEdgeIt; |
---|
92 | typedef typename Graph::InEdgeIt InEdgeIt; |
---|
93 | |
---|
94 | const Graph* g; |
---|
95 | Node s; |
---|
96 | Node t; |
---|
97 | const CapMap* capacity; |
---|
98 | FlowMap* flow; |
---|
99 | // int n; //the number of nodes of G |
---|
100 | typedef ResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW; |
---|
101 | //typedef ExpResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW; |
---|
102 | typedef typename ResGW::OutEdgeIt ResGWOutEdgeIt; |
---|
103 | typedef typename ResGW::Edge ResGWEdge; |
---|
104 | //typedef typename ResGW::template NodeMap<bool> ReachedMap; |
---|
105 | typedef typename Graph::template NodeMap<int> ReachedMap; |
---|
106 | |
---|
107 | //level works as a bool map in augmenting path algorithms and is |
---|
108 | //used by bfs for storing reached information. In preflow, it |
---|
109 | //shows the levels of nodes. |
---|
110 | ReachedMap level; |
---|
111 | |
---|
112 | public: |
---|
113 | ///Indicates the property of the starting flow. |
---|
114 | |
---|
115 | ///Indicates the property of the starting flow. The meanings are as follows: |
---|
116 | ///- \c ZERO_FLOW: constant zero flow |
---|
117 | ///- \c GEN_FLOW: any flow, i.e. the sum of the in-flows equals to |
---|
118 | ///the sum of the out-flows in every node except the \e source and |
---|
119 | ///the \e target. |
---|
120 | ///- \c PRE_FLOW: any preflow, i.e. the sum of the in-flows is at |
---|
121 | ///least the sum of the out-flows in every node except the \e source. |
---|
122 | ///- \c NO_FLOW: indicates an unspecified edge map. \ref flow will be |
---|
123 | ///set to the constant zero flow in the beginning of the algorithm in this case. |
---|
124 | enum FlowEnum{ |
---|
125 | ZERO_FLOW, |
---|
126 | GEN_FLOW, |
---|
127 | PRE_FLOW, |
---|
128 | NO_FLOW |
---|
129 | }; |
---|
130 | |
---|
131 | enum StatusEnum { |
---|
132 | AFTER_NOTHING, |
---|
133 | AFTER_AUGMENTING, |
---|
134 | AFTER_FAST_AUGMENTING, |
---|
135 | AFTER_PRE_FLOW_PHASE_1, |
---|
136 | AFTER_PRE_FLOW_PHASE_2 |
---|
137 | }; |
---|
138 | |
---|
139 | /// Don not needle this flag only if necessary. |
---|
140 | StatusEnum status; |
---|
141 | int number_of_augmentations; |
---|
142 | |
---|
143 | |
---|
144 | template<typename IntMap> |
---|
145 | class TrickyReachedMap { |
---|
146 | protected: |
---|
147 | IntMap* map; |
---|
148 | int* number_of_augmentations; |
---|
149 | public: |
---|
150 | TrickyReachedMap(IntMap& _map, int& _number_of_augmentations) : |
---|
151 | map(&_map), number_of_augmentations(&_number_of_augmentations) { } |
---|
152 | void set(const Node& n, bool b) { |
---|
153 | if (b) |
---|
154 | map->set(n, *number_of_augmentations); |
---|
155 | else |
---|
156 | map->set(n, *number_of_augmentations-1); |
---|
157 | } |
---|
158 | bool operator[](const Node& n) const { |
---|
159 | return (*map)[n]==*number_of_augmentations; |
---|
160 | } |
---|
161 | }; |
---|
162 | |
---|
163 | AugmentingFlow(const Graph& _G, Node _s, Node _t, const CapMap& _capacity, |
---|
164 | FlowMap& _flow) : |
---|
165 | g(&_G), s(_s), t(_t), capacity(&_capacity), |
---|
166 | flow(&_flow), //n(_G.nodeNum()), |
---|
167 | level(_G), //excess(_G,0), |
---|
168 | status(AFTER_NOTHING), number_of_augmentations(0) { } |
---|
169 | |
---|
170 | /// Starting from a flow, this method searches for an augmenting path |
---|
171 | /// according to the Edmonds-Karp algorithm |
---|
172 | /// and augments the flow on if any. |
---|
173 | /// The return value shows if the augmentation was succesful. |
---|
174 | bool augmentOnShortestPath(); |
---|
175 | bool augmentOnShortestPath2(); |
---|
176 | |
---|
177 | /// Starting from a flow, this method searches for an augmenting blocking |
---|
178 | /// flow according to Dinits' algorithm and augments the flow on if any. |
---|
179 | /// The blocking flow is computed in a physically constructed |
---|
180 | /// residual graph of type \c Mutablegraph. |
---|
181 | /// The return value show sif the augmentation was succesful. |
---|
182 | template<typename MutableGraph> bool augmentOnBlockingFlow(); |
---|
183 | |
---|
184 | /// The same as \c augmentOnBlockingFlow<MutableGraph> but the |
---|
185 | /// residual graph is not constructed physically. |
---|
186 | /// The return value shows if the augmentation was succesful. |
---|
187 | bool augmentOnBlockingFlow2(); |
---|
188 | |
---|
189 | template<typename _CutMap> |
---|
190 | void actMinCut(_CutMap& M) const { |
---|
191 | NodeIt v; |
---|
192 | switch (status) { |
---|
193 | case AFTER_PRE_FLOW_PHASE_1: |
---|
194 | // std::cout << "AFTER_PRE_FLOW_PHASE_1" << std::endl; |
---|
195 | // for(g->first(v); g->valid(v); g->next(v)) { |
---|
196 | // if (level[v] < n) { |
---|
197 | // M.set(v, false); |
---|
198 | // } else { |
---|
199 | // M.set(v, true); |
---|
200 | // } |
---|
201 | // } |
---|
202 | break; |
---|
203 | case AFTER_PRE_FLOW_PHASE_2: |
---|
204 | // std::cout << "AFTER_PRE_FLOW_PHASE_2" << std::endl; |
---|
205 | break; |
---|
206 | case AFTER_NOTHING: |
---|
207 | // std::cout << "AFTER_NOTHING" << std::endl; |
---|
208 | minMinCut(M); |
---|
209 | break; |
---|
210 | case AFTER_AUGMENTING: |
---|
211 | // std::cout << "AFTER_AUGMENTING" << std::endl; |
---|
212 | for(g->first(v); v!=INVALID; ++v) { |
---|
213 | if (level[v]) { |
---|
214 | M.set(v, true); |
---|
215 | } else { |
---|
216 | M.set(v, false); |
---|
217 | } |
---|
218 | } |
---|
219 | break; |
---|
220 | case AFTER_FAST_AUGMENTING: |
---|
221 | // std::cout << "AFTER_FAST_AUGMENTING" << std::endl; |
---|
222 | for(g->first(v); v!=INVALID; ++v) { |
---|
223 | if (level[v]==number_of_augmentations) { |
---|
224 | M.set(v, true); |
---|
225 | } else { |
---|
226 | M.set(v, false); |
---|
227 | } |
---|
228 | } |
---|
229 | break; |
---|
230 | } |
---|
231 | } |
---|
232 | |
---|
233 | template<typename _CutMap> |
---|
234 | void minMinCut(_CutMap& M) const { |
---|
235 | std::queue<Node> queue; |
---|
236 | |
---|
237 | M.set(s,true); |
---|
238 | queue.push(s); |
---|
239 | |
---|
240 | while (!queue.empty()) { |
---|
241 | Node w=queue.front(); |
---|
242 | queue.pop(); |
---|
243 | |
---|
244 | OutEdgeIt e; |
---|
245 | for(g->first(e,w) ; e!=INVALID; ++e) { |
---|
246 | Node v=g->head(e); |
---|
247 | if (!M[v] && (*flow)[e] < (*capacity)[e] ) { |
---|
248 | queue.push(v); |
---|
249 | M.set(v, true); |
---|
250 | } |
---|
251 | } |
---|
252 | |
---|
253 | InEdgeIt f; |
---|
254 | for(g->first(f,w) ; f!=INVALID; ++f) { |
---|
255 | Node v=g->tail(f); |
---|
256 | if (!M[v] && (*flow)[f] > 0 ) { |
---|
257 | queue.push(v); |
---|
258 | M.set(v, true); |
---|
259 | } |
---|
260 | } |
---|
261 | } |
---|
262 | } |
---|
263 | |
---|
264 | template<typename _CutMap> |
---|
265 | void minMinCut2(_CutMap& M) const { |
---|
266 | ResGW res_graph(*g, *capacity, *flow); |
---|
267 | BfsIterator<ResGW, _CutMap> bfs(res_graph, M); |
---|
268 | bfs.pushAndSetReached(s); |
---|
269 | while (!bfs.finished()) ++bfs; |
---|
270 | } |
---|
271 | |
---|
272 | Num flowValue() const { |
---|
273 | Num a=0; |
---|
274 | for (InEdgeIt e(*g, t); e!=INVALID; ++e) a+=(*flow)[e]; |
---|
275 | for (OutEdgeIt e(*g, t); e!=INVALID; ++e) a-=(*flow)[e]; |
---|
276 | return a; |
---|
277 | //marci figyu: excess[t] epp ezt adja preflow 1. fazisa utan |
---|
278 | } |
---|
279 | |
---|
280 | }; |
---|
281 | |
---|
282 | |
---|
283 | |
---|
284 | template <typename Graph, typename Num, typename CapMap, typename FlowMap> |
---|
285 | bool AugmentingFlow<Graph, Num, CapMap, FlowMap>::augmentOnShortestPath() |
---|
286 | { |
---|
287 | ResGW res_graph(*g, *capacity, *flow); |
---|
288 | bool _augment=false; |
---|
289 | |
---|
290 | //ReachedMap level(res_graph); |
---|
291 | for (typename Graph::NodeIt n(*g); n!=INVALID; ++n) level.set(n, 0); |
---|
292 | BfsIterator<ResGW, ReachedMap> bfs(res_graph, level); |
---|
293 | bfs.pushAndSetReached(s); |
---|
294 | |
---|
295 | typename ResGW::template NodeMap<ResGWEdge> pred(res_graph); |
---|
296 | pred.set(s, INVALID); |
---|
297 | |
---|
298 | typename ResGW::template NodeMap<Num> free(res_graph); |
---|
299 | |
---|
300 | //searching for augmenting path |
---|
301 | while ( !bfs.finished() ) { |
---|
302 | ResGWEdge e=bfs; |
---|
303 | if (e!=INVALID && bfs.isBNodeNewlyReached()) { |
---|
304 | Node v=res_graph.tail(e); |
---|
305 | Node w=res_graph.head(e); |
---|
306 | pred.set(w, e); |
---|
307 | if (pred[v]!=INVALID) { |
---|
308 | free.set(w, std::min(free[v], res_graph.resCap(e))); |
---|
309 | } else { |
---|
310 | free.set(w, res_graph.resCap(e)); |
---|
311 | } |
---|
312 | if (res_graph.head(e)==t) { _augment=true; break; } |
---|
313 | } |
---|
314 | |
---|
315 | ++bfs; |
---|
316 | } //end of searching augmenting path |
---|
317 | |
---|
318 | if (_augment) { |
---|
319 | Node n=t; |
---|
320 | Num augment_value=free[t]; |
---|
321 | while (pred[n]!=INVALID) { |
---|
322 | ResGWEdge e=pred[n]; |
---|
323 | res_graph.augment(e, augment_value); |
---|
324 | n=res_graph.tail(e); |
---|
325 | } |
---|
326 | } |
---|
327 | |
---|
328 | status=AFTER_AUGMENTING; |
---|
329 | return _augment; |
---|
330 | } |
---|
331 | |
---|
332 | template <typename Graph, typename Num, typename CapMap, typename FlowMap> |
---|
333 | bool AugmentingFlow<Graph, Num, CapMap, FlowMap>::augmentOnShortestPath2() |
---|
334 | { |
---|
335 | ResGW res_graph(*g, *capacity, *flow); |
---|
336 | bool _augment=false; |
---|
337 | |
---|
338 | if (status!=AFTER_FAST_AUGMENTING) { |
---|
339 | for (typename Graph::NodeIt n(*g); n!=INVALID; ++n) level.set(n, 0); |
---|
340 | number_of_augmentations=1; |
---|
341 | } else { |
---|
342 | ++number_of_augmentations; |
---|
343 | } |
---|
344 | TrickyReachedMap<ReachedMap> |
---|
345 | tricky_reached_map(level, number_of_augmentations); |
---|
346 | //ReachedMap level(res_graph); |
---|
347 | // FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0); |
---|
348 | BfsIterator<ResGW, TrickyReachedMap<ReachedMap> > |
---|
349 | bfs(res_graph, tricky_reached_map); |
---|
350 | bfs.pushAndSetReached(s); |
---|
351 | |
---|
352 | typename ResGW::template NodeMap<ResGWEdge> pred(res_graph); |
---|
353 | pred.set(s, INVALID); |
---|
354 | |
---|
355 | typename ResGW::template NodeMap<Num> free(res_graph); |
---|
356 | |
---|
357 | //searching for augmenting path |
---|
358 | while ( !bfs.finished() ) { |
---|
359 | ResGWEdge e=bfs; |
---|
360 | if (e!=INVALID && bfs.isBNodeNewlyReached()) { |
---|
361 | Node v=res_graph.tail(e); |
---|
362 | Node w=res_graph.head(e); |
---|
363 | pred.set(w, e); |
---|
364 | if (pred[v]!=INVALID) { |
---|
365 | free.set(w, std::min(free[v], res_graph.resCap(e))); |
---|
366 | } else { |
---|
367 | free.set(w, res_graph.resCap(e)); |
---|
368 | } |
---|
369 | if (res_graph.head(e)==t) { _augment=true; break; } |
---|
370 | } |
---|
371 | |
---|
372 | ++bfs; |
---|
373 | } //end of searching augmenting path |
---|
374 | |
---|
375 | if (_augment) { |
---|
376 | Node n=t; |
---|
377 | Num augment_value=free[t]; |
---|
378 | while (pred[n]!=INVALID) { |
---|
379 | ResGWEdge e=pred[n]; |
---|
380 | res_graph.augment(e, augment_value); |
---|
381 | n=res_graph.tail(e); |
---|
382 | } |
---|
383 | } |
---|
384 | |
---|
385 | status=AFTER_FAST_AUGMENTING; |
---|
386 | return _augment; |
---|
387 | } |
---|
388 | |
---|
389 | |
---|
390 | template <typename Graph, typename Num, typename CapMap, typename FlowMap> |
---|
391 | template<typename MutableGraph> |
---|
392 | bool AugmentingFlow<Graph, Num, CapMap, FlowMap>::augmentOnBlockingFlow() |
---|
393 | { |
---|
394 | typedef MutableGraph MG; |
---|
395 | bool _augment=false; |
---|
396 | |
---|
397 | ResGW res_graph(*g, *capacity, *flow); |
---|
398 | |
---|
399 | //bfs for distances on the residual graph |
---|
400 | //ReachedMap level(res_graph); |
---|
401 | for (typename Graph::NodeIt n(*g); n!=INVALID; ++n) level.set(n, 0); |
---|
402 | BfsIterator<ResGW, ReachedMap> bfs(res_graph, level); |
---|
403 | bfs.pushAndSetReached(s); |
---|
404 | typename ResGW::template NodeMap<int> |
---|
405 | dist(res_graph); //filled up with 0's |
---|
406 | |
---|
407 | //F will contain the physical copy of the residual graph |
---|
408 | //with the set of edges which are on shortest paths |
---|
409 | MG F; |
---|
410 | typename ResGW::template NodeMap<typename MG::Node> |
---|
411 | res_graph_to_F(res_graph); |
---|
412 | { |
---|
413 | typename ResGW::NodeIt n; |
---|
414 | for(res_graph.first(n); n!=INVALID; ++n) |
---|
415 | res_graph_to_F.set(n, F.addNode()); |
---|
416 | } |
---|
417 | |
---|
418 | typename MG::Node sF=res_graph_to_F[s]; |
---|
419 | typename MG::Node tF=res_graph_to_F[t]; |
---|
420 | typename MG::template EdgeMap<ResGWEdge> original_edge(F); |
---|
421 | typename MG::template EdgeMap<Num> residual_capacity(F); |
---|
422 | |
---|
423 | while ( !bfs.finished() ) { |
---|
424 | ResGWEdge e=bfs; |
---|
425 | if (e!=INVALID) { |
---|
426 | if (bfs.isBNodeNewlyReached()) { |
---|
427 | dist.set(res_graph.head(e), dist[res_graph.tail(e)]+1); |
---|
428 | typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.tail(e)], |
---|
429 | res_graph_to_F[res_graph.head(e)]); |
---|
430 | //original_edge.update(); |
---|
431 | original_edge.set(f, e); |
---|
432 | //residual_capacity.update(); |
---|
433 | residual_capacity.set(f, res_graph.resCap(e)); |
---|
434 | } else { |
---|
435 | if (dist[res_graph.head(e)]==(dist[res_graph.tail(e)]+1)) { |
---|
436 | typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.tail(e)], |
---|
437 | res_graph_to_F[res_graph.head(e)]); |
---|
438 | //original_edge.update(); |
---|
439 | original_edge.set(f, e); |
---|
440 | //residual_capacity.update(); |
---|
441 | residual_capacity.set(f, res_graph.resCap(e)); |
---|
442 | } |
---|
443 | } |
---|
444 | } |
---|
445 | ++bfs; |
---|
446 | } //computing distances from s in the residual graph |
---|
447 | |
---|
448 | bool __augment=true; |
---|
449 | |
---|
450 | while (__augment) { |
---|
451 | __augment=false; |
---|
452 | //computing blocking flow with dfs |
---|
453 | DfsIterator< MG, typename MG::template NodeMap<bool> > dfs(F); |
---|
454 | typename MG::template NodeMap<typename MG::Edge> pred(F); |
---|
455 | pred.set(sF, INVALID); |
---|
456 | //invalid iterators for sources |
---|
457 | |
---|
458 | typename MG::template NodeMap<Num> free(F); |
---|
459 | |
---|
460 | dfs.pushAndSetReached(sF); |
---|
461 | while (!dfs.finished()) { |
---|
462 | ++dfs; |
---|
463 | if (typename MG::Edge(dfs)!=INVALID) { |
---|
464 | if (dfs.isBNodeNewlyReached()) { |
---|
465 | typename MG::Node v=F.tail(dfs); |
---|
466 | typename MG::Node w=F.head(dfs); |
---|
467 | pred.set(w, dfs); |
---|
468 | if (pred[v]!=INVALID) { |
---|
469 | free.set(w, std::min(free[v], residual_capacity[dfs])); |
---|
470 | } else { |
---|
471 | free.set(w, residual_capacity[dfs]); |
---|
472 | } |
---|
473 | if (w==tF) { |
---|
474 | __augment=true; |
---|
475 | _augment=true; |
---|
476 | break; |
---|
477 | } |
---|
478 | |
---|
479 | } else { |
---|
480 | F.erase(typename MG::Edge(dfs)); |
---|
481 | } |
---|
482 | } |
---|
483 | } |
---|
484 | |
---|
485 | if (__augment) { |
---|
486 | typename MG::Node n=tF; |
---|
487 | Num augment_value=free[tF]; |
---|
488 | while (pred[n]!=INVALID) { |
---|
489 | typename MG::Edge e=pred[n]; |
---|
490 | res_graph.augment(original_edge[e], augment_value); |
---|
491 | n=F.tail(e); |
---|
492 | if (residual_capacity[e]==augment_value) |
---|
493 | F.erase(e); |
---|
494 | else |
---|
495 | residual_capacity.set(e, residual_capacity[e]-augment_value); |
---|
496 | } |
---|
497 | } |
---|
498 | |
---|
499 | } |
---|
500 | |
---|
501 | status=AFTER_AUGMENTING; |
---|
502 | return _augment; |
---|
503 | } |
---|
504 | |
---|
505 | /// Blocking flow augmentation without constructing the layered |
---|
506 | /// graph physically in which the blocking flow is computed. |
---|
507 | template <typename Graph, typename Num, typename CapMap, typename FlowMap> |
---|
508 | bool AugmentingFlow<Graph, Num, CapMap, FlowMap>::augmentOnBlockingFlow2() |
---|
509 | { |
---|
510 | bool _augment=false; |
---|
511 | |
---|
512 | ResGW res_graph(*g, *capacity, *flow); |
---|
513 | |
---|
514 | //Potential map, for distances from s |
---|
515 | typename ResGW::template NodeMap<int> potential(res_graph, 0); |
---|
516 | typedef ConstMap<typename ResGW::Edge, int> Const1Map; |
---|
517 | Const1Map const_1_map(1); |
---|
518 | TightEdgeFilterMap<ResGW, typename ResGW::template NodeMap<int>, |
---|
519 | Const1Map> tight_edge_filter(res_graph, potential, const_1_map); |
---|
520 | |
---|
521 | for (typename Graph::NodeIt n(*g); n!=INVALID; ++n) level.set(n, 0); |
---|
522 | BfsIterator<ResGW, ReachedMap> bfs(res_graph, level); |
---|
523 | bfs.pushAndSetReached(s); |
---|
524 | |
---|
525 | //computing distances from s in the residual graph |
---|
526 | while ( !bfs.finished() ) { |
---|
527 | ResGWEdge e=bfs; |
---|
528 | if (e!=INVALID && bfs.isBNodeNewlyReached()) |
---|
529 | potential.set(res_graph.head(e), potential[res_graph.tail(e)]+1); |
---|
530 | ++bfs; |
---|
531 | } |
---|
532 | |
---|
533 | //Subgraph containing the edges on some shortest paths |
---|
534 | //(i.e. tight edges) |
---|
535 | ConstMap<typename ResGW::Node, bool> true_map(true); |
---|
536 | typedef SubGraphWrapper<ResGW, ConstMap<typename ResGW::Node, bool>, |
---|
537 | TightEdgeFilterMap<ResGW, typename ResGW::template NodeMap<int>, |
---|
538 | Const1Map> > FilterResGW; |
---|
539 | FilterResGW filter_res_graph(res_graph, true_map, tight_edge_filter); |
---|
540 | |
---|
541 | //Subgraph, which is able to delete edges which are already |
---|
542 | //met by the dfs |
---|
543 | typename FilterResGW::template NodeMap<typename FilterResGW::Edge> |
---|
544 | first_out_edges(filter_res_graph); |
---|
545 | for (typename FilterResGW::NodeIt v(filter_res_graph); v!=INVALID; ++v) |
---|
546 | first_out_edges.set |
---|
547 | (v, typename FilterResGW::OutEdgeIt(filter_res_graph, v)); |
---|
548 | |
---|
549 | typedef ErasingFirstGraphWrapper<FilterResGW, typename FilterResGW:: |
---|
550 | template NodeMap<typename FilterResGW::Edge> > ErasingResGW; |
---|
551 | ErasingResGW erasing_res_graph(filter_res_graph, first_out_edges); |
---|
552 | |
---|
553 | bool __augment=true; |
---|
554 | |
---|
555 | while (__augment) { |
---|
556 | |
---|
557 | __augment=false; |
---|
558 | //computing blocking flow with dfs |
---|
559 | DfsIterator< ErasingResGW, |
---|
560 | typename ErasingResGW::template NodeMap<bool> > |
---|
561 | dfs(erasing_res_graph); |
---|
562 | typename ErasingResGW:: |
---|
563 | template NodeMap<typename ErasingResGW::Edge> pred(erasing_res_graph); |
---|
564 | pred.set(s, INVALID); |
---|
565 | //invalid iterators for sources |
---|
566 | |
---|
567 | typename ErasingResGW::template NodeMap<Num> |
---|
568 | free1(erasing_res_graph); |
---|
569 | |
---|
570 | dfs.pushAndSetReached |
---|
571 | /// \bug hugo 0.2 |
---|
572 | (typename ErasingResGW::Node |
---|
573 | (typename FilterResGW::Node |
---|
574 | (typename ResGW::Node(s) |
---|
575 | ) |
---|
576 | ) |
---|
577 | ); |
---|
578 | |
---|
579 | while (!dfs.finished()) { |
---|
580 | ++dfs; |
---|
581 | if (typename ErasingResGW::Edge(dfs)!=INVALID) { |
---|
582 | if (dfs.isBNodeNewlyReached()) { |
---|
583 | |
---|
584 | typename ErasingResGW::Node v=erasing_res_graph.tail(dfs); |
---|
585 | typename ErasingResGW::Node w=erasing_res_graph.head(dfs); |
---|
586 | |
---|
587 | pred.set(w, typename ErasingResGW::Edge(dfs)); |
---|
588 | if (pred[v]!=INVALID) { |
---|
589 | free1.set |
---|
590 | (w, std::min(free1[v], res_graph.resCap |
---|
591 | (typename ErasingResGW::Edge(dfs)))); |
---|
592 | } else { |
---|
593 | free1.set |
---|
594 | (w, res_graph.resCap |
---|
595 | (typename ErasingResGW::Edge(dfs))); |
---|
596 | } |
---|
597 | |
---|
598 | if (w==t) { |
---|
599 | __augment=true; |
---|
600 | _augment=true; |
---|
601 | break; |
---|
602 | } |
---|
603 | } else { |
---|
604 | erasing_res_graph.erase(dfs); |
---|
605 | } |
---|
606 | } |
---|
607 | } |
---|
608 | |
---|
609 | if (__augment) { |
---|
610 | typename ErasingResGW::Node |
---|
611 | n=typename FilterResGW::Node(typename ResGW::Node(t)); |
---|
612 | Num augment_value=free1[n]; |
---|
613 | while (pred[n]!=INVALID) { |
---|
614 | typename ErasingResGW::Edge e=pred[n]; |
---|
615 | res_graph.augment(e, augment_value); |
---|
616 | n=erasing_res_graph.tail(e); |
---|
617 | if (res_graph.resCap(e)==0) |
---|
618 | erasing_res_graph.erase(e); |
---|
619 | } |
---|
620 | } |
---|
621 | |
---|
622 | } //while (__augment) |
---|
623 | |
---|
624 | status=AFTER_AUGMENTING; |
---|
625 | return _augment; |
---|
626 | } |
---|
627 | |
---|
628 | |
---|
629 | } //namespace hugo |
---|
630 | |
---|
631 | #endif //HUGO_AUGMENTING_FLOW_H |
---|
632 | |
---|
633 | |
---|