[602] | 1 | // -*- c++ -*- |
---|
[921] | 2 | #ifndef LEMON_BFS_DFS_H |
---|
| 3 | #define LEMON_BFS_DFS_H |
---|
[602] | 4 | |
---|
[615] | 5 | /// \ingroup galgs |
---|
| 6 | /// \file |
---|
| 7 | /// \brief Bfs and dfs iterators. |
---|
[604] | 8 | /// |
---|
[615] | 9 | /// This file contains bfs and dfs iterator classes. |
---|
[604] | 10 | /// |
---|
[615] | 11 | // /// \author Marton Makai |
---|
[604] | 12 | |
---|
[602] | 13 | #include <queue> |
---|
| 14 | #include <stack> |
---|
| 15 | #include <utility> |
---|
| 16 | |
---|
[921] | 17 | #include <lemon/invalid.h> |
---|
[602] | 18 | |
---|
[921] | 19 | namespace lemon { |
---|
[602] | 20 | |
---|
| 21 | /// Bfs searches for the nodes wich are not marked in |
---|
| 22 | /// \c reached_map |
---|
[650] | 23 | /// Reached have to be a read-write bool node-map. |
---|
[615] | 24 | /// \ingroup galgs |
---|
[602] | 25 | template <typename Graph, /*typename OutEdgeIt,*/ |
---|
| 26 | typename ReachedMap/*=typename Graph::NodeMap<bool>*/ > |
---|
| 27 | class BfsIterator { |
---|
| 28 | protected: |
---|
| 29 | typedef typename Graph::Node Node; |
---|
[777] | 30 | typedef typename Graph::Edge Edge; |
---|
[602] | 31 | typedef typename Graph::OutEdgeIt OutEdgeIt; |
---|
| 32 | const Graph* graph; |
---|
| 33 | std::queue<Node> bfs_queue; |
---|
| 34 | ReachedMap& reached; |
---|
| 35 | bool b_node_newly_reached; |
---|
[777] | 36 | Edge actual_edge; |
---|
[602] | 37 | bool own_reached_map; |
---|
| 38 | public: |
---|
| 39 | /// In that constructor \c _reached have to be a reference |
---|
[650] | 40 | /// for a bool bode-map. The algorithm will search for the |
---|
| 41 | /// initially \c false nodes |
---|
| 42 | /// in a bfs order. |
---|
[602] | 43 | BfsIterator(const Graph& _graph, ReachedMap& _reached) : |
---|
| 44 | graph(&_graph), reached(_reached), |
---|
| 45 | own_reached_map(false) { } |
---|
| 46 | /// The same as above, but the map storing the reached nodes |
---|
| 47 | /// is constructed dynamically to everywhere false. |
---|
[650] | 48 | /// \deprecated |
---|
[602] | 49 | BfsIterator(const Graph& _graph) : |
---|
| 50 | graph(&_graph), reached(*(new ReachedMap(*graph /*, false*/))), |
---|
| 51 | own_reached_map(true) { } |
---|
[604] | 52 | /// The map storing the reached nodes have to be destroyed if |
---|
[602] | 53 | /// it was constructed dynamically |
---|
| 54 | ~BfsIterator() { if (own_reached_map) delete &reached; } |
---|
| 55 | /// This method markes \c s reached. |
---|
| 56 | /// If the queue is empty, then \c s is pushed in the bfs queue |
---|
| 57 | /// and the first out-edge is processed. |
---|
| 58 | /// If the queue is not empty, then \c s is simply pushed. |
---|
[777] | 59 | BfsIterator<Graph, /*OutEdgeIt,*/ ReachedMap>& pushAndSetReached(Node s) { |
---|
[602] | 60 | reached.set(s, true); |
---|
| 61 | if (bfs_queue.empty()) { |
---|
| 62 | bfs_queue.push(s); |
---|
[777] | 63 | actual_edge=OutEdgeIt(*graph, s); |
---|
| 64 | //graph->first(actual_edge, s); |
---|
[774] | 65 | if (actual_edge!=INVALID) { |
---|
| 66 | Node w=graph->head(actual_edge); |
---|
[602] | 67 | if (!reached[w]) { |
---|
| 68 | bfs_queue.push(w); |
---|
| 69 | reached.set(w, true); |
---|
| 70 | b_node_newly_reached=true; |
---|
| 71 | } else { |
---|
| 72 | b_node_newly_reached=false; |
---|
| 73 | } |
---|
| 74 | } |
---|
| 75 | } else { |
---|
| 76 | bfs_queue.push(s); |
---|
| 77 | } |
---|
[777] | 78 | return *this; |
---|
[602] | 79 | } |
---|
| 80 | /// As \c BfsIterator<Graph, ReachedMap> works as an edge-iterator, |
---|
| 81 | /// its \c operator++() iterates on the edges in a bfs order. |
---|
| 82 | BfsIterator<Graph, /*OutEdgeIt,*/ ReachedMap>& |
---|
| 83 | operator++() { |
---|
[774] | 84 | if (actual_edge!=INVALID) { |
---|
[777] | 85 | actual_edge=++OutEdgeIt(*graph, actual_edge); |
---|
| 86 | //++actual_edge; |
---|
[774] | 87 | if (actual_edge!=INVALID) { |
---|
| 88 | Node w=graph->head(actual_edge); |
---|
[602] | 89 | if (!reached[w]) { |
---|
| 90 | bfs_queue.push(w); |
---|
| 91 | reached.set(w, true); |
---|
| 92 | b_node_newly_reached=true; |
---|
| 93 | } else { |
---|
| 94 | b_node_newly_reached=false; |
---|
| 95 | } |
---|
| 96 | } |
---|
| 97 | } else { |
---|
| 98 | bfs_queue.pop(); |
---|
| 99 | if (!bfs_queue.empty()) { |
---|
[777] | 100 | actual_edge=OutEdgeIt(*graph, bfs_queue.front()); |
---|
| 101 | //graph->first(actual_edge, bfs_queue.front()); |
---|
[774] | 102 | if (actual_edge!=INVALID) { |
---|
| 103 | Node w=graph->head(actual_edge); |
---|
[602] | 104 | if (!reached[w]) { |
---|
| 105 | bfs_queue.push(w); |
---|
| 106 | reached.set(w, true); |
---|
| 107 | b_node_newly_reached=true; |
---|
| 108 | } else { |
---|
| 109 | b_node_newly_reached=false; |
---|
| 110 | } |
---|
| 111 | } |
---|
| 112 | } |
---|
| 113 | } |
---|
| 114 | return *this; |
---|
| 115 | } |
---|
[646] | 116 | /// Returns true iff the algorithm is finished. |
---|
[602] | 117 | bool finished() const { return bfs_queue.empty(); } |
---|
| 118 | /// The conversion operator makes for converting the bfs-iterator |
---|
| 119 | /// to an \c out-edge-iterator. |
---|
[921] | 120 | ///\bug Edge have to be in LEMON 0.2 |
---|
[777] | 121 | operator Edge() const { return actual_edge; } |
---|
[646] | 122 | /// Returns if b-node has been reached just now. |
---|
[602] | 123 | bool isBNodeNewlyReached() const { return b_node_newly_reached; } |
---|
[646] | 124 | /// Returns if a-node is examined. |
---|
[774] | 125 | bool isANodeExamined() const { return actual_edge==INVALID; } |
---|
[646] | 126 | /// Returns a-node of the actual edge, so does if the edge is invalid. |
---|
[777] | 127 | Node tail() const { return bfs_queue.front(); } |
---|
[646] | 128 | /// \pre The actual edge have to be valid. |
---|
[777] | 129 | Node head() const { return graph->head(actual_edge); } |
---|
[615] | 130 | /// Guess what? |
---|
[650] | 131 | /// \deprecated |
---|
[602] | 132 | const ReachedMap& getReachedMap() const { return reached; } |
---|
[615] | 133 | /// Guess what? |
---|
[650] | 134 | /// \deprecated |
---|
[602] | 135 | const std::queue<Node>& getBfsQueue() const { return bfs_queue; } |
---|
[615] | 136 | }; |
---|
[602] | 137 | |
---|
| 138 | /// Bfs searches for the nodes wich are not marked in |
---|
| 139 | /// \c reached_map |
---|
| 140 | /// Reached have to work as a read-write bool Node-map, |
---|
[650] | 141 | /// Pred is a write edge node-map and |
---|
| 142 | /// Dist is a read-write node-map of integral value, have to be. |
---|
[615] | 143 | /// \ingroup galgs |
---|
[602] | 144 | template <typename Graph, |
---|
| 145 | typename ReachedMap=typename Graph::template NodeMap<bool>, |
---|
| 146 | typename PredMap |
---|
| 147 | =typename Graph::template NodeMap<typename Graph::Edge>, |
---|
| 148 | typename DistMap=typename Graph::template NodeMap<int> > |
---|
| 149 | class Bfs : public BfsIterator<Graph, ReachedMap> { |
---|
| 150 | typedef BfsIterator<Graph, ReachedMap> Parent; |
---|
| 151 | protected: |
---|
| 152 | typedef typename Parent::Node Node; |
---|
| 153 | PredMap& pred; |
---|
| 154 | DistMap& dist; |
---|
| 155 | public: |
---|
| 156 | /// The algorithm will search in a bfs order for |
---|
| 157 | /// the nodes which are \c false initially. |
---|
| 158 | /// The constructor makes no initial changes on the maps. |
---|
[671] | 159 | Bfs<Graph, ReachedMap, PredMap, DistMap>(const Graph& _graph, ReachedMap& _reached, PredMap& _pred, DistMap& _dist) : |
---|
| 160 | BfsIterator<Graph, ReachedMap>(_graph, _reached), |
---|
| 161 | pred(_pred), dist(_dist) { } |
---|
[602] | 162 | /// \c s is marked to be reached and pushed in the bfs queue. |
---|
| 163 | /// If the queue is empty, then the first out-edge is processed. |
---|
| 164 | /// If \c s was not marked previously, then |
---|
| 165 | /// in addition its pred is set to be \c INVALID, and dist to \c 0. |
---|
| 166 | /// if \c s was marked previuosly, then it is simply pushed. |
---|
[777] | 167 | Bfs<Graph, ReachedMap, PredMap, DistMap>& push(Node s) { |
---|
[602] | 168 | if (this->reached[s]) { |
---|
| 169 | Parent::pushAndSetReached(s); |
---|
| 170 | } else { |
---|
| 171 | Parent::pushAndSetReached(s); |
---|
| 172 | pred.set(s, INVALID); |
---|
| 173 | dist.set(s, 0); |
---|
| 174 | } |
---|
[777] | 175 | return *this; |
---|
[602] | 176 | } |
---|
| 177 | /// A bfs is processed from \c s. |
---|
[777] | 178 | Bfs<Graph, ReachedMap, PredMap, DistMap>& run(Node s) { |
---|
[602] | 179 | push(s); |
---|
| 180 | while (!this->finished()) this->operator++(); |
---|
[777] | 181 | return *this; |
---|
[602] | 182 | } |
---|
| 183 | /// Beside the bfs iteration, \c pred and \dist are saved in a |
---|
| 184 | /// newly reached node. |
---|
[604] | 185 | Bfs<Graph, ReachedMap, PredMap, DistMap>& operator++() { |
---|
[602] | 186 | Parent::operator++(); |
---|
| 187 | if (this->graph->valid(this->actual_edge) && this->b_node_newly_reached) |
---|
| 188 | { |
---|
[777] | 189 | pred.set(this->head(), this->actual_edge); |
---|
| 190 | dist.set(this->head(), dist[this->tail()]); |
---|
[602] | 191 | } |
---|
| 192 | return *this; |
---|
| 193 | } |
---|
[615] | 194 | /// Guess what? |
---|
[650] | 195 | /// \deprecated |
---|
[602] | 196 | const PredMap& getPredMap() const { return pred; } |
---|
[615] | 197 | /// Guess what? |
---|
[650] | 198 | /// \deprecated |
---|
[602] | 199 | const DistMap& getDistMap() const { return dist; } |
---|
| 200 | }; |
---|
| 201 | |
---|
| 202 | /// Dfs searches for the nodes wich are not marked in |
---|
| 203 | /// \c reached_map |
---|
| 204 | /// Reached have to be a read-write bool Node-map. |
---|
[615] | 205 | /// \ingroup galgs |
---|
[602] | 206 | template <typename Graph, /*typename OutEdgeIt,*/ |
---|
| 207 | typename ReachedMap/*=typename Graph::NodeMap<bool>*/ > |
---|
| 208 | class DfsIterator { |
---|
| 209 | protected: |
---|
| 210 | typedef typename Graph::Node Node; |
---|
[777] | 211 | typedef typename Graph::Edge Edge; |
---|
[602] | 212 | typedef typename Graph::OutEdgeIt OutEdgeIt; |
---|
| 213 | const Graph* graph; |
---|
| 214 | std::stack<OutEdgeIt> dfs_stack; |
---|
| 215 | bool b_node_newly_reached; |
---|
[777] | 216 | Edge actual_edge; |
---|
[602] | 217 | Node actual_node; |
---|
| 218 | ReachedMap& reached; |
---|
| 219 | bool own_reached_map; |
---|
| 220 | public: |
---|
| 221 | /// In that constructor \c _reached have to be a reference |
---|
[650] | 222 | /// for a bool node-map. The algorithm will search in a dfs order for |
---|
[602] | 223 | /// the nodes which are \c false initially |
---|
| 224 | DfsIterator(const Graph& _graph, ReachedMap& _reached) : |
---|
| 225 | graph(&_graph), reached(_reached), |
---|
| 226 | own_reached_map(false) { } |
---|
| 227 | /// The same as above, but the map of reached nodes is |
---|
| 228 | /// constructed dynamically |
---|
| 229 | /// to everywhere false. |
---|
| 230 | DfsIterator(const Graph& _graph) : |
---|
| 231 | graph(&_graph), reached(*(new ReachedMap(*graph /*, false*/))), |
---|
| 232 | own_reached_map(true) { } |
---|
| 233 | ~DfsIterator() { if (own_reached_map) delete &reached; } |
---|
| 234 | /// This method markes s reached and first out-edge is processed. |
---|
[777] | 235 | DfsIterator<Graph, /*OutEdgeIt,*/ ReachedMap>& pushAndSetReached(Node s) { |
---|
[602] | 236 | actual_node=s; |
---|
| 237 | reached.set(s, true); |
---|
[777] | 238 | OutEdgeIt e(*graph, s); |
---|
| 239 | //graph->first(e, s); |
---|
[602] | 240 | dfs_stack.push(e); |
---|
[777] | 241 | return *this; |
---|
[602] | 242 | } |
---|
| 243 | /// As \c DfsIterator<Graph, ReachedMap> works as an edge-iterator, |
---|
| 244 | /// its \c operator++() iterates on the edges in a dfs order. |
---|
| 245 | DfsIterator<Graph, /*OutEdgeIt,*/ ReachedMap>& |
---|
| 246 | operator++() { |
---|
| 247 | actual_edge=dfs_stack.top(); |
---|
[774] | 248 | if (actual_edge!=INVALID/*.valid()*/) { |
---|
| 249 | Node w=graph->head(actual_edge); |
---|
[602] | 250 | actual_node=w; |
---|
| 251 | if (!reached[w]) { |
---|
[777] | 252 | OutEdgeIt e(*graph, w); |
---|
| 253 | //graph->first(e, w); |
---|
[602] | 254 | dfs_stack.push(e); |
---|
| 255 | reached.set(w, true); |
---|
| 256 | b_node_newly_reached=true; |
---|
| 257 | } else { |
---|
[774] | 258 | actual_node=graph->tail(actual_edge); |
---|
| 259 | ++dfs_stack.top(); |
---|
[602] | 260 | b_node_newly_reached=false; |
---|
| 261 | } |
---|
| 262 | } else { |
---|
| 263 | //actual_node=G.aNode(dfs_stack.top()); |
---|
| 264 | dfs_stack.pop(); |
---|
| 265 | } |
---|
| 266 | return *this; |
---|
| 267 | } |
---|
[646] | 268 | /// Returns true iff the algorithm is finished. |
---|
[602] | 269 | bool finished() const { return dfs_stack.empty(); } |
---|
[646] | 270 | /// The conversion operator makes for converting the bfs-iterator |
---|
| 271 | /// to an \c out-edge-iterator. |
---|
[921] | 272 | ///\bug Edge have to be in LEMON 0.2 |
---|
[777] | 273 | operator Edge() const { return actual_edge; } |
---|
[646] | 274 | /// Returns if b-node has been reached just now. |
---|
[602] | 275 | bool isBNodeNewlyReached() const { return b_node_newly_reached; } |
---|
[646] | 276 | /// Returns if a-node is examined. |
---|
[774] | 277 | bool isANodeExamined() const { return actual_edge==INVALID; } |
---|
[646] | 278 | /// Returns a-node of the actual edge, so does if the edge is invalid. |
---|
[777] | 279 | Node tail() const { return actual_node; /*FIXME*/} |
---|
[646] | 280 | /// Returns b-node of the actual edge. |
---|
| 281 | /// \pre The actual edge have to be valid. |
---|
[777] | 282 | Node head() const { return graph->head(actual_edge); } |
---|
[615] | 283 | /// Guess what? |
---|
[650] | 284 | /// \deprecated |
---|
[602] | 285 | const ReachedMap& getReachedMap() const { return reached; } |
---|
[615] | 286 | /// Guess what? |
---|
[650] | 287 | /// \deprecated |
---|
[602] | 288 | const std::stack<OutEdgeIt>& getDfsStack() const { return dfs_stack; } |
---|
| 289 | }; |
---|
| 290 | |
---|
| 291 | /// Dfs searches for the nodes wich are not marked in |
---|
| 292 | /// \c reached_map |
---|
[650] | 293 | /// Reached is a read-write bool node-map, |
---|
| 294 | /// Pred is a write node-map, have to be. |
---|
[615] | 295 | /// \ingroup galgs |
---|
[602] | 296 | template <typename Graph, |
---|
| 297 | typename ReachedMap=typename Graph::template NodeMap<bool>, |
---|
| 298 | typename PredMap |
---|
| 299 | =typename Graph::template NodeMap<typename Graph::Edge> > |
---|
| 300 | class Dfs : public DfsIterator<Graph, ReachedMap> { |
---|
| 301 | typedef DfsIterator<Graph, ReachedMap> Parent; |
---|
| 302 | protected: |
---|
| 303 | typedef typename Parent::Node Node; |
---|
| 304 | PredMap& pred; |
---|
| 305 | public: |
---|
| 306 | /// The algorithm will search in a dfs order for |
---|
| 307 | /// the nodes which are \c false initially. |
---|
| 308 | /// The constructor makes no initial changes on the maps. |
---|
[671] | 309 | Dfs<Graph, ReachedMap, PredMap>(const Graph& _graph, ReachedMap& _reached, PredMap& _pred) : DfsIterator<Graph, ReachedMap>(_graph, _reached), pred(_pred) { } |
---|
[602] | 310 | /// \c s is marked to be reached and pushed in the bfs queue. |
---|
| 311 | /// If the queue is empty, then the first out-edge is processed. |
---|
| 312 | /// If \c s was not marked previously, then |
---|
| 313 | /// in addition its pred is set to be \c INVALID. |
---|
| 314 | /// if \c s was marked previuosly, then it is simply pushed. |
---|
[777] | 315 | Dfs<Graph, ReachedMap, PredMap>& push(Node s) { |
---|
[602] | 316 | if (this->reached[s]) { |
---|
| 317 | Parent::pushAndSetReached(s); |
---|
| 318 | } else { |
---|
| 319 | Parent::pushAndSetReached(s); |
---|
| 320 | pred.set(s, INVALID); |
---|
| 321 | } |
---|
[777] | 322 | return *this; |
---|
[602] | 323 | } |
---|
| 324 | /// A bfs is processed from \c s. |
---|
[777] | 325 | Dfs<Graph, ReachedMap, PredMap>& run(Node s) { |
---|
[602] | 326 | push(s); |
---|
| 327 | while (!this->finished()) this->operator++(); |
---|
[777] | 328 | return *this; |
---|
[602] | 329 | } |
---|
| 330 | /// Beside the dfs iteration, \c pred is saved in a |
---|
| 331 | /// newly reached node. |
---|
[604] | 332 | Dfs<Graph, ReachedMap, PredMap>& operator++() { |
---|
[602] | 333 | Parent::operator++(); |
---|
| 334 | if (this->graph->valid(this->actual_edge) && this->b_node_newly_reached) |
---|
| 335 | { |
---|
[777] | 336 | pred.set(this->head(), this->actual_edge); |
---|
[602] | 337 | } |
---|
| 338 | return *this; |
---|
| 339 | } |
---|
[615] | 340 | /// Guess what? |
---|
[650] | 341 | /// \deprecated |
---|
[602] | 342 | const PredMap& getPredMap() const { return pred; } |
---|
| 343 | }; |
---|
| 344 | |
---|
| 345 | |
---|
[921] | 346 | } // namespace lemon |
---|
[602] | 347 | |
---|
[921] | 348 | #endif //LEMON_BFS_DFS_H |
---|