1 | // -*- c++ -*- |
---|
2 | #ifndef HUGO_BFS_ITERATOR_H |
---|
3 | #define HUGO_BFS_ITERATOR_H |
---|
4 | |
---|
5 | #include <queue> |
---|
6 | #include <stack> |
---|
7 | #include <utility> |
---|
8 | |
---|
9 | namespace hugo { |
---|
10 | |
---|
11 | template <typename Graph, /*typename OutEdgeIt,*/ |
---|
12 | typename ReachedMap/*=typename Graph::NodeMap<bool>*/ > |
---|
13 | class BfsIterator { |
---|
14 | protected: |
---|
15 | typedef typename Graph::Node Node; |
---|
16 | typedef typename Graph::OutEdgeIt OutEdgeIt; |
---|
17 | const Graph* graph; |
---|
18 | std::queue<Node> bfs_queue; |
---|
19 | ReachedMap& reached; |
---|
20 | bool b_node_newly_reached; |
---|
21 | OutEdgeIt actual_edge; |
---|
22 | bool own_reached_map; |
---|
23 | public: |
---|
24 | BfsIterator(const Graph& _graph, ReachedMap& _reached) : |
---|
25 | graph(&_graph), reached(_reached), |
---|
26 | own_reached_map(false) { } |
---|
27 | BfsIterator(const Graph& _graph) : |
---|
28 | graph(&_graph), reached(*(new ReachedMap(*graph /*, false*/))), |
---|
29 | own_reached_map(true) { } |
---|
30 | ~BfsIterator() { if (own_reached_map) delete &reached; } |
---|
31 | //s is marcked reached. |
---|
32 | //if the queue is empty, then the its is pushed ant the first OutEdgeIt is processe. |
---|
33 | //is the queue is not empty, then is it pushed. |
---|
34 | void pushAndSetReached(Node s) { |
---|
35 | reached.set(s, true); |
---|
36 | if (bfs_queue.empty()) { |
---|
37 | bfs_queue.push(s); |
---|
38 | graph->first(actual_edge, s); |
---|
39 | if (graph->valid(actual_edge)) { |
---|
40 | Node w=graph->bNode(actual_edge); |
---|
41 | if (!reached[w]) { |
---|
42 | bfs_queue.push(w); |
---|
43 | reached.set(w, true); |
---|
44 | b_node_newly_reached=true; |
---|
45 | } else { |
---|
46 | b_node_newly_reached=false; |
---|
47 | } |
---|
48 | } |
---|
49 | } else { |
---|
50 | bfs_queue.push(s); |
---|
51 | } |
---|
52 | } |
---|
53 | BfsIterator<Graph, /*OutEdgeIt,*/ ReachedMap>& |
---|
54 | operator++() { |
---|
55 | if (graph->valid(actual_edge)) { |
---|
56 | graph->next(actual_edge); |
---|
57 | if (graph->valid(actual_edge)) { |
---|
58 | Node w=graph->bNode(actual_edge); |
---|
59 | if (!reached[w]) { |
---|
60 | bfs_queue.push(w); |
---|
61 | reached.set(w, true); |
---|
62 | b_node_newly_reached=true; |
---|
63 | } else { |
---|
64 | b_node_newly_reached=false; |
---|
65 | } |
---|
66 | } |
---|
67 | } else { |
---|
68 | bfs_queue.pop(); |
---|
69 | if (!bfs_queue.empty()) { |
---|
70 | graph->first(actual_edge, bfs_queue.front()); |
---|
71 | if (graph->valid(actual_edge)) { |
---|
72 | Node w=graph->bNode(actual_edge); |
---|
73 | if (!reached[w]) { |
---|
74 | bfs_queue.push(w); |
---|
75 | reached.set(w, true); |
---|
76 | b_node_newly_reached=true; |
---|
77 | } else { |
---|
78 | b_node_newly_reached=false; |
---|
79 | } |
---|
80 | } |
---|
81 | } |
---|
82 | } |
---|
83 | return *this; |
---|
84 | } |
---|
85 | bool finished() const { return bfs_queue.empty(); } |
---|
86 | operator OutEdgeIt() const { return actual_edge; } |
---|
87 | bool isBNodeNewlyReached() const { return b_node_newly_reached; } |
---|
88 | bool isANodeExamined() const { return !(graph->valid(actual_edge)); } |
---|
89 | Node aNode() const { return bfs_queue.front(); } |
---|
90 | Node bNode() const { return graph->bNode(actual_edge); } |
---|
91 | const ReachedMap& getReachedMap() const { return reached; } |
---|
92 | const std::queue<Node>& getBfsQueue() const { return bfs_queue; } |
---|
93 | }; |
---|
94 | |
---|
95 | /// Bfs searches from s for the nodes wich are not marked in |
---|
96 | /// reachedmap |
---|
97 | template <typename Graph, |
---|
98 | typename ReachedMap=typename Graph::template NodeMap<bool>, |
---|
99 | typename PredMap |
---|
100 | =typename Graph::template NodeMap<typename Graph::Edge>, |
---|
101 | typename DistMap=typename Graph::template NodeMap<int> > |
---|
102 | class Bfs : public BfsIterator<Graph, ReachedMap> { |
---|
103 | typedef BfsIterator<Graph, ReachedMap> Parent; |
---|
104 | protected: |
---|
105 | typedef typename Parent::Node Node; |
---|
106 | PredMap& pred; |
---|
107 | DistMap& dist; |
---|
108 | public: |
---|
109 | Bfs<Graph, ReachedMap, PredMap, DistMap>(const Graph& _graph, ReachedMap& _reached, PredMap& _pred, DistMap& _dist) : BfsIterator<Graph, ReachedMap>(_graph, _reached), pred(&_pred), dist(&_dist) { } |
---|
110 | //s is marked to be reached and pushed in the bfs queue. |
---|
111 | //if the queue is empty, then the first out-edge is processed |
---|
112 | //If s was not marked previously, then |
---|
113 | //in addition its pred is set to be INVALID, and dist to 0. |
---|
114 | //if s was marked previuosly, then it is simply pushed. |
---|
115 | void push(Node s) { |
---|
116 | if (this->reached[s]) { |
---|
117 | Parent::pushAndSetReached(s); |
---|
118 | } else { |
---|
119 | Parent::pushAndSetReached(s); |
---|
120 | pred.set(s, INVALID); |
---|
121 | dist.set(s, 0); |
---|
122 | } |
---|
123 | } |
---|
124 | void run(Node s) { |
---|
125 | push(s); |
---|
126 | while (!this->finished()) this->operator++(); |
---|
127 | } |
---|
128 | Bfs<Graph, ReachedMap, PredMap, DistMap> operator++() { |
---|
129 | Parent::operator++(); |
---|
130 | if (this->graph->valid(actual_edge) && this->b_node_newly_reached) { |
---|
131 | pred.set(s, actual_edge); |
---|
132 | dist.set(s, dist[this->aNode()]); |
---|
133 | } |
---|
134 | return *this; |
---|
135 | } |
---|
136 | const PredMap& getPredMap() const { return pred; } |
---|
137 | const DistMap& getDistMap() const { return dist; } |
---|
138 | }; |
---|
139 | |
---|
140 | template <typename Graph, /*typename OutEdgeIt,*/ |
---|
141 | typename ReachedMap/*=typename Graph::NodeMap<bool>*/ > |
---|
142 | class DfsIterator { |
---|
143 | protected: |
---|
144 | typedef typename Graph::Node Node; |
---|
145 | typedef typename Graph::OutEdgeIt OutEdgeIt; |
---|
146 | const Graph* graph; |
---|
147 | std::stack<OutEdgeIt> dfs_stack; |
---|
148 | bool b_node_newly_reached; |
---|
149 | OutEdgeIt actual_edge; |
---|
150 | Node actual_node; |
---|
151 | ReachedMap& reached; |
---|
152 | bool own_reached_map; |
---|
153 | public: |
---|
154 | DfsIterator(const Graph& _graph, ReachedMap& _reached) : |
---|
155 | graph(&_graph), reached(_reached), |
---|
156 | own_reached_map(false) { } |
---|
157 | DfsIterator(const Graph& _graph) : |
---|
158 | graph(&_graph), reached(*(new ReachedMap(*graph /*, false*/))), |
---|
159 | own_reached_map(true) { } |
---|
160 | ~DfsIterator() { if (own_reached_map) delete &reached; } |
---|
161 | void pushAndSetReached(Node s) { |
---|
162 | actual_node=s; |
---|
163 | reached.set(s, true); |
---|
164 | OutEdgeIt e; |
---|
165 | graph->first(e, s); |
---|
166 | dfs_stack.push(e); |
---|
167 | } |
---|
168 | DfsIterator<Graph, /*OutEdgeIt,*/ ReachedMap>& |
---|
169 | operator++() { |
---|
170 | actual_edge=dfs_stack.top(); |
---|
171 | //actual_node=G.aNode(actual_edge); |
---|
172 | if (graph->valid(actual_edge)/*.valid()*/) { |
---|
173 | Node w=graph->bNode(actual_edge); |
---|
174 | actual_node=w; |
---|
175 | if (!reached[w]) { |
---|
176 | OutEdgeIt e; |
---|
177 | graph->first(e, w); |
---|
178 | dfs_stack.push(e); |
---|
179 | reached.set(w, true); |
---|
180 | b_node_newly_reached=true; |
---|
181 | } else { |
---|
182 | actual_node=graph->aNode(actual_edge); |
---|
183 | graph->next(dfs_stack.top()); |
---|
184 | b_node_newly_reached=false; |
---|
185 | } |
---|
186 | } else { |
---|
187 | //actual_node=G.aNode(dfs_stack.top()); |
---|
188 | dfs_stack.pop(); |
---|
189 | } |
---|
190 | return *this; |
---|
191 | } |
---|
192 | bool finished() const { return dfs_stack.empty(); } |
---|
193 | operator OutEdgeIt() const { return actual_edge; } |
---|
194 | bool isBNodeNewlyReached() const { return b_node_newly_reached; } |
---|
195 | bool isANodeExamined() const { return !(graph->valid(actual_edge)); } |
---|
196 | Node aNode() const { return actual_node; /*FIXME*/} |
---|
197 | Node bNode() const { return graph->bNode(actual_edge); } |
---|
198 | const ReachedMap& getReachedMap() const { return reached; } |
---|
199 | const std::stack<OutEdgeIt>& getDfsStack() const { return dfs_stack; } |
---|
200 | }; |
---|
201 | |
---|
202 | } // namespace hugo |
---|
203 | |
---|
204 | #endif //HUGO_BFS_ITERATOR_H |
---|