1 | // -*- c++ -*- |
---|
2 | #ifndef LEMON_GRAPH_H |
---|
3 | #define LEMON_GRAPH_H |
---|
4 | |
---|
5 | ///\file |
---|
6 | ///\brief Declaration of GraphConcept. |
---|
7 | |
---|
8 | #include <lemon/invalid.h> |
---|
9 | |
---|
10 | namespace lemon { |
---|
11 | |
---|
12 | /// @defgroup empty_graph The GraphConcept class |
---|
13 | /// @{ |
---|
14 | |
---|
15 | /// An empty graph class. |
---|
16 | |
---|
17 | /// This class provides all the common features of a graph structure, |
---|
18 | /// however completely without implementations and real data structures |
---|
19 | /// behind the interface. |
---|
20 | /// All graph algorithms should compile with this class, but it will not |
---|
21 | /// run properly, of course. |
---|
22 | /// |
---|
23 | /// It can be used for checking the interface compatibility, |
---|
24 | /// or it can serve as a skeleton of a new graph structure. |
---|
25 | /// |
---|
26 | /// Also, you will find here the full documentation of a certain graph |
---|
27 | /// feature, the documentation of a real graph imlementation |
---|
28 | /// like @ref ListGraph or |
---|
29 | /// @ref SmartGraph will just refer to this structure. |
---|
30 | class GraphConcept |
---|
31 | { |
---|
32 | public: |
---|
33 | /// Defalult constructor. |
---|
34 | GraphConcept() { } |
---|
35 | |
---|
36 | /// \brief Copy consructor. |
---|
37 | /// |
---|
38 | /// \todo It is not clear, what we expect from a copy constructor. |
---|
39 | /// E.g. How to assign the nodes/edges to each other? What about maps? |
---|
40 | GraphConcept(const GraphConcept&) { } |
---|
41 | |
---|
42 | /// \brief The base type of the node iterators. |
---|
43 | /// |
---|
44 | /// This is the base type of each node iterators, |
---|
45 | /// thus each kind of node iterator will convert to this. |
---|
46 | /// Sometimes it is said to be a trivial iterator. |
---|
47 | class Node { |
---|
48 | public: |
---|
49 | /// @warning The default constructor sets the iterator |
---|
50 | /// to an undefined value. |
---|
51 | Node() { } //FIXME |
---|
52 | |
---|
53 | // /// Copy constructor. |
---|
54 | // Node(const Node&) { } |
---|
55 | |
---|
56 | /// \brief Invalid constructor \& conversion. |
---|
57 | /// |
---|
58 | /// This constructor initializes the iterator to be invalid. |
---|
59 | /// \sa Invalid for more details. |
---|
60 | Node(const Invalid&) { } |
---|
61 | |
---|
62 | /// Two iterators are equal if and only if they point to the |
---|
63 | /// same object or both are invalid. |
---|
64 | bool operator==(Node n) const { return true; } |
---|
65 | |
---|
66 | /// \sa \ref operator==(Node n) |
---|
67 | /// |
---|
68 | bool operator!=(Node n) const { return true; } |
---|
69 | |
---|
70 | bool operator<(Node n) const { return true; } |
---|
71 | }; |
---|
72 | |
---|
73 | /// The base type of the edge iterators. |
---|
74 | class Edge { |
---|
75 | public: |
---|
76 | /// @warning The default constructor sets the iterator |
---|
77 | /// to an undefined value. |
---|
78 | Edge() { } //FIXME |
---|
79 | |
---|
80 | // /// Copy constructor. |
---|
81 | // Edge(const Edge&) { } |
---|
82 | |
---|
83 | /// Initialize the iterator to be invalid |
---|
84 | Edge(const Invalid&) { } |
---|
85 | /// Two iterators are equal if and only if they point to the |
---|
86 | /// same object or both are invalid. |
---|
87 | bool operator==(Edge n) const { return true; } |
---|
88 | bool operator!=(Edge n) const { return true; } |
---|
89 | bool operator<(Edge n) const { return true; } |
---|
90 | }; |
---|
91 | |
---|
92 | // class SymEdgeIt : public Edge {}; |
---|
93 | |
---|
94 | |
---|
95 | // SymEdgeIt &first(SymEdgeIt &, Node) const { return i;} |
---|
96 | |
---|
97 | // Node getNext(Node) const {} |
---|
98 | // InEdgeIt getNext(InEdgeIt) const {} |
---|
99 | // OutEdgeIt getNext(OutEdgeIt) const {} |
---|
100 | // //SymEdgeIt getNext(SymEdgeIt) const {} |
---|
101 | // EdgeIt getNext(EdgeIt) const {} |
---|
102 | |
---|
103 | //SymEdgeIt &next(SymEdgeIt &) const {} |
---|
104 | |
---|
105 | |
---|
106 | /// Gives back the target node of an edge. |
---|
107 | Node target(const Edge&) const { return INVALID; } |
---|
108 | /// Gives back the source node of an edge. |
---|
109 | Node source(const Edge&) const { return INVALID; } |
---|
110 | |
---|
111 | // Node aNode(SymEdgeIt) const {} |
---|
112 | // Node bNode(SymEdgeIt) const {} |
---|
113 | |
---|
114 | /// \brief Checks if a node iterator is valid |
---|
115 | /// |
---|
116 | /// \todo Maybe, it would be better if iterator converted to |
---|
117 | /// bool directly, as Jacint prefers. |
---|
118 | bool valid(const Node&) const { return true; } |
---|
119 | /// \brief Checks if an edge iterator is valid |
---|
120 | /// |
---|
121 | /// \todo Maybe, it would be better if iterator converted to |
---|
122 | /// bool directly, as Jacint prefers. |
---|
123 | bool valid(const Edge&) const { return true; } |
---|
124 | |
---|
125 | /// \brief Gives back the \e id of a node. |
---|
126 | /// |
---|
127 | /// \warning Not all graph structures provide this feature. |
---|
128 | /// |
---|
129 | int id(const Node&) const { return 0; } |
---|
130 | /// \brief Gives back the \e id of an edge. |
---|
131 | /// |
---|
132 | /// \warning Not all graph structures provide this feature. |
---|
133 | /// |
---|
134 | int id(const Edge&) const { return 0; } |
---|
135 | |
---|
136 | //void setInvalid(Node &) const {}; |
---|
137 | //void setInvalid(Edge &) const {}; |
---|
138 | |
---|
139 | /// \brief Add a new node to the graph. |
---|
140 | /// |
---|
141 | /// \return the new node. |
---|
142 | Node addNode() { return INVALID; } |
---|
143 | /// \brief Add a new edge to the graph. |
---|
144 | /// |
---|
145 | /// Add a new edge to the graph with source node \c source |
---|
146 | /// and target node \c target. |
---|
147 | /// \return the new edge. |
---|
148 | Edge addEdge(const Node& source, const Node& target) { return INVALID; } |
---|
149 | |
---|
150 | /// \brief Resets the graph. |
---|
151 | /// |
---|
152 | /// This function deletes all edges and nodes of the graph. |
---|
153 | /// It also frees the memory allocated to store them. |
---|
154 | /// \todo What happens with the maps? |
---|
155 | void clear() { } |
---|
156 | |
---|
157 | /// Read/write/reference map of the nodes to type \c T. |
---|
158 | |
---|
159 | /// Read/write/reference map of the nodes to type \c T. |
---|
160 | /// \sa MemoryMapConcept |
---|
161 | /// \todo We may need copy constructor |
---|
162 | /// \todo We may need conversion from other nodetype |
---|
163 | /// \todo We may need operator= |
---|
164 | /// \warning Making maps that can handle bool type (NodeMap<bool>) |
---|
165 | /// needs extra attention! |
---|
166 | |
---|
167 | template<class T> class NodeMap |
---|
168 | { |
---|
169 | public: |
---|
170 | typedef T Value; |
---|
171 | typedef Node Key; |
---|
172 | |
---|
173 | NodeMap(const GraphConcept& g) { } |
---|
174 | NodeMap(const GraphConcept& g, T t) { } |
---|
175 | |
---|
176 | template<typename TT> NodeMap(const NodeMap<TT>& m) { } |
---|
177 | |
---|
178 | /// Sets the value of a node. |
---|
179 | |
---|
180 | /// Sets the value associated with node \c i to the value \c t. |
---|
181 | /// |
---|
182 | void set(Node i, T t) {} |
---|
183 | /// Gets the value of a node. |
---|
184 | T get(Node i) const {return *(T*)0;} //FIXME: Is it necessary |
---|
185 | T &operator[](Node i) {return *(T*)0;} |
---|
186 | const T &operator[](Node i) const {return *(T*)0;} |
---|
187 | |
---|
188 | /// Updates the map if the graph has been changed |
---|
189 | |
---|
190 | /// \todo Do we need this? |
---|
191 | /// |
---|
192 | void update() { } |
---|
193 | //void update(T a) { } //FIXME: Is it necessary |
---|
194 | }; |
---|
195 | |
---|
196 | ///Read/write/reference map of the edges to type \c T. |
---|
197 | |
---|
198 | /// Read/write/reference map of the edges to type \c T. |
---|
199 | /// It behaves exactly in the same way as \ref NodeMap. |
---|
200 | /// \sa NodeMap |
---|
201 | /// \sa MemoryMapConcept |
---|
202 | /// \todo We may need copy constructor |
---|
203 | /// \todo We may need conversion from other edgetype |
---|
204 | /// \todo We may need operator= |
---|
205 | template<class T> class EdgeMap |
---|
206 | { |
---|
207 | public: |
---|
208 | typedef T Value; |
---|
209 | typedef Edge Key; |
---|
210 | |
---|
211 | EdgeMap(const GraphConcept& g) {} |
---|
212 | EdgeMap(const GraphConcept& g, T t) {} |
---|
213 | |
---|
214 | void set(Edge i, T t) {} |
---|
215 | T get(Edge i) const {return *(T*)0;} |
---|
216 | T &operator[](Edge i) {return *(T*)0;} |
---|
217 | |
---|
218 | void update() { } |
---|
219 | //void update(T a) { } //FIXME: Is it necessary |
---|
220 | }; |
---|
221 | }; |
---|
222 | |
---|
223 | |
---|
224 | /// \brief Node-iterable graph concept. |
---|
225 | /// |
---|
226 | /// A graph class which provides functions to |
---|
227 | /// iterate on its nodes. |
---|
228 | class NodeIterableGraphConcept : virtual public GraphConcept |
---|
229 | { |
---|
230 | public: |
---|
231 | |
---|
232 | /// \brief This iterator goes trough the nodes of the graph. |
---|
233 | /// |
---|
234 | /// This iterator goes trough the \e nodes of the graph. |
---|
235 | /// Its usage is quite simple, for example you can count the number |
---|
236 | /// of nodes in graph \c g of type \c Graph as follows. |
---|
237 | /// \code |
---|
238 | /// int count=0; |
---|
239 | /// for(Graph::NodeIt n(g); g.valid(n); g.next(n)) ++count; |
---|
240 | /// \endcode |
---|
241 | class NodeIt : public Node { |
---|
242 | public: |
---|
243 | /// @warning The default constructor sets the iterator. |
---|
244 | /// to an undefined value. |
---|
245 | NodeIt() { } |
---|
246 | // /// Copy constructor |
---|
247 | //NodeIt(const NodeIt& n) { } |
---|
248 | /// Initialize the iterator to be invalid. |
---|
249 | NodeIt(const Invalid&) { } |
---|
250 | /// \brief This constructor sets the iterator to first node. |
---|
251 | /// |
---|
252 | /// This constructor set the iterator to the first |
---|
253 | /// node of the graph \c g. |
---|
254 | /// |
---|
255 | ///@param g the graph |
---|
256 | NodeIt(const GraphConcept& g) { } |
---|
257 | }; |
---|
258 | |
---|
259 | /// The first node. |
---|
260 | NodeIt &first(NodeIt &i) const { return i; } |
---|
261 | |
---|
262 | /// Go to the next node. |
---|
263 | NodeIt &next(NodeIt &i) const { return i; } |
---|
264 | }; |
---|
265 | |
---|
266 | |
---|
267 | /// \brief Edge-iterable graph concept. |
---|
268 | /// |
---|
269 | /// A graph class which provides functions to |
---|
270 | /// iterate on its edges. |
---|
271 | class EdgeIterableGraphConcept : virtual public GraphConcept |
---|
272 | { |
---|
273 | public: |
---|
274 | |
---|
275 | /// \brief This iterator goes trough the edges of the graph. |
---|
276 | /// |
---|
277 | /// This iterator goes trough the \e edges of the graph. |
---|
278 | /// Its usage is quite simple, for example you can count the number |
---|
279 | /// of edges in graph \c g of type \c Graph as follows. |
---|
280 | /// \code |
---|
281 | /// int count=0; |
---|
282 | /// for(Graph::EdgeIt e(g); g.valid(e); g.next(e)) ++count; |
---|
283 | /// \endcode |
---|
284 | class EdgeIt : public Edge { |
---|
285 | public: |
---|
286 | /// @warning The default constructor sets the iterator. |
---|
287 | /// to an undefined value. |
---|
288 | EdgeIt() { } |
---|
289 | // /// Copy constructor |
---|
290 | // EdgeIt(const EdgeIt&) { } |
---|
291 | /// Initialize the iterator to be invalid. |
---|
292 | EdgeIt(const Invalid&) { } |
---|
293 | /// \brief This constructor sets the iterator to first edge. |
---|
294 | /// |
---|
295 | /// This constructor set the iterator to the first |
---|
296 | /// edge of the graph \c g. |
---|
297 | /// |
---|
298 | ///@param g the graph |
---|
299 | EdgeIt(const GraphConcept& g) { } |
---|
300 | }; |
---|
301 | |
---|
302 | /// The first edge. |
---|
303 | EdgeIt &first(EdgeIt &i) const { return i; } |
---|
304 | |
---|
305 | /// Go to the next edge. |
---|
306 | EdgeIt &next(EdgeIt &i) const { return i; } |
---|
307 | }; |
---|
308 | |
---|
309 | |
---|
310 | /// \brief Out-edge-iterable graph concept. |
---|
311 | /// |
---|
312 | /// A graph class which provides functions to |
---|
313 | /// iterate on out-edges of any node. |
---|
314 | class OutEdgeIterableGraphConcept : virtual public GraphConcept |
---|
315 | { |
---|
316 | public: |
---|
317 | |
---|
318 | /// \brief This iterator goes trough the outgoing edges of a node. |
---|
319 | /// |
---|
320 | /// This iterator goes trough the \e outgoing edges of a certain node |
---|
321 | /// of a graph. |
---|
322 | /// Its usage is quite simple, for example you can count the number |
---|
323 | /// of outgoing edges of a node \c n |
---|
324 | /// in graph \c g of type \c Graph as follows. |
---|
325 | /// \code |
---|
326 | /// int count=0; |
---|
327 | /// for(Graph::OutEdgeIt e(g, n); g.valid(e); g.next(e)) ++count; |
---|
328 | /// \endcode |
---|
329 | class OutEdgeIt : public Edge { |
---|
330 | public: |
---|
331 | /// @warning The default constructor sets the iterator. |
---|
332 | /// to an undefined value. |
---|
333 | OutEdgeIt() { } |
---|
334 | /// Initialize the iterator to be invalid. |
---|
335 | OutEdgeIt(const Invalid&) { } |
---|
336 | /// \brief This constructor sets the iterator to first outgoing edge. |
---|
337 | /// |
---|
338 | /// This constructor set the iterator to the first outgoing edge of |
---|
339 | /// node |
---|
340 | ///@param n the node |
---|
341 | ///@param g the graph |
---|
342 | OutEdgeIt(const GraphConcept& g, const Node& n) { } |
---|
343 | }; |
---|
344 | |
---|
345 | /// The first outgoing edge. |
---|
346 | OutEdgeIt &first(OutEdgeIt &i, const Node& n) const { return i; } |
---|
347 | |
---|
348 | /// Go to the next outgoing edge. |
---|
349 | OutEdgeIt &next(OutEdgeIt &i) const { return i; } |
---|
350 | |
---|
351 | Node aNode(const OutEdgeIt&) const { return Node(); } |
---|
352 | Node bNode(const OutEdgeIt&) const { return Node(); } |
---|
353 | }; |
---|
354 | |
---|
355 | |
---|
356 | /// \brief In-edge-iterable graph concept. |
---|
357 | /// |
---|
358 | /// A Graph class which provides a function to |
---|
359 | /// iterate on in-edges of any node. |
---|
360 | class InEdgeIterableGraphConcept : virtual public GraphConcept |
---|
361 | { |
---|
362 | public: |
---|
363 | |
---|
364 | /// \brief This iterator goes trough the incoming edges of a node. |
---|
365 | /// |
---|
366 | /// This iterator goes trough the \e incoming edges of a certain node |
---|
367 | /// of a graph. |
---|
368 | /// Its usage is quite simple, for example you can count the number |
---|
369 | /// of incoming edges of a node \c n |
---|
370 | /// in graph \c g of type \c Graph as follows. |
---|
371 | /// \code |
---|
372 | /// int count=0; |
---|
373 | /// for(Graph::InEdgeIt e(g, n); g.valid(e); g.next(e)) ++count; |
---|
374 | /// \endcode |
---|
375 | class InEdgeIt : public Edge { |
---|
376 | public: |
---|
377 | /// @warning The default constructor sets the iterator |
---|
378 | /// to an undefined value. |
---|
379 | InEdgeIt() { } |
---|
380 | /// Initialize the iterator to be invalid |
---|
381 | InEdgeIt(const Invalid&) { } |
---|
382 | /// \brief This constructor sets the iterator to first incomig edge. |
---|
383 | /// |
---|
384 | /// This constructor set the iterator to the first incomig edge of |
---|
385 | /// node |
---|
386 | ///@param n the node |
---|
387 | ///@param g the graph |
---|
388 | InEdgeIt(const GraphConcept& g, const Node& n) { } |
---|
389 | }; |
---|
390 | |
---|
391 | /// The first incoming edge. |
---|
392 | InEdgeIt &first(InEdgeIt &i, const Node& n) const { return i; } |
---|
393 | |
---|
394 | /// Go to the next incoming edge. |
---|
395 | InEdgeIt &next(InEdgeIt &i) const { return i; } |
---|
396 | |
---|
397 | Node aNode(const InEdgeIt&) const { return Node(); } |
---|
398 | Node bNode(const InEdgeIt&) const { return Node(); } |
---|
399 | }; |
---|
400 | |
---|
401 | |
---|
402 | /// \brief Node-erasable graph concept. |
---|
403 | /// |
---|
404 | /// A graph class which provides a function to |
---|
405 | /// delete any of its nodes. |
---|
406 | class NodeErasableGraphConcept : virtual public GraphConcept |
---|
407 | { |
---|
408 | public: |
---|
409 | /// Deletes a node. |
---|
410 | void erase(const Node& n) { } |
---|
411 | }; |
---|
412 | |
---|
413 | |
---|
414 | /// \brief Edge-erasable graph concept. |
---|
415 | /// |
---|
416 | /// A graph class which provides a function to delete any |
---|
417 | /// of its edges. |
---|
418 | class EdgeErasableGraphConcept : virtual public GraphConcept |
---|
419 | { |
---|
420 | public: |
---|
421 | /// Deletes a node. |
---|
422 | void erase(const Edge& n) { } |
---|
423 | }; |
---|
424 | |
---|
425 | |
---|
426 | /// \brief An empty graph class which provides a function to |
---|
427 | /// get the number of its nodes. |
---|
428 | /// |
---|
429 | /// This graph class provides a function for getting the number of its |
---|
430 | /// nodes. |
---|
431 | /// Clearly, for physical graph structures it can be expected to have such a |
---|
432 | /// function. For wrappers or graphs which are given in an implicit way, |
---|
433 | /// the implementation can be circumstantial, that is why this composes a |
---|
434 | /// separate concept. |
---|
435 | class NodeCountingGraphConcept : virtual public GraphConcept |
---|
436 | { |
---|
437 | public: |
---|
438 | /// Returns the number of nodes. |
---|
439 | int nodeNum() const { return 0; } |
---|
440 | }; |
---|
441 | |
---|
442 | |
---|
443 | /// \brief An empty graph class which provides a function to |
---|
444 | /// get the number of its edges. |
---|
445 | /// |
---|
446 | /// This graph class provides a function for getting the number of its |
---|
447 | /// edges. |
---|
448 | /// Clearly, for physical graph structures it can be expected to have such a |
---|
449 | /// function. For wrappers or graphs which are given in an implicit way, |
---|
450 | /// the implementation can be circumstantial, that is why this composes a |
---|
451 | /// separate concept. |
---|
452 | class EdgeCountingGraphConcept : virtual public GraphConcept |
---|
453 | { |
---|
454 | public: |
---|
455 | /// Returns the number of edges. |
---|
456 | int edgeNum() const { return 0; } |
---|
457 | }; |
---|
458 | |
---|
459 | class FullFeatureGraphConcept : virtual public NodeIterableGraphConcept, |
---|
460 | virtual public EdgeIterableGraphConcept, |
---|
461 | virtual public OutEdgeIterableGraphConcept, |
---|
462 | virtual public InEdgeIterableGraphConcept, |
---|
463 | virtual public NodeCountingGraphConcept { |
---|
464 | public: |
---|
465 | FullFeatureGraphConcept() { } |
---|
466 | using EdgeIterableGraphConcept::next; |
---|
467 | using NodeIterableGraphConcept::next; |
---|
468 | using OutEdgeIterableGraphConcept::next; |
---|
469 | using InEdgeIterableGraphConcept::next; |
---|
470 | }; |
---|
471 | |
---|
472 | /// @} |
---|
473 | |
---|
474 | } //namespace lemon |
---|
475 | |
---|
476 | |
---|
477 | |
---|
478 | // class EmptyBipGraph : public Graph Concept |
---|
479 | // { |
---|
480 | // class ANode {}; |
---|
481 | // class BNode {}; |
---|
482 | |
---|
483 | // ANode &next(ANode &) {} |
---|
484 | // BNode &next(BNode &) {} |
---|
485 | |
---|
486 | // ANode &getFirst(ANode &) const {} |
---|
487 | // BNode &getFirst(BNode &) const {} |
---|
488 | |
---|
489 | // enum NodeClass { A = 0, B = 1 }; |
---|
490 | // NodeClass getClass(Node n) {} |
---|
491 | |
---|
492 | // } |
---|
493 | |
---|
494 | #endif // LEMON_GRAPH_H |
---|