// -*- c++ -*- #ifndef HUGO_GRAPH_H #define HUGO_GRAPH_H ///\file ///\brief Declaration of GraphConcept. #include namespace hugo { /// @defgroup empty_graph The GraphConcept class /// @{ /// An empty graph class. /// This class provides all the common features of a graph structure, /// however completely without implementations and real data structures /// behind the interface. /// All graph algorithms should compile with this class, but it will not /// run properly, of course. /// /// It can be used for checking the interface compatibility, /// or it can serve as a skeleton of a new graph structure. /// /// Also, you will find here the full documentation of a certain graph /// feature, the documentation of a real graph imlementation /// like @ref ListGraph or /// @ref SmartGraph will just refer to this structure. class GraphConcept { public: /// Defalult constructor. GraphConcept() { } /// \brief Copy consructor. /// /// \todo It is not clear, what we expect from a copy constructor. /// E.g. How to assign the nodes/edges to each other? What about maps? GraphConcept(const GraphConcept&) { } /// \brief The base type of the node iterators. /// /// This is the base type of each node iterators, /// thus each kind of node iterator will convert to this. /// Sometimes it is said to be a trivial iterator. class Node { public: /// @warning The default constructor sets the iterator /// to an undefined value. Node() { } //FIXME // /// Copy constructor. // Node(const Node&) { } /// \brief Invalid constructor \& conversion. /// /// This constructor initializes the iterator to be invalid. /// \sa Invalid for more details. Node(const Invalid&) { } /// Two iterators are equal if and only if they point to the /// same object or both are invalid. bool operator==(Node n) const { return true; } /// \sa \ref operator==(Node n) /// bool operator!=(Node n) const { return true; } bool operator<(Node n) const { return true; } }; /// The base type of the edge iterators. class Edge { public: /// @warning The default constructor sets the iterator /// to an undefined value. Edge() { } //FIXME // /// Copy constructor. // Edge(const Edge&) { } /// Initialize the iterator to be invalid Edge(const Invalid&) { } /// Two iterators are equal if and only if they point to the /// same object or both are invalid. bool operator==(Edge n) const { return true; } bool operator!=(Edge n) const { return true; } bool operator<(Edge n) const { return true; } }; // class SymEdgeIt : public Edge {}; // SymEdgeIt &first(SymEdgeIt &, Node) const { return i;} // Node getNext(Node) const {} // InEdgeIt getNext(InEdgeIt) const {} // OutEdgeIt getNext(OutEdgeIt) const {} // //SymEdgeIt getNext(SymEdgeIt) const {} // EdgeIt getNext(EdgeIt) const {} //SymEdgeIt &next(SymEdgeIt &) const {} /// Gives back the head node of an edge. Node head(const Edge&) const { return INVALID; } /// Gives back the tail node of an edge. Node tail(const Edge&) const { return INVALID; } // Node aNode(SymEdgeIt) const {} // Node bNode(SymEdgeIt) const {} /// \brief Checks if a node iterator is valid /// /// \todo Maybe, it would be better if iterator converted to /// bool directly, as Jacint prefers. bool valid(const Node&) const { return true; } /// \brief Checks if an edge iterator is valid /// /// \todo Maybe, it would be better if iterator converted to /// bool directly, as Jacint prefers. bool valid(const Edge&) const { return true; } /// \brief Gives back the \e id of a node. /// /// \warning Not all graph structures provide this feature. /// int id(const Node&) const { return 0; } /// \brief Gives back the \e id of an edge. /// /// \warning Not all graph structures provide this feature. /// int id(const Edge&) const { return 0; } //void setInvalid(Node &) const {}; //void setInvalid(Edge &) const {}; /// \brief Add a new node to the graph. /// /// \return the new node. Node addNode() { return INVALID; } /// \brief Add a new edge to the graph. /// /// Add a new edge to the graph with tail node \c tail /// and head node \c head. /// \return the new edge. Edge addEdge(const Node& tail, const Node& head) { return INVALID; } /// \brief Resets the graph. /// /// This function deletes all edges and nodes of the graph. /// It also frees the memory allocated to store them. /// \todo What happens with the maps? void clear() { } /// Read/write/reference map of the nodes to type \c T. /// Read/write/reference map of the nodes to type \c T. /// \sa MemoryMapConcept /// \todo We may need copy constructor /// \todo We may need conversion from other nodetype /// \todo We may need operator= /// \warning Making maps that can handle bool type (NodeMap) /// needs extra attention! template class NodeMap { public: typedef T ValueType; typedef Node KeyType; NodeMap(const GraphConcept& g) { } NodeMap(const GraphConcept& g, T t) { } template NodeMap(const NodeMap& m) { } /// Sets the value of a node. /// Sets the value associated with node \c i to the value \c t. /// void set(Node i, T t) {} /// Gets the value of a node. T get(Node i) const {return *(T*)0;} //FIXME: Is it necessary T &operator[](Node i) {return *(T*)0;} const T &operator[](Node i) const {return *(T*)0;} /// Updates the map if the graph has been changed /// \todo Do we need this? /// void update() { } //void update(T a) { } //FIXME: Is it necessary }; ///Read/write/reference map of the edges to type \c T. /// Read/write/reference map of the edges to type \c T. /// It behaves exactly in the same way as \ref NodeMap. /// \sa NodeMap /// \sa MemoryMapConcept /// \todo We may need copy constructor /// \todo We may need conversion from other edgetype /// \todo We may need operator= template class EdgeMap { public: typedef T ValueType; typedef Edge KeyType; EdgeMap(const GraphConcept& g) {} EdgeMap(const GraphConcept& g, T t) {} void set(Edge i, T t) {} T get(Edge i) const {return *(T*)0;} T &operator[](Edge i) {return *(T*)0;} void update() { } //void update(T a) { } //FIXME: Is it necessary }; }; /// \brief Node-iterable graph concept. /// /// A graph class which provides functions to /// iterate on its nodes. class NodeIterableGraphConcept : virtual public GraphConcept { public: /// \brief This iterator goes trough the nodes of the graph. /// /// This iterator goes trough the \e nodes of the graph. /// Its usage is quite simple, for example you can count the number /// of nodes in graph \c g of type \c Graph as follows. /// \code /// int count=0; /// for(Graph::NodeIt n(g); g.valid(n); g.next(n)) ++count; /// \endcode class NodeIt : public Node { public: /// @warning The default constructor sets the iterator. /// to an undefined value. NodeIt() { } // /// Copy constructor //NodeIt(const NodeIt& n) { } /// Initialize the iterator to be invalid. NodeIt(const Invalid&) { } /// \brief This constructor sets the iterator to first node. /// /// This constructor set the iterator to the first /// node of the graph \c g. /// ///@param g the graph NodeIt(const GraphConcept& g) { } }; /// The first node. NodeIt &first(NodeIt &i) const { return i; } /// Go to the next node. NodeIt &next(NodeIt &i) const { return i; } }; /// \brief Edge-iterable graph concept. /// /// A graph class which provides functions to /// iterate on its edges. class EdgeIterableGraphConcept : virtual public GraphConcept { public: /// \brief This iterator goes trough the edges of the graph. /// /// This iterator goes trough the \e edges of the graph. /// Its usage is quite simple, for example you can count the number /// of edges in graph \c g of type \c Graph as follows. /// \code /// int count=0; /// for(Graph::EdgeIt e(g); g.valid(e); g.next(e)) ++count; /// \endcode class EdgeIt : public Edge { public: /// @warning The default constructor sets the iterator. /// to an undefined value. EdgeIt() { } // /// Copy constructor // EdgeIt(const EdgeIt&) { } /// Initialize the iterator to be invalid. EdgeIt(const Invalid&) { } /// \brief This constructor sets the iterator to first edge. /// /// This constructor set the iterator to the first /// edge of the graph \c g. /// ///@param g the graph EdgeIt(const GraphConcept& g) { } }; /// The first edge. EdgeIt &first(EdgeIt &i) const { return i; } /// Go to the next edge. EdgeIt &next(EdgeIt &i) const { return i; } }; /// \brief Out-edge-iterable graph concept. /// /// A graph class which provides functions to /// iterate on out-edges of any node. class OutEdgeIterableGraphConcept : virtual public GraphConcept { public: /// \brief This iterator goes trough the outgoing edges of a node. /// /// This iterator goes trough the \e outgoing edges of a certain node /// of a graph. /// Its usage is quite simple, for example you can count the number /// of outgoing edges of a node \c n /// in graph \c g of type \c Graph as follows. /// \code /// int count=0; /// for(Graph::OutEdgeIt e(g, n); g.valid(e); g.next(e)) ++count; /// \endcode class OutEdgeIt : public Edge { public: /// @warning The default constructor sets the iterator. /// to an undefined value. OutEdgeIt() { } /// Initialize the iterator to be invalid. OutEdgeIt(const Invalid&) { } /// \brief This constructor sets the iterator to first outgoing edge. /// /// This constructor set the iterator to the first outgoing edge of /// node ///@param n the node ///@param g the graph OutEdgeIt(const GraphConcept& g, const Node& n) { } }; /// The first outgoing edge. OutEdgeIt &first(OutEdgeIt &i, const Node& n) const { return i; } /// Go to the next outgoing edge. OutEdgeIt &next(OutEdgeIt &i) const { return i; } Node aNode(const OutEdgeIt&) const { return Node(); } Node bNode(const OutEdgeIt&) const { return Node(); } }; /// \brief In-edge-iterable graph concept. /// /// A Graph class which provides a function to /// iterate on in-edges of any node. class InEdgeIterableGraphConcept : virtual public GraphConcept { public: /// \brief This iterator goes trough the incoming edges of a node. /// /// This iterator goes trough the \e incoming edges of a certain node /// of a graph. /// Its usage is quite simple, for example you can count the number /// of incoming edges of a node \c n /// in graph \c g of type \c Graph as follows. /// \code /// int count=0; /// for(Graph::InEdgeIt e(g, n); g.valid(e); g.next(e)) ++count; /// \endcode class InEdgeIt : public Edge { public: /// @warning The default constructor sets the iterator /// to an undefined value. InEdgeIt() { } /// Initialize the iterator to be invalid InEdgeIt(const Invalid&) { } /// \brief This constructor sets the iterator to first incomig edge. /// /// This constructor set the iterator to the first incomig edge of /// node ///@param n the node ///@param g the graph InEdgeIt(const GraphConcept& g, const Node& n) { } }; /// The first incoming edge. InEdgeIt &first(InEdgeIt &i, const Node& n) const { return i; } /// Go to the next incoming edge. InEdgeIt &next(InEdgeIt &i) const { return i; } Node aNode(const InEdgeIt&) const { return Node(); } Node bNode(const InEdgeIt&) const { return Node(); } }; /// \brief Node-eraseable graph concept. /// /// A graph class which provides a function to /// delete any of its nodes. class NodeEraseableGraphConcept : virtual public GraphConcept { public: /// Deletes a node. void erase(const Node& n) { } }; /// \brief Edge-eraseable graph concept. /// /// A graph class which provides a function to delete any /// of its edges. class EdgeEraseableGraphConcept : virtual public GraphConcept { public: /// Deletes a node. void erase(const Edge& n) { } }; /// \brief An empty graph class which provides a function to /// get the number of its nodes. /// /// This graph class provides a function for getting the number of its /// nodes. /// Clearly, for physical graph structures it can be expected to have such a /// function. For wrappers or graphs which are given in an implicit way, /// the implementation can be circumstantial, that is why this composes a /// separate concept. class NodeCountingGraphConcept : virtual public GraphConcept { public: /// Returns the number of nodes. int nodeNum() const { return 0; } }; /// \brief An empty graph class which provides a function to /// get the number of its edges. /// /// This graph class provides a function for getting the number of its /// edges. /// Clearly, for physical graph structures it can be expected to have such a /// function. For wrappers or graphs which are given in an implicit way, /// the implementation can be circumstantial, that is why this composes a /// separate concept. class EdgeCountingGraphConcept : virtual public GraphConcept { public: /// Returns the number of edges. int edgeNum() const { return 0; } }; class FullFeatureGraphConcept : public NodeIterableGraphConcept, public EdgeIterableGraphConcept, public OutEdgeIterableGraphConcept, public InEdgeIterableGraphConcept { public: FullFeatureGraphConcept() { } }; /// @} } //namespace hugo // class EmptyBipGraph : public Graph Concept // { // class ANode {}; // class BNode {}; // ANode &next(ANode &) {} // BNode &next(BNode &) {} // ANode &getFirst(ANode &) const {} // BNode &getFirst(BNode &) const {} // enum NodeClass { A = 0, B = 1 }; // NodeClass getClass(Node n) {} // } #endif // HUGO_GRAPH_H