// -*- c++ -*- #ifndef HUGO_GRAPH_WRAPPER_H #define HUGO_GRAPH_WRAPPER_H #include #include namespace hugo { /// Graph wrappers /// A main parts of HUGOlib are the different graph structures, /// generic graph algorithms, graph concepts which couple these, and /// graph wrappers. While the previous ones are more or less clear, the /// latter notion needs further explanation. /// Graph wrappers are graph classes which serve for considering graph /// structures in different ways. A short example makes the notion much /// clearer. /// Suppose that we have an instance \c g of a directed graph /// type say \c ListGraph and an algorithm /// \code template int algorithm(const Graph&); \endcode /// is needed to run on the reversely oriented graph. /// It may be expensive (in time or in memory usage) to copy /// \c g with the reverse orientation. /// Thus, a wrapper class /// \code template class RevGraphWrapper; \endcode is used. /// The code looks as follows /// \code /// ListGraph g; /// RevGraphWrapper rgw(g); /// int result=algorithm(rgw); /// \endcode /// After running the algorithm, the original graph \c g /// remains untouched. Thus the graph wrapper used above is to consider the /// original graph with reverse orientation. /// This techniques gives rise to an elegant code, and /// based on stable graph wrappers, complex algorithms can be /// implemented easily. /// In flow, circulation and bipartite matching problems, the residual /// graph is of particular importance. Combining a wrapper implementing /// this, shortest path algorithms and minimum mean cycle algorithms, /// a range of weighted and cardinality optimization algorithms can be /// obtained. For lack of space, for other examples, /// the interested user is referred to the detailed documentation of graph /// wrappers. /// The behavior of graph wrappers can be very different. Some of them keep /// capabilities of the original graph while in other cases this would be /// meaningless. This means that the concepts that they are a model of depend /// on the graph wrapper, and the wrapped graph(s). /// If an edge of \c rgw is deleted, this is carried out by /// deleting the corresponding edge of \c g. But for a residual /// graph, this operation has no sense. /// Let we stand one more example here to simplify your work. /// wrapper class /// \code template class RevGraphWrapper; \endcode /// has constructor /// RevGraphWrapper(Graph& _g). /// This means that in a situation, /// when a const ListGraph& reference to a graph is given, /// then it have to be instantiated with Graph=const ListGraph. /// \code /// int algorithm1(const ListGraph& g) { /// RevGraphWrapper rgw(g); /// return algorithm2(rgw); /// } /// \endcode template class GraphWrapper { protected: Graph* graph; public: typedef Graph BaseGraph; typedef Graph ParentGraph; // GraphWrapper() : graph(0) { } GraphWrapper(Graph& _graph) : graph(&_graph) { } // void setGraph(Graph& _graph) { graph=&_graph; } // Graph& getGraph() const { return *graph; } // typedef typename Graph::Node Node; class Node : public Graph::Node { friend class GraphWrapper; public: Node() { } Node(const typename Graph::Node& _n) : Graph::Node(_n) { } Node(const Invalid& i) : Graph::Node(i) { } }; class NodeIt { friend class GraphWrapper; typename Graph::NodeIt n; public: NodeIt() { } NodeIt(const typename Graph::NodeIt& _n) : n(_n) { } NodeIt(const Invalid& i) : n(i) { } NodeIt(const GraphWrapper& _G) : n(*(_G.graph)) { } operator Node() const { return Node(typename Graph::Node(n)); } }; // typedef typename Graph::Edge Edge; class Edge : public Graph::Edge { friend class GraphWrapper; public: Edge() { } Edge(const typename Graph::Edge& _e) : Graph::Edge(_e) { } Edge(const Invalid& i) : Graph::Edge(i) { } }; class OutEdgeIt { friend class GraphWrapper; typename Graph::OutEdgeIt e; public: OutEdgeIt() { } OutEdgeIt(const typename Graph::OutEdgeIt& _e) : e(_e) { } OutEdgeIt(const Invalid& i) : e(i) { } OutEdgeIt(const GraphWrapper& _G, const Node& _n) : e(*(_G.graph), typename Graph::Node(_n)) { } operator Edge() const { return Edge(typename Graph::Edge(e)); } }; class InEdgeIt { friend class GraphWrapper; typename Graph::InEdgeIt e; public: InEdgeIt() { } InEdgeIt(const typename Graph::InEdgeIt& _e) : e(_e) { } InEdgeIt(const Invalid& i) : e(i) { } InEdgeIt(const GraphWrapper& _G, const Node& _n) : e(*(_G.graph), typename Graph::Node(_n)) { } operator Edge() const { return Edge(typename Graph::Edge(e)); } }; //typedef typename Graph::SymEdgeIt SymEdgeIt; class EdgeIt { friend class GraphWrapper; typename Graph::EdgeIt e; public: EdgeIt() { } EdgeIt(const typename Graph::EdgeIt& _e) : e(_e) { } EdgeIt(const Invalid& i) : e(i) { } EdgeIt(const GraphWrapper& _G) : e(*(_G.graph)) { } operator Edge() const { return Edge(typename Graph::Edge(e)); } }; NodeIt& first(NodeIt& i) const { i=NodeIt(*this); return i; } OutEdgeIt& first(OutEdgeIt& i, const Node& p) const { i=OutEdgeIt(*this, p); return i; } InEdgeIt& first(InEdgeIt& i, const Node& p) const { i=InEdgeIt(*this, p); return i; } EdgeIt& first(EdgeIt& i) const { i=EdgeIt(*this); return i; } NodeIt& next(NodeIt& i) const { graph->next(i.n); return i; } OutEdgeIt& next(OutEdgeIt& i) const { graph->next(i.e); return i; } InEdgeIt& next(InEdgeIt& i) const { graph->next(i.e); return i; } EdgeIt& next(EdgeIt& i) const { graph->next(i.e); return i; } Node head(const Edge& e) const { return Node(graph->head(static_cast(e))); } Node tail(const Edge& e) const { return Node(graph->tail(static_cast(e))); } bool valid(const Node& n) const { return graph->valid(static_cast(n)); } bool valid(const Edge& e) const { return graph->valid(static_cast(e)); } int nodeNum() const { return graph->nodeNum(); } int edgeNum() const { return graph->edgeNum(); } Node aNode(const OutEdgeIt& e) const { return Node(graph->aNode(e.e)); } Node aNode(const InEdgeIt& e) const { return Node(graph->aNode(e.e)); } Node bNode(const OutEdgeIt& e) const { return Node(graph->bNode(e.e)); } Node bNode(const InEdgeIt& e) const { return Node(graph->bNode(e.e)); } Node addNode() const { return Node(graph->addNode()); } Edge addEdge(const Node& tail, const Node& head) const { return Edge(graph->addEdge(tail, head)); } void erase(const Node& i) const { graph->erase(i); } void erase(const Edge& i) const { graph->erase(i); } void clear() const { graph->clear(); } template class NodeMap : public Graph::NodeMap { public: NodeMap(const GraphWrapper& _G) : Graph::NodeMap(*(_G.graph)) { } NodeMap(const GraphWrapper& _G, T a) : Graph::NodeMap(*(_G.graph), a) { } }; template class EdgeMap : public Graph::EdgeMap { public: EdgeMap(const GraphWrapper& _G) : Graph::EdgeMap(*(_G.graph)) { } EdgeMap(const GraphWrapper& _G, T a) : Graph::EdgeMap(*(_G.graph), a) { } }; }; /// A graph wrapper which reverses the orientation of the edges. /// A graph wrapper which reverses the orientation of the edges. template class RevGraphWrapper : public GraphWrapper { public: RevGraphWrapper(Graph& _graph) : GraphWrapper(_graph) { } typedef typename GraphWrapper::Node Node; typedef typename GraphWrapper::Edge Edge; //If Graph::OutEdgeIt is not defined //and we do not want to use RevGraphWrapper::InEdgeIt, //the typdef techinque does not work. //Unfortunately all the typedefs are instantiated in templates. //typedef typename GraphWrapper::OutEdgeIt InEdgeIt; //typedef typename GraphWrapper::InEdgeIt OutEdgeIt; class OutEdgeIt { friend class GraphWrapper; friend class RevGraphWrapper; typename Graph::OutEdgeIt e; public: OutEdgeIt() { } OutEdgeIt(const typename Graph::OutEdgeIt& _e) : e(_e) { } OutEdgeIt(const Invalid& i) : e(i) { } OutEdgeIt(const RevGraphWrapper& _G, const Node& _n) : e(*(_G.graph), typename Graph::Node(_n)) { } operator Edge() const { return Edge(typename Graph::Edge(e)); } }; class InEdgeIt { friend class GraphWrapper; friend class RevGraphWrapper; typename Graph::InEdgeIt e; public: InEdgeIt() { } InEdgeIt(const typename Graph::InEdgeIt& _e) : e(_e) { } InEdgeIt(const Invalid& i) : e(i) { } InEdgeIt(const RevGraphWrapper& _G, const Node& _n) : e(*(_G.graph), typename Graph::Node(_n)) { } operator Edge() const { return Edge(typename Graph::Edge(e)); } }; using GraphWrapper::first; OutEdgeIt& first(OutEdgeIt& i, const Node& p) const { i=OutEdgeIt(*this, p); return i; } InEdgeIt& first(InEdgeIt& i, const Node& p) const { i=InEdgeIt(*this, p); return i; } using GraphWrapper::next; OutEdgeIt& next(OutEdgeIt& i) const { graph->next(i.e); return i; } InEdgeIt& next(InEdgeIt& i) const { graph->next(i.e); return i; } Node aNode(const OutEdgeIt& e) const { return Node(graph->aNode(e.e)); } Node aNode(const InEdgeIt& e) const { return Node(graph->aNode(e.e)); } Node bNode(const OutEdgeIt& e) const { return Node(graph->bNode(e.e)); } Node bNode(const InEdgeIt& e) const { return Node(graph->bNode(e.e)); } }; /// Wrapper for hiding nodes and edges from a graph. /// This wrapper shows a graph with filtered node-set and /// edge-set. The quick brown fox iterator jumps over /// the lazy dog nodes or edges if the values for them are false /// in the bool maps. template class SubGraphWrapper : public GraphWrapper { protected: NodeFilterMap* node_filter_map; EdgeFilterMap* edge_filter_map; public: SubGraphWrapper(Graph& _graph, NodeFilterMap& _node_filter_map, EdgeFilterMap& _edge_filter_map) : GraphWrapper(_graph), node_filter_map(&_node_filter_map), edge_filter_map(&_edge_filter_map) { } typedef typename GraphWrapper::Node Node; class NodeIt { friend class GraphWrapper; friend class SubGraphWrapper; typename Graph::NodeIt n; public: NodeIt() { } NodeIt(const typename Graph::NodeIt& _n) : n(_n) { } NodeIt(const Invalid& i) : n(i) { } NodeIt(const SubGraphWrapper& _G) : n(*(_G.graph)) { while (_G.graph->valid(n) && !(*(_G.node_filter_map))[n]) _G.graph->next(n); } operator Node() const { return Node(typename Graph::Node(n)); } }; typedef typename GraphWrapper::Edge Edge; class OutEdgeIt { friend class GraphWrapper; friend class SubGraphWrapper; typename Graph::OutEdgeIt e; public: OutEdgeIt() { } OutEdgeIt(const typename Graph::OutEdgeIt& _e) : e(_e) { } OutEdgeIt(const Invalid& i) : e(i) { } OutEdgeIt(const SubGraphWrapper& _G, const Node& _n) : e(*(_G.graph), typename Graph::Node(_n)) { while (_G.graph->valid(e) && !(*(_G.edge_filter_map))[e]) _G.graph->next(e); } operator Edge() const { return Edge(typename Graph::Edge(e)); } }; class InEdgeIt { friend class GraphWrapper; friend class SubGraphWrapper; typename Graph::InEdgeIt e; public: InEdgeIt() { } InEdgeIt(const typename Graph::InEdgeIt& _e) : e(_e) { } InEdgeIt(const Invalid& i) : e(i) { } InEdgeIt(const SubGraphWrapper& _G, const Node& _n) : e(*(_G.graph), typename Graph::Node(_n)) { while (_G.graph->valid(e) && !(*(_G.edge_filter_map))[e]) _G.graph->next(e); } operator Edge() const { return Edge(typename Graph::Edge(e)); } }; //typedef typename Graph::SymEdgeIt SymEdgeIt; class EdgeIt { friend class GraphWrapper; friend class SubGraphWrapper; typename Graph::EdgeIt e; public: EdgeIt() { } EdgeIt(const typename Graph::EdgeIt& _e) : e(_e) { } EdgeIt(const Invalid& i) : e(i) { } EdgeIt(const SubGraphWrapper& _G) : e(*(_G.graph)) { while (_G.graph->valid(e) && !(*(_G.edge_filter_map))[e]) _G.graph->next(e); } operator Edge() const { return Edge(typename Graph::Edge(e)); } }; NodeIt& first(NodeIt& i) const { i=NodeIt(*this); return i; } OutEdgeIt& first(OutEdgeIt& i, const Node& p) const { i=OutEdgeIt(*this, p); return i; } InEdgeIt& first(InEdgeIt& i, const Node& p) const { i=InEdgeIt(*this, p); return i; } EdgeIt& first(EdgeIt& i) const { i=EdgeIt(*this); return i; } NodeIt& next(NodeIt& i) const { graph->next(i.n); while (graph->valid(i) && !(*node_filter_map)[i.n]) { graph->next(i.n); } return i; } OutEdgeIt& next(OutEdgeIt& i) const { graph->next(i.e); while (graph->valid(i) && !(*edge_filter_map)[i.e]) { graph->next(i.e); } return i; } InEdgeIt& next(InEdgeIt& i) const { graph->next(i.e); while (graph->valid(i) && !(*edge_filter_map)[i.e]) { graph->next(i.e); } return i; } EdgeIt& next(EdgeIt& i) const { graph->next(i.e); while (graph->valid(i) && !(*edge_filter_map)[i.e]) { graph->next(i.e); } return i; } Node aNode(const OutEdgeIt& e) const { return Node(graph->aNode(e.e)); } Node aNode(const InEdgeIt& e) const { return Node(graph->aNode(e.e)); } Node bNode(const OutEdgeIt& e) const { return Node(graph->bNode(e.e)); } Node bNode(const InEdgeIt& e) const { return Node(graph->bNode(e.e)); } ///\todo ///Some doki, please. void hide(const Node& n) const { node_filter_map->set(n, false); } ///\todo ///Some doki, please. void hide(const Edge& e) const { edge_filter_map->set(e, false); } ///\todo ///Some doki, please. void unHide(const Node& n) const { node_filter_map->set(n, true); } ///\todo ///Some doki, please. void unHide(const Edge& e) const { edge_filter_map->set(e, true); } ///\todo ///Some doki, please. bool hidden(const Node& n) const { return (*node_filter_map)[n]; } ///\todo ///Some doki, please. bool hidden(const Edge& e) const { return (*edge_filter_map)[e]; } }; /// A wrapper for forgetting the orientation of a graph. /// A wrapper for getting an undirected graph by forgetting /// the orientation of a directed one. template class UndirGraphWrapper : public GraphWrapper { public: typedef typename GraphWrapper::Node Node; typedef typename GraphWrapper::NodeIt NodeIt; typedef typename GraphWrapper::Edge Edge; typedef typename GraphWrapper::EdgeIt EdgeIt; UndirGraphWrapper(Graph& _graph) : GraphWrapper(_graph) { } class OutEdgeIt { friend class UndirGraphWrapper; bool out_or_in; //true iff out typename Graph::OutEdgeIt out; typename Graph::InEdgeIt in; public: OutEdgeIt() { } OutEdgeIt(const Invalid& i) : Edge(i) { } OutEdgeIt(const UndirGraphWrapper& _G, const Node& _n) { out_or_in=true; _G.graph->first(out, _n); if (!(_G.graph->valid(out))) { out_or_in=false; _G.graph->first(in, _n); } } operator Edge() const { if (out_or_in) return Edge(out); else return Edge(in); } }; //FIXME InEdgeIt typedef OutEdgeIt InEdgeIt; using GraphWrapper::first; // NodeIt& first(NodeIt& i) const { // i=NodeIt(*this); return i; // } OutEdgeIt& first(OutEdgeIt& i, const Node& p) const { i=OutEdgeIt(*this, p); return i; } //FIXME // InEdgeIt& first(InEdgeIt& i, const Node& p) const { // i=InEdgeIt(*this, p); return i; // } // EdgeIt& first(EdgeIt& i) const { // i=EdgeIt(*this); return i; // } using GraphWrapper::next; // NodeIt& next(NodeIt& n) const { // GraphWrapper::next(n); // return n; // } OutEdgeIt& next(OutEdgeIt& e) const { if (e.out_or_in) { typename Graph::Node n=graph->tail(e.out); graph->next(e.out); if (!graph->valid(e.out)) { e.out_or_in=false; graph->first(e.in, n); } } else { graph->next(e.in); } return e; } //FIXME InEdgeIt // EdgeIt& next(EdgeIt& e) const { // GraphWrapper::next(n); // // graph->next(e.e); // return e; // } Node aNode(const OutEdgeIt& e) const { if (e.out_or_in) return graph->tail(e); else return graph->head(e); } Node bNode(const OutEdgeIt& e) const { if (e.out_or_in) return graph->head(e); else return graph->tail(e); } }; /// A wrapper for composing the residual graph for directed flow and circulation problems. /// A wrapper for composing the residual graph for directed flow and circulation problems. template class ResGraphWrapper : public GraphWrapper { protected: const CapacityMap* capacity; FlowMap* flow; public: ResGraphWrapper(Graph& _graph, const CapacityMap& _capacity, FlowMap& _flow) : GraphWrapper(_graph), capacity(&_capacity), flow(&_flow) { } class Edge; class OutEdgeIt; friend class Edge; friend class OutEdgeIt; typedef typename GraphWrapper::Node Node; typedef typename GraphWrapper::NodeIt NodeIt; class Edge : public Graph::Edge { friend class ResGraphWrapper; protected: bool forward; //true, iff forward // typename Graph::Edge e; public: Edge() { } Edge(const typename Graph::Edge& _e, bool _forward) : Graph::Edge(_e), forward(_forward) { } Edge(const Invalid& i) : Graph::Edge(i), forward(false) { } //the unique invalid iterator friend bool operator==(const Edge& u, const Edge& v) { return (v.forward==u.forward && static_cast(u)== static_cast(v)); } friend bool operator!=(const Edge& u, const Edge& v) { return (v.forward!=u.forward || static_cast(u)!= static_cast(v)); } }; class OutEdgeIt { friend class ResGraphWrapper; protected: typename Graph::OutEdgeIt out; typename Graph::InEdgeIt in; bool forward; public: OutEdgeIt() { } //FIXME // OutEdgeIt(const Edge& e) : Edge(e) { } OutEdgeIt(const Invalid& i) : out(i), in(i), forward(false) { } //the unique invalid iterator OutEdgeIt(const ResGraphWrapper& resG, Node v) { forward=true; resG.graph->first(out, v); while( resG.graph->valid(out) && !(resG.resCap(*this)>0) ) { resG.graph->next(out); } if (!resG.graph->valid(out)) { forward=false; resG.graph->first(in, v); while( resG.graph->valid(in) && !(resG.resCap(*this)>0) ) { resG.graph->next(in); } } } operator Edge() const { // Edge e; // e.forward=this->forward; // if (this->forward) e=out; else e=in; // return e; if (this->forward) return Edge(out, this->forward); else return Edge(in, this->forward); } }; class InEdgeIt { friend class ResGraphWrapper; protected: typename Graph::OutEdgeIt out; typename Graph::InEdgeIt in; bool forward; public: InEdgeIt() { } //FIXME // OutEdgeIt(const Edge& e) : Edge(e) { } InEdgeIt(const Invalid& i) : out(i), in(i), forward(false) { } //the unique invalid iterator InEdgeIt(const ResGraphWrapper& resG, Node v) { forward=true; resG.graph->first(in, v); while( resG.graph->valid(in) && !(resG.resCap(*this)>0) ) { resG.graph->next(in); } if (!resG.graph->valid(in)) { forward=false; resG.graph->first(out, v); while( resG.graph->valid(out) && !(resG.resCap(*this)>0) ) { resG.graph->next(out); } } } operator Edge() const { // Edge e; // e.forward=this->forward; // if (this->forward) e=out; else e=in; // return e; if (this->forward) return Edge(in, this->forward); else return Edge(out, this->forward); } }; class EdgeIt { friend class ResGraphWrapper; protected: typename Graph::EdgeIt e; bool forward; public: EdgeIt() { } EdgeIt(const Invalid& i) : e(i), forward(false) { } EdgeIt(const ResGraphWrapper& resG) { forward=true; resG.graph->first(e); while (resG.graph->valid(e) && !(resG.resCap(*this)>0)) resG.graph->next(e); if (!resG.graph->valid(e)) { forward=false; resG.graph->first(e); while (resG.graph->valid(e) && !(resG.resCap(*this)>0)) resG.graph->next(e); } } operator Edge() const { return Edge(e, this->forward); } }; using GraphWrapper::first; // NodeIt& first(NodeIt& i) const { // i=NodeIt(*this); return i; // } OutEdgeIt& first(OutEdgeIt& i, const Node& p) const { i=OutEdgeIt(*this, p); return i; } // FIXME not tested InEdgeIt& first(InEdgeIt& i, const Node& p) const { i=InEdgeIt(*this, p); return i; } EdgeIt& first(EdgeIt& i) const { i=EdgeIt(*this); return i; } using GraphWrapper::next; // NodeIt& next(NodeIt& n) const { GraphWrapper::next(n); return n; } OutEdgeIt& next(OutEdgeIt& e) const { if (e.forward) { Node v=graph->aNode(e.out); graph->next(e.out); while( graph->valid(e.out) && !(resCap(e)>0) ) { graph->next(e.out); } if (!graph->valid(e.out)) { e.forward=false; graph->first(e.in, v); while( graph->valid(e.in) && !(resCap(e)>0) ) { graph->next(e.in); } } } else { graph->next(e.in); while( graph->valid(e.in) && !(resCap(e)>0) ) { graph->next(e.in); } } return e; } // FIXME Not tested InEdgeIt& next(InEdgeIt& e) const { if (e.forward) { Node v=graph->aNode(e.in); graph->next(e.in); while( graph->valid(e.in) && !(resCap(e)>0) ) { graph->next(e.in); } if (!graph->valid(e.in)) { e.forward=false; graph->first(e.out, v); while( graph->valid(e.out) && !(resCap(e)>0) ) { graph->next(e.out); } } } else { graph->next(e.out); while( graph->valid(e.out) && !(resCap(e)>0) ) { graph->next(e.out); } } return e; } EdgeIt& next(EdgeIt& e) const { if (e.forward) { graph->next(e.e); while( graph->valid(e.e) && !(resCap(e)>0) ) { graph->next(e.e); } if (!graph->valid(e.e)) { e.forward=false; graph->first(e.e); while( graph->valid(e.e) && !(resCap(e)>0) ) { graph->next(e.e); } } } else { graph->next(e.e); while( graph->valid(e.e) && !(resCap(e)>0) ) { graph->next(e.e); } } return e; } Node tail(Edge e) const { return ((e.forward) ? graph->tail(e) : graph->head(e)); } Node head(Edge e) const { return ((e.forward) ? graph->head(e) : graph->tail(e)); } Node aNode(OutEdgeIt e) const { return ((e.forward) ? graph->aNode(e.out) : graph->aNode(e.in)); } Node bNode(OutEdgeIt e) const { return ((e.forward) ? graph->bNode(e.out) : graph->bNode(e.in)); } // int nodeNum() const { return graph->nodeNum(); } //FIXME void edgeNum() const { } //int edgeNum() const { return graph->edgeNum(); } // int id(Node v) const { return graph->id(v); } bool valid(Node n) const { return GraphWrapper::valid(n); } bool valid(Edge e) const { return graph->valid(e); //return e.forward ? graph->valid(e.out) : graph->valid(e.in); } void augment(const Edge& e, Number a) const { if (e.forward) // flow->set(e.out, flow->get(e.out)+a); flow->set(e, (*flow)[e]+a); else // flow->set(e.in, flow->get(e.in)-a); flow->set(e, (*flow)[e]-a); } Number resCap(const Edge& e) const { if (e.forward) // return (capacity->get(e.out)-flow->get(e.out)); return ((*capacity)[e]-(*flow)[e]); else // return (flow->get(e.in)); return ((*flow)[e]); } // Number resCap(typename Graph::OutEdgeIt out) const { // // return (capacity->get(out)-flow->get(out)); // return ((*capacity)[out]-(*flow)[out]); // } // Number resCap(typename Graph::InEdgeIt in) const { // // return (flow->get(in)); // return ((*flow)[in]); // } template class EdgeMap { typename Graph::EdgeMap forward_map, backward_map; public: EdgeMap(const ResGraphWrapper& _G) : forward_map(*(_G.graph)), backward_map(*(_G.graph)) { } EdgeMap(const ResGraphWrapper& _G, T a) : forward_map(*(_G.graph), a), backward_map(*(_G.graph), a) { } void set(Edge e, T a) { if (e.forward) forward_map.set(e.out, a); else backward_map.set(e.in, a); } T operator[](Edge e) const { if (e.forward) return forward_map[e.out]; else return backward_map[e.in]; } // T get(Edge e) const { // if (e.out_or_in) // return forward_map.get(e.out); // else // return backward_map.get(e.in); // } }; }; /// ErasingFirstGraphWrapper for blocking flows. /// ErasingFirstGraphWrapper for blocking flows. template class ErasingFirstGraphWrapper : public GraphWrapper { protected: FirstOutEdgesMap* first_out_edges; public: ErasingFirstGraphWrapper(Graph& _graph, FirstOutEdgesMap& _first_out_edges) : GraphWrapper(_graph), first_out_edges(&_first_out_edges) { } typedef typename GraphWrapper::Node Node; // class NodeIt { // friend class GraphWrapper; // friend class ErasingFirstGraphWrapper; // typename Graph::NodeIt n; // public: // NodeIt() { } // NodeIt(const typename Graph::NodeIt& _n) : n(_n) { } // NodeIt(const Invalid& i) : n(i) { } // NodeIt(const ErasingFirstGraphWrapper& _G) : // n(*(_G.graph)) { } // operator Node() const { return Node(typename Graph::Node(n)); } // }; typedef typename GraphWrapper::Edge Edge; class OutEdgeIt { friend class GraphWrapper; friend class ErasingFirstGraphWrapper; // typedef typename Graph::OutEdgeIt GraphOutEdgeIt; typename Graph::OutEdgeIt e; public: OutEdgeIt() { } OutEdgeIt(const typename Graph::OutEdgeIt& _e) : e(_e) { } OutEdgeIt(const Invalid& i) : e(i) { } OutEdgeIt(const ErasingFirstGraphWrapper& _G, const Node& _n) : e((*_G.first_out_edges)[_n]) { } operator Edge() const { return Edge(typename Graph::Edge(e)); } }; class InEdgeIt { friend class GraphWrapper; friend class ErasingFirstGraphWrapper; // typedef typename Graph::InEdgeIt GraphInEdgeIt; typename Graph::InEdgeIt e; public: InEdgeIt() { } InEdgeIt(const typename Graph::InEdgeIt& _e) : e(_e) { } InEdgeIt(const Invalid& i) : e(i) { } InEdgeIt(const ErasingFirstGraphWrapper& _G, const Node& _n) : e(*(_G.graph), typename Graph::Node(_n)) { } operator Edge() const { return Edge(typename Graph::Edge(e)); } }; //typedef typename Graph::SymEdgeIt SymEdgeIt; class EdgeIt { friend class GraphWrapper; friend class ErasingFirstGraphWrapper; // typedef typename Graph::EdgeIt GraphEdgeIt; typename Graph::EdgeIt e; public: EdgeIt() { } EdgeIt(const typename Graph::EdgeIt& _e) : e(_e) { } EdgeIt(const Invalid& i) : e(i) { } EdgeIt(const ErasingFirstGraphWrapper& _G) : e(*(_G.graph)) { } operator Edge() const { return Edge(typename Graph::Edge(e)); } }; using GraphWrapper::first; // NodeIt& first(NodeIt& i) const { // i=NodeIt(*this); return i; // } OutEdgeIt& first(OutEdgeIt& i, const Node& p) const { i=OutEdgeIt(*this, p); return i; } InEdgeIt& first(InEdgeIt& i, const Node& p) const { i=InEdgeIt(*this, p); return i; } EdgeIt& first(EdgeIt& i) const { i=EdgeIt(*this); return i; } using GraphWrapper::next; // NodeIt& next(NodeIt& i) const { graph->next(i.n); return i; } OutEdgeIt& next(OutEdgeIt& i) const { graph->next(i.e); return i; } InEdgeIt& next(InEdgeIt& i) const { graph->next(i.e); return i; } EdgeIt& next(EdgeIt& i) const { graph->next(i.e); return i; } Node aNode(const OutEdgeIt& e) const { return Node(graph->aNode(e.e)); } Node aNode(const InEdgeIt& e) const { return Node(graph->aNode(e.e)); } Node bNode(const OutEdgeIt& e) const { return Node(graph->bNode(e.e)); } Node bNode(const InEdgeIt& e) const { return Node(graph->bNode(e.e)); } void erase(const OutEdgeIt& e) const { OutEdgeIt f=e; this->next(f); first_out_edges->set(this->tail(e), f.e); } }; /// A wrapper for composing a bipartite graph. /// \c _graph have to be a reference to a graph of type \c Graph /// and \c _s_false_t_true_map is an \c IterableBoolMap /// reference containing the elements for the /// color classes S and T. \c _graph is to be referred to an undirected /// graph or a directed graph with edges oriented from S to T. template class BipartiteGraphWrapper : public GraphWrapper { typedef IterableBoolMap< typename Graph::NodeMap > SFalseTTrueMap; SFalseTTrueMap* s_false_t_true_map; public: BipartiteGraphWrapper(Graph& _graph, SFalseTTrueMap& _s_false_t_true_map) : GraphWrapper(_graph), s_false_t_true_map(&_s_false_t_true_map) { } typedef typename GraphWrapper::Node Node; //using GraphWrapper::NodeIt; typedef typename GraphWrapper::Edge Edge; //using GraphWrapper::EdgeIt; class SNodeIt { Node n; public: SNodeIt() { } SNodeIt(const Invalid& i) : n(i) { } SNodeIt(const BipartiteGraphWrapper& _G) { _G.s_false_t_true_map->first(n, false); } operator Node() const { return n; } }; class TNodeIt { Node n; public: TNodeIt() { } TNodeIt(const Invalid& i) : n(i) { } TNodeIt(const BipartiteGraphWrapper& _G) { _G.s_false_t_true_map->first(n, true); } operator Node() const { return n; } }; class OutEdgeIt { public: typename Graph::OutEdgeIt e; public: OutEdgeIt() { } OutEdgeIt(const Invalid& i) : e(i) { } OutEdgeIt(const BipartiteGraphWrapper& _G, const Node& _n) { if (!(*(_G.s_false_t_true_map))[_n]) e=OutEdgeIt(*(_G.graph), typename Graph::Node(_n)); else e=INVALID; } operator Edge() const { return Edge(typename Graph::Edge(e)); } }; class InEdgeIt { public: typename Graph::InEdgeIt e; public: InEdgeIt() { } InEdgeIt(const Invalid& i) : e(i) { } InEdgeIt(const BipartiteGraphWrapper& _G, const Node& _n) { if ((*(_G.s_false_t_true_map))[_n]) e=InEdgeIt(*(_G.graph), typename Graph::Node(_n)); else e=INVALID; } operator Edge() const { return Edge(typename Graph::Edge(e)); } }; using GraphWrapper::first; SNodeIt& first(SNodeIt& n) const { n=SNodeIt(*this); return n; } TNodeIt& first(TNodeIt& n) const { n=TNodeIt(*this); return n; } using GraphWrapper::next; SNodeIt& next(SNodeIt& n) const { this->s_false_t_true_map->next(n); return n; } TNodeIt& next(TNodeIt& n) const { this->s_false_t_true_map->next(n); return n; } Node tail(const Edge& e) { if (!(*(this->s_false_t_true_map))[this->graph->tail(e)]) return Node(this->graph->tail(e)); else return Node(this->graph->head(e)); } Node head(const Edge& e) { if (!(*(this->s_false_t_true_map))[this->graph->tail(e)]) return Node(this->graph->head(e)); else return Node(this->graph->tail(e)); } Node aNode(const OutEdgeIt& e) const { return Node(this->graph->aNode(e.e)); } Node aNode(const InEdgeIt& e) const { return Node(this->graph->aNode(e.e)); } Node bNode(const OutEdgeIt& e) const { return Node(this->graph->bNode(e.e)); } Node bNode(const InEdgeIt& e) const { return Node(this->graph->bNode(e.e)); } }; // /// experimentral, do not try it. // template // class stGraphWrapper : public GraphWrapper { // public: // class Node; // class NodeIt; // class Edge; // class OutEdgeIt; // class InEdgeIt; // class EdgeIt; // const Node s; // const Node t; // stGraphWrapper(Graph& _graph) : GraphWrapper(_graph), // s(INVALID, 1), t(INVALID, 2) { } // class Node : public Graph::Node { // friend class GraphWrapper; // friend class stGraphWrapper; // protected: // int spec; //0 if real node, 1 iff s, 2 iff t // public: // Node() { } // Node(const typename Graph::Node& _n, int _spec=0) : // Graph::Node(_n), spec(_spec) { } // Node(const Invalid& i) : Graph::Node(i), spec(2) { } // //invalid: (invalid, 2); // }; // class NodeIt { // friend class GraphWrapper; // friend class stGraphWrapper; // typename Graph::NodeIt n; // int spec; // public: // NodeIt() { } // NodeIt(const typename Graph::NodeIt& _n, int _spec=0) : // n(_n), spec(_spec) { } // NodeIt(const Invalid& i) : n(i), spec(2) { } // NodeIt(const GraphWrapper& _G) : n(*(_G.graph)), spec(0) { // if (!_G->valid(n)) spec=1; // } // operator Node() const { return Node(n, spec); } // }; // // typedef typename Graph::Edge Edge; // class Edge : public Graph::Edge { // friend class GraphWrapper; // friend class stGraphWrapper; // Node tail_spec; // Node head_spec; // public: // Edge() { } // Edge(const typename Graph::Edge& _e) : // Graph::Edge(_e), tail_spec(i, 0), head_spec(i, 0) { // //a tail-t es a head-et real node-ra csinaljuk // } // Edge(const Invalid& i) : Graph::Edge(i), tail_spec(i), head_spec(i) { } // }; // class OutEdgeIt { // friend class GraphWrapper; // friend class stGraphWrapper; // typename Graph::OutEdgeIt e; // Node tail_spec; // Node head_spec; // public: // OutEdgeIt() { } // OutEdgeIt(const typename Graph::OutEdgeIt& _e) : // e(_e), tail_spec(i, 0), head_spec(i, 0) { // //a tail-t es a head-et real node-ra csinaljuk // } // OutEdgeIt(const Invalid& i) : e(i), tail_spec(i), head_spec(i) { } // //invalid: (barmi, 0, 2) // OutEdgeIt(const GraphWrapper& _G, const Node& _n) { // switch (_n.spec) { // case 0 : // e=typename Graph::OutEdgeIt(*(_G.graph), typename Graph::Node(_n)); // _tail.spec=0; // _head.spec=0; // if (!_G.graph->valid(e)) spec=1; // break; // case 1: // e=INVALID; // _tail.spec=1; // _head(_G.graph->first(typename Graph::NodeIt())); // if _head.spec==1 // break; // }; // } // operator Edge() const { return Edge(typename Graph::Edge(e)); } // }; // class InEdgeIt { // friend class GraphWrapper; // typename Graph::InEdgeIt e; // public: // InEdgeIt() { } // InEdgeIt(const typename Graph::InEdgeIt& _e) : e(_e) { } // InEdgeIt(const Invalid& i) : e(i) { } // InEdgeIt(const GraphWrapper& _G, const Node& _n) : // e(*(_G.graph), typename Graph::Node(_n)) { } // operator Edge() const { return Edge(typename Graph::Edge(e)); } // }; // //typedef typename Graph::SymEdgeIt SymEdgeIt; // class EdgeIt { // friend class GraphWrapper; // typename Graph::EdgeIt e; // public: // EdgeIt() { } // EdgeIt(const typename Graph::EdgeIt& _e) : e(_e) { } // EdgeIt(const Invalid& i) : e(i) { } // EdgeIt(const GraphWrapper& _G) : e(*(_G.graph)) { } // operator Edge() const { return Edge(typename Graph::Edge(e)); } // }; // NodeIt& first(NodeIt& i) const { // i=NodeIt(*this); return i; // } // OutEdgeIt& first(OutEdgeIt& i, const Node& p) const { // i=OutEdgeIt(*this, p); return i; // } // InEdgeIt& first(InEdgeIt& i, const Node& p) const { // i=InEdgeIt(*this, p); return i; // } // EdgeIt& first(EdgeIt& i) const { // i=EdgeIt(*this); return i; // } // NodeIt& next(NodeIt& i) const { graph->next(i.n); return i; } // OutEdgeIt& next(OutEdgeIt& i) const { graph->next(i.e); return i; } // InEdgeIt& next(InEdgeIt& i) const { graph->next(i.e); return i; } // EdgeIt& next(EdgeIt& i) const { graph->next(i.e); return i; } // Node head(const Edge& e) const { // return Node(graph->head(static_cast(e))); } // Node tail(const Edge& e) const { // return Node(graph->tail(static_cast(e))); } // bool valid(const Node& n) const { // return graph->valid(static_cast(n)); } // bool valid(const Edge& e) const { // return graph->valid(static_cast(e)); } // int nodeNum() const { return graph->nodeNum(); } // int edgeNum() const { return graph->edgeNum(); } // Node aNode(const OutEdgeIt& e) const { return Node(graph->aNode(e.e)); } // Node aNode(const InEdgeIt& e) const { return Node(graph->aNode(e.e)); } // Node bNode(const OutEdgeIt& e) const { return Node(graph->bNode(e.e)); } // Node bNode(const InEdgeIt& e) const { return Node(graph->bNode(e.e)); } // Node addNode() const { return Node(graph->addNode()); } // Edge addEdge(const Node& tail, const Node& head) const { // return Edge(graph->addEdge(tail, head)); } // void erase(const Node& i) const { graph->erase(i); } // void erase(const Edge& i) const { graph->erase(i); } // void clear() const { graph->clear(); } // template class NodeMap : public Graph::NodeMap { // public: // NodeMap(const GraphWrapper& _G) : // Graph::NodeMap(*(_G.graph)) { } // NodeMap(const GraphWrapper& _G, T a) : // Graph::NodeMap(*(_G.graph), a) { } // }; // template class EdgeMap : public Graph::EdgeMap { // public: // EdgeMap(const GraphWrapper& _G) : // Graph::EdgeMap(*(_G.graph)) { } // EdgeMap(const GraphWrapper& _G, T a) : // Graph::EdgeMap(*(_G.graph), a) { } // }; // }; } //namespace hugo #endif //HUGO_GRAPH_WRAPPER_H