[617] | 1 | // -*- c++ -*- |
---|
| 2 | #include <iostream> |
---|
| 3 | #include <fstream> |
---|
| 4 | #include <vector> |
---|
| 5 | #include <cstdlib> |
---|
| 6 | |
---|
| 7 | #include <LEDA/graph.h> |
---|
| 8 | #include <LEDA/mcb_matching.h> |
---|
| 9 | #include <LEDA/list.h> |
---|
| 10 | #include <LEDA/graph_gen.h> |
---|
| 11 | |
---|
| 12 | #include <leda_graph_wrapper.h> |
---|
[648] | 13 | #include <sage_graph.h> |
---|
[617] | 14 | //#include <smart_graph.h> |
---|
| 15 | //#include <dimacs.h> |
---|
| 16 | #include <hugo/time_measure.h> |
---|
[648] | 17 | #include <hugo/for_each_macros.h> |
---|
[617] | 18 | #include <hugo/graph_wrapper.h> |
---|
| 19 | #include <bipartite_graph_wrapper.h> |
---|
| 20 | #include <hugo/maps.h> |
---|
| 21 | #include <max_flow.h> |
---|
| 22 | |
---|
| 23 | /** |
---|
| 24 | * Inicializalja a veletlenszamgeneratort. |
---|
| 25 | * Figyelem, ez nem jo igazi random szamokhoz, |
---|
| 26 | * erre ne bizzad a titkaidat! |
---|
| 27 | */ |
---|
| 28 | void random_init() |
---|
| 29 | { |
---|
| 30 | unsigned int seed = getpid(); |
---|
| 31 | seed |= seed << 15; |
---|
| 32 | seed ^= time(0); |
---|
| 33 | |
---|
| 34 | srand(seed); |
---|
| 35 | } |
---|
| 36 | |
---|
| 37 | /** |
---|
| 38 | * Egy veletlen int-et ad vissza 0 es m-1 kozott. |
---|
| 39 | */ |
---|
| 40 | int random(int m) |
---|
| 41 | { |
---|
| 42 | return int( double(m) * rand() / (RAND_MAX + 1.0) ); |
---|
| 43 | } |
---|
| 44 | |
---|
| 45 | using namespace hugo; |
---|
| 46 | |
---|
| 47 | int main() { |
---|
| 48 | //for leda graph |
---|
| 49 | leda::graph lg; |
---|
| 50 | //lg.make_undirected(); |
---|
| 51 | typedef LedaGraphWrapper<leda::graph> Graph; |
---|
| 52 | Graph g(lg); |
---|
| 53 | |
---|
[648] | 54 | //for UndirSageGraph |
---|
| 55 | //typedef UndirSageGraph Graph; |
---|
[617] | 56 | //Graph g; |
---|
| 57 | |
---|
| 58 | typedef Graph::Node Node; |
---|
| 59 | typedef Graph::NodeIt NodeIt; |
---|
| 60 | typedef Graph::Edge Edge; |
---|
| 61 | typedef Graph::EdgeIt EdgeIt; |
---|
| 62 | typedef Graph::OutEdgeIt OutEdgeIt; |
---|
| 63 | |
---|
| 64 | std::vector<Graph::Node> s_nodes; |
---|
| 65 | std::vector<Graph::Node> t_nodes; |
---|
| 66 | |
---|
| 67 | int a; |
---|
| 68 | std::cout << "number of nodes in the first color class="; |
---|
| 69 | std::cin >> a; |
---|
| 70 | int b; |
---|
| 71 | std::cout << "number of nodes in the second color class="; |
---|
| 72 | std::cin >> b; |
---|
| 73 | int m; |
---|
| 74 | std::cout << "number of edges="; |
---|
| 75 | std::cin >> m; |
---|
| 76 | int k; |
---|
| 77 | std::cout << "A bipartite graph is a random group graph if the color classes \nA and B are partitiones to A_0, A_1, ..., A_{k-1} and B_0, B_1, ..., B_{k-1} \nas equally as possible \nand the edges from A_i goes to A_{i-1 mod k} and A_{i+1 mod k}.\n"; |
---|
| 78 | std::cout << "number of groups in LEDA random group graph="; |
---|
| 79 | std::cin >> k; |
---|
| 80 | std::cout << std::endl; |
---|
| 81 | |
---|
| 82 | leda_list<leda_node> lS; |
---|
| 83 | leda_list<leda_node> lT; |
---|
| 84 | random_bigraph(lg, a, b, m, lS, lT, k); |
---|
| 85 | |
---|
| 86 | Graph::NodeMap<int> ref_map(g, -1); |
---|
| 87 | IterableBoolMap< Graph::NodeMap<int> > bipartite_map(ref_map); |
---|
| 88 | |
---|
| 89 | //generating leda random group graph |
---|
| 90 | leda_node ln; |
---|
| 91 | forall(ln, lS) bipartite_map.insert(ln, false); |
---|
| 92 | forall(ln, lT) bipartite_map.insert(ln, true); |
---|
| 93 | |
---|
| 94 | //making bipartite graph |
---|
| 95 | typedef BipartiteGraphWrapper<Graph> BGW; |
---|
| 96 | BGW bgw(g, bipartite_map); |
---|
| 97 | |
---|
| 98 | |
---|
| 99 | //st-wrapper |
---|
| 100 | typedef stGraphWrapper<BGW> stGW; |
---|
| 101 | stGW stgw(bgw); |
---|
| 102 | ConstMap<stGW::Edge, int> const1map(1); |
---|
| 103 | stGW::EdgeMap<int> flow(stgw); |
---|
| 104 | |
---|
| 105 | Timer ts; |
---|
| 106 | |
---|
| 107 | ts.reset(); |
---|
| 108 | FOR_EACH_LOC(stGW::EdgeIt, e, stgw) flow.set(e, 0); |
---|
| 109 | MaxFlow<stGW, int, ConstMap<stGW::Edge, int>, stGW::EdgeMap<int> > |
---|
| 110 | max_flow_test(stgw, stgw.S_NODE, stgw.T_NODE, const1map, flow/*, true*/); |
---|
| 111 | max_flow_test.run(); |
---|
| 112 | std::cout << "HUGO max matching algorithm based on preflow." << std::endl |
---|
| 113 | << "Size of matching: " |
---|
| 114 | << max_flow_test.flowValue() << std::endl; |
---|
| 115 | std::cout << "elapsed time: " << ts << std::endl << std::endl; |
---|
| 116 | |
---|
| 117 | ts.reset(); |
---|
| 118 | leda_list<leda_edge> ml=MAX_CARD_BIPARTITE_MATCHING(lg); |
---|
| 119 | std::cout << "LEDA max matching algorithm." << std::endl |
---|
| 120 | << "Size of matching: " |
---|
| 121 | << ml.size() << std::endl; |
---|
| 122 | std::cout << "elapsed time: " << ts << std::endl << std::endl; |
---|
| 123 | |
---|
| 124 | // ts.reset(); |
---|
| 125 | // FOR_EACH_LOC(stGW::EdgeIt, e, stgw) flow.set(e, 0); |
---|
[648] | 126 | // typedef SageGraph MutableGraph; |
---|
[617] | 127 | // while (max_flow_test.augmentOnBlockingFlow<MutableGraph>()) { } |
---|
| 128 | // std::cout << "HUGO max matching algorithm based on blocking flow augmentation." |
---|
| 129 | // << std::endl << "Matching size: " |
---|
| 130 | // << max_flow_test.flowValue() << std::endl; |
---|
| 131 | // std::cout << "elapsed time: " << ts << std::endl << std::endl; |
---|
| 132 | |
---|
| 133 | { |
---|
[648] | 134 | SageGraph hg; |
---|
| 135 | SageGraph::Node s=hg.addNode(); |
---|
| 136 | SageGraph::Node t=hg.addNode(); |
---|
| 137 | BGW::NodeMap<SageGraph::Node> b_s_nodes(bgw); |
---|
| 138 | BGW::NodeMap<SageGraph::Node> b_t_nodes(bgw); |
---|
[617] | 139 | |
---|
| 140 | FOR_EACH_INC_LOC(BGW::ClassNodeIt, n, bgw, BGW::S_CLASS) { |
---|
| 141 | b_s_nodes.set(n, hg.addNode()); |
---|
| 142 | hg.addEdge(s, b_s_nodes[n]); |
---|
| 143 | } |
---|
| 144 | FOR_EACH_INC_LOC(BGW::ClassNodeIt, n, bgw, BGW::T_CLASS) { |
---|
| 145 | b_t_nodes.set(n, hg.addNode()); |
---|
| 146 | hg.addEdge(b_t_nodes[n], t); |
---|
| 147 | } |
---|
| 148 | |
---|
| 149 | FOR_EACH_LOC(BGW::EdgeIt, e, bgw) |
---|
| 150 | hg.addEdge(b_s_nodes[bgw.tail(e)], b_t_nodes[bgw.head(e)]); |
---|
| 151 | |
---|
[648] | 152 | ConstMap<SageGraph::Edge, int> cm(1); |
---|
| 153 | SageGraph::EdgeMap<int> flow(hg); //0 |
---|
[617] | 154 | |
---|
| 155 | Timer ts; |
---|
| 156 | |
---|
| 157 | ts.reset(); |
---|
[648] | 158 | MaxFlow<SageGraph, int, ConstMap<SageGraph::Edge, int>, |
---|
| 159 | SageGraph::EdgeMap<int> > |
---|
[617] | 160 | max_flow_test(hg, s, t, cm, flow); |
---|
| 161 | max_flow_test.run(); |
---|
[648] | 162 | std::cout << "HUGO max matching algorithm on SageGraph by copying the graph, based on preflow." |
---|
[617] | 163 | << std::endl |
---|
| 164 | << "Size of matching: " |
---|
| 165 | << max_flow_test.flowValue() << std::endl; |
---|
| 166 | std::cout << "elapsed time: " << ts << std::endl << std::endl; |
---|
| 167 | } |
---|
| 168 | |
---|
| 169 | return 0; |
---|
| 170 | } |
---|