1 | // -*- c++ -*- |
---|
2 | #include <iostream> |
---|
3 | #include <fstream> |
---|
4 | #include <vector> |
---|
5 | #include <cstdlib> |
---|
6 | |
---|
7 | #include <LEDA/graph.h> |
---|
8 | #include <LEDA/mcb_matching.h> |
---|
9 | #include <LEDA/list.h> |
---|
10 | #include <LEDA/graph_gen.h> |
---|
11 | |
---|
12 | #include <leda_graph_wrapper.h> |
---|
13 | #include <sage_graph.h> |
---|
14 | //#include <smart_graph.h> |
---|
15 | //#include <dimacs.h> |
---|
16 | #include <hugo/time_measure.h> |
---|
17 | #include <for_each_macros.h> |
---|
18 | #include <hugo/graph_wrapper.h> |
---|
19 | #include <bipartite_graph_wrapper.h> |
---|
20 | #include <hugo/maps.h> |
---|
21 | #include <hugo/max_flow.h> |
---|
22 | |
---|
23 | using std::cout; |
---|
24 | using std::endl; |
---|
25 | |
---|
26 | using namespace hugo; |
---|
27 | |
---|
28 | int main() { |
---|
29 | //for leda graph |
---|
30 | leda::graph lg; |
---|
31 | //lg.make_undirected(); |
---|
32 | typedef LedaGraphWrapper<leda::graph> Graph; |
---|
33 | Graph g(lg); |
---|
34 | |
---|
35 | //for UndirSageGraph |
---|
36 | //typedef UndirSageGraph Graph; |
---|
37 | //Graph g; |
---|
38 | |
---|
39 | typedef Graph::Node Node; |
---|
40 | typedef Graph::NodeIt NodeIt; |
---|
41 | typedef Graph::Edge Edge; |
---|
42 | typedef Graph::EdgeIt EdgeIt; |
---|
43 | typedef Graph::OutEdgeIt OutEdgeIt; |
---|
44 | |
---|
45 | std::vector<Graph::Node> s_nodes; |
---|
46 | std::vector<Graph::Node> t_nodes; |
---|
47 | |
---|
48 | int a; |
---|
49 | cout << "number of nodes in the first color class="; |
---|
50 | std::cin >> a; |
---|
51 | int b; |
---|
52 | cout << "number of nodes in the second color class="; |
---|
53 | std::cin >> b; |
---|
54 | int m; |
---|
55 | cout << "number of edges="; |
---|
56 | std::cin >> m; |
---|
57 | int k; |
---|
58 | cout << "A bipartite graph is a random group graph if the color classes \nA and B are partitiones to A_0, A_1, ..., A_{k-1} and B_0, B_1, ..., B_{k-1} \nas equally as possible \nand the edges from A_i goes to A_{i-1 mod k} and A_{i+1 mod k}.\n"; |
---|
59 | cout << "number of groups in LEDA random group graph="; |
---|
60 | std::cin >> k; |
---|
61 | cout << endl; |
---|
62 | |
---|
63 | leda_list<leda_node> lS; |
---|
64 | leda_list<leda_node> lT; |
---|
65 | random_bigraph(lg, a, b, m, lS, lT, k); |
---|
66 | |
---|
67 | Graph::NodeMap<int> ref_map(g, -1); |
---|
68 | IterableBoolMap< Graph::NodeMap<int> > bipartite_map(ref_map); |
---|
69 | |
---|
70 | //generating leda random group graph |
---|
71 | leda_node ln; |
---|
72 | forall(ln, lS) bipartite_map.insert(ln, false); |
---|
73 | forall(ln, lT) bipartite_map.insert(ln, true); |
---|
74 | |
---|
75 | //making bipartite graph |
---|
76 | typedef BipartiteGraphWrapper<Graph> BGW; |
---|
77 | BGW bgw(g, bipartite_map); |
---|
78 | |
---|
79 | |
---|
80 | //st-wrapper |
---|
81 | typedef stBipartiteGraphWrapper<BGW> stGW; |
---|
82 | stGW stgw(bgw); |
---|
83 | ConstMap<stGW::Edge, int> const1map(1); |
---|
84 | stGW::EdgeMap<int> flow(stgw); |
---|
85 | |
---|
86 | Timer ts; |
---|
87 | |
---|
88 | ts.reset(); |
---|
89 | FOR_EACH_LOC(stGW::EdgeIt, e, stgw) flow.set(e, 0); |
---|
90 | MaxFlow<stGW, int, ConstMap<stGW::Edge, int>, stGW::EdgeMap<int> > |
---|
91 | max_flow_test(stgw, stgw.S_NODE, stgw.T_NODE, const1map, flow/*, true*/); |
---|
92 | max_flow_test.run(); |
---|
93 | cout << "HUGO max matching algorithm based on preflow." << endl |
---|
94 | << "Size of matching: " |
---|
95 | << max_flow_test.flowValue() << endl; |
---|
96 | cout << "elapsed time: " << ts << endl << endl; |
---|
97 | |
---|
98 | ts.reset(); |
---|
99 | leda_list<leda_edge> ml=MAX_CARD_BIPARTITE_MATCHING(lg); |
---|
100 | cout << "LEDA max matching algorithm." << endl |
---|
101 | << "Size of matching: " |
---|
102 | << ml.size() << endl; |
---|
103 | cout << "elapsed time: " << ts << endl << endl; |
---|
104 | |
---|
105 | // ts.reset(); |
---|
106 | // FOR_EACH_LOC(stGW::EdgeIt, e, stgw) flow.set(e, 0); |
---|
107 | // typedef SageGraph MutableGraph; |
---|
108 | // while (max_flow_test.augmentOnBlockingFlow<MutableGraph>()) { } |
---|
109 | // cout << "HUGO max matching algorithm based on blocking flow augmentation." |
---|
110 | // << endl << "Matching size: " |
---|
111 | // << max_flow_test.flowValue() << endl; |
---|
112 | // cout << "elapsed time: " << ts << endl << endl; |
---|
113 | |
---|
114 | { |
---|
115 | SageGraph hg; |
---|
116 | SageGraph::Node s=hg.addNode(); |
---|
117 | SageGraph::Node t=hg.addNode(); |
---|
118 | BGW::NodeMap<SageGraph::Node> b_s_nodes(bgw); |
---|
119 | BGW::NodeMap<SageGraph::Node> b_t_nodes(bgw); |
---|
120 | |
---|
121 | FOR_EACH_INC_LOC(BGW::ClassNodeIt, n, bgw, BGW::S_CLASS) { |
---|
122 | b_s_nodes.set(n, hg.addNode()); |
---|
123 | hg.addEdge(s, b_s_nodes[n]); |
---|
124 | } |
---|
125 | FOR_EACH_INC_LOC(BGW::ClassNodeIt, n, bgw, BGW::T_CLASS) { |
---|
126 | b_t_nodes.set(n, hg.addNode()); |
---|
127 | hg.addEdge(b_t_nodes[n], t); |
---|
128 | } |
---|
129 | |
---|
130 | FOR_EACH_LOC(BGW::EdgeIt, e, bgw) |
---|
131 | hg.addEdge(b_s_nodes[bgw.tail(e)], b_t_nodes[bgw.head(e)]); |
---|
132 | |
---|
133 | ConstMap<SageGraph::Edge, int> cm(1); |
---|
134 | SageGraph::EdgeMap<int> flow(hg); //0 |
---|
135 | |
---|
136 | Timer ts; |
---|
137 | |
---|
138 | ts.reset(); |
---|
139 | MaxFlow<SageGraph, int, ConstMap<SageGraph::Edge, int>, |
---|
140 | SageGraph::EdgeMap<int> > |
---|
141 | max_flow_test(hg, s, t, cm, flow); |
---|
142 | max_flow_test.run(); |
---|
143 | cout << "HUGO max matching algorithm on SageGraph by copying the graph, based on preflow." |
---|
144 | << endl |
---|
145 | << "Size of matching: " |
---|
146 | << max_flow_test.flowValue() << endl; |
---|
147 | cout << "elapsed time: " << ts << endl << endl; |
---|
148 | } |
---|
149 | |
---|
150 | return 0; |
---|
151 | } |
---|