// -*- c++ -*- #ifndef HUGO_LEDA_GRAPH_WRAPPER_H #define HUGO_LEDA_GRAPH_WRAPPER_H #include #include #include #include #include //#include //#include //#if defined(LEDA_NAMESPACE) //using namespace leda; //#endif #include namespace hugo { /// \brief A graph wrapper structure for wrapping LEDA graphs in HUGO. /// /// This graph wrapper class wraps LEDA graphs and LEDA parametrized graphs /// to satisfy HUGO graph concepts. /// Then the generic HUGOlib algorithms and wrappers can be used /// with LEDA graphs. /// \ingroup gwrapper template class LedaGraphWrapper { protected: Graph* l_graph; LedaGraphWrapper() : l_graph(0) { } void setGraph(Graph& _l_graph) { l_graph=&_l_graph; } public: //LedaGraphWrapper() { } LedaGraphWrapper(Graph& _l_graph) : l_graph(&_l_graph) { } LedaGraphWrapper(const LedaGraphWrapper &G) : l_graph(G.l_graph) { } template class NodeMap; template class EdgeMap; template class NodeMapWrapper; template class EdgeMapWrapper; class Node; class NodeIt; class Edge; class EdgeIt; class OutEdgeIt; class InEdgeIt; /// The base type of the node iterators. class Node { friend class LedaGraphWrapper; //friend class Edge; friend class EdgeIt; friend class InEdgeIt; friend class OutEdgeIt; protected: template friend class NodeMap; leda_node l_n; public: //FIXME Node(leda_node _l_n) : l_n(_l_n) { } public: /// @warning The default constructor sets the iterator /// to an undefined value. Node() {} //FIXME /// Initialize the iterator to be invalid Node(Invalid) : l_n(0) { } //Node(const Node &) {} bool operator==(Node n) const { return l_n==n.l_n; } //FIXME bool operator!=(Node n) const { return l_n!=n.l_n; } //FIXME operator leda_node () { return l_n; } }; /// This iterator goes through each node. class NodeIt : public Node { public: /// @warning The default constructor sets the iterator /// to an undefined value. NodeIt() {} //FIXME /// Initialize the iterator to be invalid NodeIt(Invalid i) : Node(i) {} /// Sets the iterator to the first node of \c G. NodeIt(const LedaGraphWrapper &G) : Node(G.l_graph->first_node()) { } //NodeIt(const NodeIt &) {} //FIXME }; /// The base type of the edge iterators. class Edge { friend class LedaGraphWrapper; protected: template friend class EdgeMap; leda_edge l_e; public: //FIXME Edge(leda_edge _l_e) : l_e(_l_e) { } public: /// @warning The default constructor sets the iterator /// to an undefined value. Edge() {} //FIXME /// Initialize the iterator to be invalid Edge(Invalid) : l_e(0) {} //Edge(const Edge &) {} bool operator==(Edge e) const { return l_e==e.l_e; } //FIXME bool operator!=(Edge e) const { return l_e!=e.l_e; } //FIXME operator leda_edge () { return l_e; } }; /// This iterator goes trought the outgoing edges of a certain graph. class OutEdgeIt : public Edge { public: /// @warning The default constructor sets the iterator /// to an undefined value. OutEdgeIt() {} /// Initialize the iterator to be invalid OutEdgeIt(Invalid i) : Edge(i) {} /// This constructor sets the iterator to first outgoing edge. /// This constructor set the iterator to the first outgoing edge of /// node ///@param n the node ///@param G the graph OutEdgeIt(const LedaGraphWrapper & G, Node n) : Edge(G.l_graph->first_adj_edge(n.l_n)) { } }; class InEdgeIt : public Edge { public: /// @warning The default constructor sets the iterator /// to an undefined value. InEdgeIt() {} /// Initialize the iterator to be invalid InEdgeIt(Invalid i) : Edge(i) {} InEdgeIt(const LedaGraphWrapper & G, Node n) : Edge(G.l_graph->first_in_edge(n.l_n)) { } }; // class SymEdgeIt : public Edge {}; class EdgeIt : public Edge { public: /// @warning The default constructor sets the iterator /// to an undefined value. EdgeIt() {} /// Initialize the iterator to be invalid EdgeIt(Invalid i) : Edge(i) {} EdgeIt(const LedaGraphWrapper & G) : Edge(G.l_graph->first_edge()) { } }; /// First node of the graph. /// \post \c i and the return value will be the first node. /// NodeIt &first(NodeIt &i) const { i=NodeIt(*this); return i; } /// The first outgoing edge. InEdgeIt &first(InEdgeIt &i, Node n) const { i=InEdgeIt(*this, n); return i; } /// The first incoming edge. OutEdgeIt &first(OutEdgeIt &i, Node n) const { i=OutEdgeIt(*this, n); return i; } // SymEdgeIt &first(SymEdgeIt &, Node) const { return i;} /// The first edge of the Graph. EdgeIt &first(EdgeIt &i) const { i=EdgeIt(*this); return i; } // Node getNext(Node) const {} // InEdgeIt getNext(InEdgeIt) const {} // OutEdgeIt getNext(OutEdgeIt) const {} // //SymEdgeIt getNext(SymEdgeIt) const {} // EdgeIt getNext(EdgeIt) const {} /// Go to the next node. NodeIt &next(NodeIt &i) const { i.l_n=l_graph->succ_node(i.l_n); return i; } /// Go to the next incoming edge. InEdgeIt &next(InEdgeIt &i) const { i.l_e=l_graph->in_succ(i.l_e); return i; } /// Go to the next outgoing edge. OutEdgeIt &next(OutEdgeIt &i) const { i.l_e=l_graph->adj_succ(i.l_e); return i; } //SymEdgeIt &next(SymEdgeIt &) const {} /// Go to the next edge. EdgeIt &next(EdgeIt &i) const { i.l_e=l_graph->succ_edge(i.l_e); return i; } // template< typename It > // It first() const { // It e; // first(e); // return e; // } // template< typename It > // It first(Node v) const { // It e; // first(e, v); // return e; // } ///Gives back the head node of an edge. Node head(Edge e) const { return Node(l_graph->target(e.l_e)); } ///Gives back the tail node of an edge. Node tail(Edge e) const { return Node(l_graph->source(e.l_e)); } Node aNode(InEdgeIt e) const { return head(e); } Node aNode(OutEdgeIt e) const { return tail(e); } // Node aNode(SymEdgeIt) const {} Node bNode(InEdgeIt e) const { return tail(e); } Node bNode(OutEdgeIt e) const { return head(e); } // Node bNode(SymEdgeIt) const {} /// Checks if a node iterator is valid bool valid(Node n) const { return n.l_n; } /// Checks if an edge iterator is valid bool valid(Edge e) const { return e.l_e; } ///Gives back the \e id of a node. int id(Node n) const { return n.l_n->id(); } ///Gives back the \e id of an edge. int id(Edge e) const { return e.l_e->id(); } //void setInvalid(Node &) const {}; //void setInvalid(Edge &) const {}; Node addNode() const { return Node(l_graph->new_node()); } Edge addEdge(Node tail, Node head) const { return Edge(l_graph->new_edge(tail.l_n, head.l_n)); } void erase(Node n) const { l_graph->del_node(n.l_n); } void erase(Edge e) const { l_graph->del_edge(e.l_e); } void clear() const { l_graph->clear(); } int nodeNum() const { return l_graph->number_of_nodes(); } int edgeNum() const { return l_graph->number_of_edges(); } ///Read/write map from the nodes to type \c T. template class NodeMap { leda_node_map leda_stuff; public: typedef T ValueType; typedef Node KeyType; NodeMap(const LedaGraphWrapper &G) : leda_stuff(*(G.l_graph)) {} NodeMap(const LedaGraphWrapper &G, T t) : leda_stuff(*(G.l_graph), t) {} void set(Node i, T t) { leda_stuff[i.l_n]=t; } T get(Node i) const { return leda_stuff[i.l_n]; } //FIXME: Is it necessary T &operator[](Node i) { return leda_stuff[i.l_n]; } const T &operator[](Node i) const { return leda_stuff[i.l_n]; } void update() { /*leda_stuff.init(leda_stuff.get_graph());*/ } //void update(T a) { leda_stuff.init(leda_stuff.get_graph()/**(G.l_graph)*/, a); } //FIXME: Is it necessary }; ///Read/write map from the edges to type \c T. template class EdgeMap { leda_edge_map leda_stuff; public: typedef T ValueType; typedef Edge KeyType; EdgeMap(const LedaGraphWrapper &G) : leda_stuff(*(G.l_graph)) {} EdgeMap(const LedaGraphWrapper &G, T t) : leda_stuff(*(G.l_graph), t) {} void set(Edge i, T t) { leda_stuff[i.l_e]=t; } T get(Edge i) const { return leda_stuff[i.l_e]; } //FIXME: Is it necessary T &operator[](Edge i) { return leda_stuff[i.l_e]; } const T &operator[](Edge i) const { return leda_stuff[i.l_e]; } void update() { /*leda_stuff.init(leda_stuff.get_graph());*/ } //void update(T a) { leda_stuff.init(leda_stuff.get_graph()/**(G.l_graph)*/, a); } //FIXME: Is it necessary }; ///Read/write map from the nodes to type \c T. template class NodeMapWrapper { leda_node_map* leda_stuff; public: typedef T ValueType; typedef Node KeyType; NodeMapWrapper(leda_node_map& _leda_stuff) : leda_stuff(&_leda_stuff) { } //NodeMap(leda_node_map& &G, T t) : leda_stuff(*(G.l_graph), t) {} void set(Node i, T t) { (*leda_stuff)[i.l_n]=t; } T get(Node i) const { return (*leda_stuff)[i.l_n]; } //FIXME: Is it necessary T &operator[](Node i) { return (*leda_stuff)[i.l_n]; } const T &operator[](Node i) const { return (*leda_stuff)[i.l_n]; } void update() { /*leda_stuff.init(leda_stuff.get_graph());*/ } //void update(T a) { leda_stuff.init(leda_stuff.get_graph()/**(G.l_graph)*/, a); } //FIXME: Is it necessary }; ///Read/write map from the edges to type \c T. template class EdgeMapWrapper { leda_edge_map* leda_stuff; public: typedef T ValueType; typedef Edge KeyType; EdgeMapWrapper(leda_edge_map& _leda_stuff) : leda_stuff(_leda_stuff) { } //EdgeMap(const LedaGraphWrapper &G, T t) : leda_stuff(*(G.l_graph), t) {} void set(Edge i, T t) { (*leda_stuff)[i.l_e]=t; } T get(Edge i) const { return (*leda_stuff)[i.l_e]; } //FIXME: Is it necessary T &operator[](Edge i) { return (*leda_stuff)[i.l_e]; } const T &operator[](Edge i) const { return (*leda_stuff)[i.l_e]; } void update() { /*leda_stuff.init(leda_stuff.get_graph());*/ } //void update(T a) { leda_stuff.init(leda_stuff.get_graph()/**(G.l_graph)*/, a); } //FIXME: Is it necessary }; }; /// \brief LEDA graph template. /// /// This graph stucture uses LEDA graphs for physical storage. /// \ingroup graphs template class LedaGraph : public LedaGraphWrapper { typedef LedaGraphWrapper Parent; protected: Graph gr; public: LedaGraph() { Parent::setGraph(gr); } }; } //namespace hugo #endif // HUGO_LEDA_GRAPH_WRAPPER_H