// -*- c++ -*- #ifndef HUGO_LEDA_GRAPH_H #define HUGO_LEDA_GRAPH_H #include #include #include //#include //#include //#if defined(LEDA_NAMESPACE) //using namespace leda; //#endif #include /// The namespace of HugoLib namespace hugo { // @defgroup empty_graph The LedaGraph class // @{ /// An empty graph class. /// This class provides all the common features of a grapf structure, /// however completely without implementations or real data structures /// behind the interface. /// All graph algorithms should compile with this class, but it will not /// run properly, of course. /// /// It can be used for checking the interface compatibility, /// or it can serve as a skeleton of a new graph structure. /// /// Also, you will find here the full documentation of a certain graph /// feature, the documentation of a real graph imlementation /// like @ref ListGraph or /// @ref SmartGraph will just refer to this structure. template class LedaGraph { Graph* _graph; public: //LedaGraph() { } LedaGraph(Graph& __graph) : _graph(&__graph) { } LedaGraph(const LedaGraph &G) : _graph(G._graph) { } template class NodeMap; template class EdgeMap; /// The base type of the node iterators. class Node { friend class LedaGraph; //friend class Edge; friend class EdgeIt; friend class InEdgeIt; friend class OutEdgeIt; protected: template friend class NodeMap; leda_node _n; Node(leda_node __n) : _n(__n) { } public: /// @warning The default constructor sets the iterator /// to an undefined value. Node() {} //FIXME /// Initialize the iterator to be invalid Node(Invalid) : _n(0) { } //Node(const Node &) {} bool operator==(Node n) const { return _n==n._n; } //FIXME bool operator!=(Node n) const { return _n!=n._n; } //FIXME }; /// This iterator goes through each node. class NodeIt : public Node { public: /// @warning The default constructor sets the iterator /// to an undefined value. NodeIt() {} //FIXME /// Initialize the iterator to be invalid NodeIt(Invalid i) : Node(i) {} /// Sets the iterator to the first node of \c G. NodeIt(const LedaGraph &G) : Node(G._graph->first_node()) { } //NodeIt(const NodeIt &) {} //FIXME }; /// The base type of the edge iterators. class Edge { friend class LedaGraph; protected: template friend class EdgeMap; leda_edge _e; Edge(leda_edge __e) : _e(__e) { } public: /// @warning The default constructor sets the iterator /// to an undefined value. Edge() {} //FIXME /// Initialize the iterator to be invalid Edge(Invalid) : _e(0) {} //Edge(const Edge &) {} bool operator==(Edge e) const { return _e==e._e; } //FIXME bool operator!=(Edge e) const { return _e!=e._e; } //FIXME }; /// This iterator goes trought the outgoing edges of a certain graph. class OutEdgeIt : public Edge { public: /// @warning The default constructor sets the iterator /// to an undefined value. OutEdgeIt() {} /// Initialize the iterator to be invalid OutEdgeIt(Invalid i) : Edge(i) {} /// This constructor sets the iterator to first outgoing edge. /// This constructor set the iterator to the first outgoing edge of /// node ///@param n the node ///@param G the graph OutEdgeIt(const LedaGraph & G, Node n) : Edge(G._graph->first_adj_edge(n._n)) { } }; class InEdgeIt : public Edge { public: /// @warning The default constructor sets the iterator /// to an undefined value. InEdgeIt() {} /// Initialize the iterator to be invalid InEdgeIt(Invalid i) : Edge(i) {} InEdgeIt(const LedaGraph & G, Node n) : Edge(G._graph->first_in_edge(n._n)) { } }; // class SymEdgeIt : public Edge {}; class EdgeIt : public Edge { public: /// @warning The default constructor sets the iterator /// to an undefined value. EdgeIt() {} /// Initialize the iterator to be invalid EdgeIt(Invalid i) : Edge(i) {} EdgeIt(const LedaGraph & G) : Edge(G._graph->first_edge()) { } }; /// First node of the graph. /// \post \c i and the return value will be the first node. /// NodeIt &first(NodeIt &i) const { i=NodeIt(*this); return i; } /// The first outgoing edge. InEdgeIt &first(InEdgeIt &i, Node n) const { i=InEdgeIt(*this, n); return i; } /// The first incoming edge. OutEdgeIt &first(OutEdgeIt &i, Node n) const { i=OutEdgeIt(*this, n); return i; } // SymEdgeIt &first(SymEdgeIt &, Node) const { return i;} /// The first edge of the Graph. EdgeIt &first(EdgeIt &i) const { i=EdgeIt(*this); return i; } // Node getNext(Node) const {} // InEdgeIt getNext(InEdgeIt) const {} // OutEdgeIt getNext(OutEdgeIt) const {} // //SymEdgeIt getNext(SymEdgeIt) const {} // EdgeIt getNext(EdgeIt) const {} /// Go to the next node. NodeIt &next(NodeIt &i) const { i._n=_graph->succ_node(i._n); return i; } /// Go to the next incoming edge. InEdgeIt &next(InEdgeIt &i) const { i._e=_graph->in_succ(i._e); return i; } /// Go to the next outgoing edge. OutEdgeIt &next(OutEdgeIt &i) const { i._e=_graph->adj_succ(i._e); return i; } //SymEdgeIt &next(SymEdgeIt &) const {} /// Go to the next edge. EdgeIt &next(EdgeIt &i) const { i._e=_graph->succ_edge(i._e); return i; } template< typename It > It first() const { It e; first(e); return e; } template< typename It > It first(Node v) const { It e; first(e, v); return e; } ///Gives back the head node of an edge. Node head(Edge e) const { return Node(_graph->target(e._e)); } ///Gives back the tail node of an edge. Node tail(Edge e) const { return Node(_graph->source(e._e)); } Node aNode(InEdgeIt e) const { return head(e); } Node aNode(OutEdgeIt e) const { return tail(e); } // Node aNode(SymEdgeIt) const {} Node bNode(InEdgeIt e) const { return tail(e); } Node bNode(OutEdgeIt e) const { return head(e); } // Node bNode(SymEdgeIt) const {} /// Checks if a node iterator is valid bool valid(Node n) const { return n._n; } /// Checks if an edge iterator is valid bool valid(Edge e) const { return e._e; } ///Gives back the \e id of a node. int id(Node n) const { return n._n->id(); } ///Gives back the \e id of an edge. int id(Edge e) const { return e._e->id(); } //void setInvalid(Node &) const {}; //void setInvalid(Edge &) const {}; Node addNode() const { return Node(_graph->new_node()); } Edge addEdge(Node tail, Node head) const { return Edge(_graph->new_edge(tail._n, head._n)); } void erase(Node n) const { _graph->del_node(n._n); } void erase(Edge e) const { _graph->del_edge(e._e); } void clear() const { _graph->clear(); } int nodeNum() const { return _graph->number_of_nodes(); } int edgeNum() const { return _graph->number_of_edges(); } ///Read/write map from the nodes to type \c T. template class NodeMap { leda_node_map leda_stuff; public: typedef T ValueType; typedef Node KeyType; NodeMap(const LedaGraph &G) : leda_stuff(*(G._graph)) {} NodeMap(const LedaGraph &G, T t) : leda_stuff(*(G._graph), t) {} void set(Node i, T t) { leda_stuff[i._n]=t; } T get(Node i) const { return leda_stuff[i._n]; } //FIXME: Is it necessary T &operator[](Node i) { return leda_stuff[i._n]; } const T &operator[](Node i) const { return leda_stuff[i._n]; } void update() { /*leda_stuff.init(leda_stuff.get_graph());*/ } //void update(T a) { leda_stuff.init(leda_stuff.get_graph()/**(G._graph)*/, a); } //FIXME: Is it necessary }; ///Read/write map from the edges to type \c T. template class EdgeMap { leda_edge_map leda_stuff; public: typedef T ValueType; typedef Edge KeyType; EdgeMap(const LedaGraph &G) : leda_stuff(*(G._graph)) {} EdgeMap(const LedaGraph &G, T t) : leda_stuff(*(G._graph), t) {} void set(Edge i, T t) { leda_stuff[i._e]=t; } T get(Edge i) const { return leda_stuff[i._e]; } //FIXME: Is it necessary T &operator[](Edge i) { return leda_stuff[i._e]; } const T &operator[](Edge i) const { return leda_stuff[i._e]; } void update() { /*leda_stuff.init(leda_stuff.get_graph());*/ } //void update(T a) { leda_stuff.init(leda_stuff.get_graph()/**(G._graph)*/, a); } //FIXME: Is it necessary }; }; // @} } //namespace hugo // class EmptyBipGraph : public EmptyGraph // { // class ANode {}; // class BNode {}; // ANode &next(ANode &) {} // BNode &next(BNode &) {} // ANode &getFirst(ANode &) const {} // BNode &getFirst(BNode &) const {} // enum NodeClass { A = 0, B = 1 }; // NodeClass getClass(Node n) {} // } #endif // HUGO_LEDA_GRAPH_H