[677] | 1 | // -*- c++ -*- |
---|
| 2 | #ifndef HUGO_NET_GRAPH_H |
---|
| 3 | #define HUGO_NET_GRAPH_H |
---|
| 4 | |
---|
| 5 | ///\file |
---|
| 6 | ///\brief Declaration of EdgePathGraph. |
---|
| 7 | |
---|
| 8 | #include <hugo/invalid.h> |
---|
| 9 | #include <hugo/maps.h> |
---|
| 10 | |
---|
| 11 | /// The namespace of HugoLib |
---|
| 12 | namespace hugo { |
---|
| 13 | |
---|
| 14 | // @defgroup empty_graph The EdgePathGraph class |
---|
| 15 | // @{ |
---|
| 16 | |
---|
| 17 | /// A graph class in that a simple edge can represent a path. |
---|
| 18 | |
---|
| 19 | /// This class provides all the common features of a graph structure |
---|
| 20 | /// that represents a network. You can handle with it layers. This |
---|
| 21 | /// means that an edge in one layer can be a complete path in a nother |
---|
| 22 | /// layer. |
---|
| 23 | |
---|
| 24 | template <typename P, class Gact, class Gsub> |
---|
| 25 | class EdgePathGraph |
---|
| 26 | { |
---|
| 27 | |
---|
| 28 | public: |
---|
| 29 | |
---|
| 30 | /// The actual layer |
---|
| 31 | Gact actuallayer; |
---|
| 32 | |
---|
| 33 | |
---|
| 34 | /// The layer on which the edges in this layer can represent paths. |
---|
| 35 | Gsub * sublayer; |
---|
| 36 | |
---|
| 37 | |
---|
| 38 | /// Map of nodes that represent the nodes of this layer in the sublayer |
---|
| 39 | typename Gact::template NodeMap<typename Gsub::Node *> projection; |
---|
| 40 | |
---|
| 41 | |
---|
| 42 | /// Map of routes that are represented by some edges in this layer |
---|
| 43 | typename Gact::template EdgeMap<P *> edgepath; |
---|
| 44 | |
---|
| 45 | |
---|
| 46 | /// Defalult constructor. |
---|
| 47 | /// We don't need any extra lines, because the actuallayer |
---|
| 48 | /// variable has run its constructor, when we have created this class |
---|
| 49 | /// So only the two maps has to be initialised here. |
---|
| 50 | EdgePathGraph() : projection(actuallayer), edgepath(actuallayer) |
---|
| 51 | { |
---|
| 52 | } |
---|
| 53 | |
---|
| 54 | |
---|
| 55 | ///Copy consructor. |
---|
| 56 | EdgePathGraph(const EdgePathGraph<P, Gact, Gsub> & EPG ) : actuallayer(EPG.actuallayer) , edgepath(actuallayer), projection(actuallayer) |
---|
| 57 | { |
---|
| 58 | } |
---|
| 59 | |
---|
| 60 | |
---|
| 61 | /// Map adder |
---|
| 62 | |
---|
| 63 | /// This function gets two edgemaps. One belongs to the actual layer and the |
---|
| 64 | /// other belongs to the sublayer. |
---|
| 65 | /// The function iterates through all of the edges in the edgemap belonging to the actual layer. |
---|
| 66 | /// It gets the value that belongs to the actual edge, and adds it to the value of each edge in the |
---|
| 67 | /// path represented by itself in the edgemap that belongs to the sublayer. |
---|
| 68 | |
---|
| 69 | template <typename T1, typename T2> void addMap (typename Gact::EdgeMap<T1> & actmap, typename Gsub::EdgeMap<T2> & submap) |
---|
| 70 | { |
---|
| 71 | for(EdgeIt e(actuallayer);actuallayer.valid(e);actuallayer.next(e)) |
---|
| 72 | { |
---|
| 73 | typedef typename P::EdgeIt PEdgeIt; |
---|
| 74 | PEdgeIt f; |
---|
| 75 | |
---|
| 76 | //dep//cout << "Edge " << id(tail(e)) << " - " << id(head(e)) << " in actual layer is"; |
---|
| 77 | T1 incr=actmap[e]; |
---|
| 78 | //cout << incr << endl; |
---|
| 79 | |
---|
| 80 | if(edgepath[e]) |
---|
| 81 | { |
---|
| 82 | //dep//cout << endl << "Path"; |
---|
| 83 | for(edgepath[e]->first(f); edgepath[e]->valid(f); edgepath[e]->next(f)) |
---|
| 84 | { |
---|
| 85 | //dep//cout << " " << sublayer->id(sublayer->tail(f)) << "-" << sublayer->id(sublayer->head(f)); |
---|
| 86 | submap[f]+=incr; |
---|
| 87 | } |
---|
| 88 | //dep////cout << EPGr2.id(EPGr2.head(f)) << endl; |
---|
| 89 | //dep//cout << endl; |
---|
| 90 | } |
---|
| 91 | else |
---|
| 92 | { |
---|
| 93 | //dep//cout << " itself." <<endl; |
---|
| 94 | } |
---|
| 95 | } |
---|
| 96 | |
---|
| 97 | }; |
---|
| 98 | |
---|
| 99 | |
---|
| 100 | /// Describe |
---|
| 101 | /// This function walks thorugh the edges of the actual layer |
---|
| 102 | /// and displays the path represented by the actual edge. |
---|
| 103 | void describe () |
---|
| 104 | { |
---|
| 105 | for(EdgeIt e(actuallayer);actuallayer.valid(e);actuallayer.next(e)) |
---|
| 106 | { |
---|
| 107 | typedef typename P::EdgeIt PEdgeIt; |
---|
| 108 | PEdgeIt f; |
---|
| 109 | |
---|
| 110 | cout << "Edge " << id(tail(e)) << " - " << id(head(e)) << " in actual layer is"; |
---|
| 111 | if(edgepath[e]) |
---|
| 112 | { |
---|
| 113 | cout << endl << "Path"; |
---|
| 114 | for(edgepath[e]->first(f); edgepath[e]->valid(f); edgepath[e]->next(f)) |
---|
| 115 | { |
---|
| 116 | cout << " " << sublayer->id(sublayer->tail(f)) << "-" << sublayer->id(sublayer->head(f)); |
---|
| 117 | } |
---|
| 118 | //cout << EPGr2.id(EPGr2.head(f)) << endl; |
---|
| 119 | cout << endl; |
---|
| 120 | } |
---|
| 121 | else |
---|
| 122 | { |
---|
| 123 | cout << " itself." <<endl; |
---|
| 124 | } |
---|
| 125 | } |
---|
| 126 | |
---|
| 127 | }; |
---|
| 128 | |
---|
| 129 | |
---|
| 130 | |
---|
| 131 | |
---|
| 132 | /// The base type of the node iterators. |
---|
| 133 | |
---|
| 134 | /// This is the base type of each node iterators, |
---|
| 135 | /// thus each kind of node iterator will convert to this. |
---|
| 136 | /// The Node type of the EdgePathGraph is the Node type of the actual layer. |
---|
| 137 | typedef typename Gact::Node Node; |
---|
| 138 | |
---|
| 139 | |
---|
| 140 | /// This iterator goes through each node. |
---|
| 141 | |
---|
| 142 | /// Its usage is quite simple, for example you can count the number |
---|
| 143 | /// of nodes in graph \c G of type \c Graph like this: |
---|
| 144 | /// \code |
---|
| 145 | ///int count=0; |
---|
| 146 | ///for(Graph::NodeIt n(G);G.valid(n);G.next(n)) count++; |
---|
| 147 | /// \endcode |
---|
| 148 | /// The NodeIt type of the EdgePathGraph is the NodeIt type of the actual layer. |
---|
| 149 | typedef typename Gact::NodeIt NodeIt; |
---|
| 150 | |
---|
| 151 | |
---|
| 152 | /// The base type of the edge iterators. |
---|
| 153 | /// The Edge type of the EdgePathGraph is the Edge type of the actual layer. |
---|
| 154 | typedef typename Gact::Edge Edge; |
---|
| 155 | |
---|
| 156 | |
---|
| 157 | /// This iterator goes trough the outgoing edges of a node. |
---|
| 158 | |
---|
| 159 | /// This iterator goes trough the \e outgoing edges of a certain node |
---|
| 160 | /// of a graph. |
---|
| 161 | /// Its usage is quite simple, for example you can count the number |
---|
| 162 | /// of outgoing edges of a node \c n |
---|
| 163 | /// in graph \c G of type \c Graph as follows. |
---|
| 164 | /// \code |
---|
| 165 | ///int count=0; |
---|
| 166 | ///for(Graph::OutEdgeIt e(G,n);G.valid(e);G.next(e)) count++; |
---|
| 167 | /// \endcode |
---|
| 168 | /// The OutEdgeIt type of the EdgePathGraph is the OutEdgeIt type of the actual layer. |
---|
| 169 | typedef typename Gact::OutEdgeIt OutEdgeIt; |
---|
| 170 | |
---|
| 171 | |
---|
| 172 | /// This iterator goes trough the incoming edges of a node. |
---|
| 173 | |
---|
| 174 | /// This iterator goes trough the \e incoming edges of a certain node |
---|
| 175 | /// of a graph. |
---|
| 176 | /// Its usage is quite simple, for example you can count the number |
---|
| 177 | /// of outgoing edges of a node \c n |
---|
| 178 | /// in graph \c G of type \c Graph as follows. |
---|
| 179 | /// \code |
---|
| 180 | ///int count=0; |
---|
| 181 | ///for(Graph::InEdgeIt e(G,n);G.valid(e);G.next(e)) count++; |
---|
| 182 | /// \endcode |
---|
| 183 | /// The InEdgeIt type of the EdgePathGraph is the InEdgeIt type of the actual layer. |
---|
| 184 | typedef typename Gact::InEdgeIt InEdgeIt; |
---|
| 185 | |
---|
| 186 | |
---|
| 187 | /// This iterator goes through each edge. |
---|
| 188 | |
---|
| 189 | /// This iterator goes through each edge of a graph. |
---|
| 190 | /// Its usage is quite simple, for example you can count the number |
---|
| 191 | /// of edges in a graph \c G of type \c Graph as follows: |
---|
| 192 | /// \code |
---|
| 193 | ///int count=0; |
---|
| 194 | ///for(Graph::EdgeIt e(G);G.valid(e);G.next(e)) count++; |
---|
| 195 | /// \endcode |
---|
| 196 | /// The EdgeIt type of the EdgePathGraph is the EdgeIt type of the actual layer. |
---|
| 197 | typedef typename Gact::EdgeIt EdgeIt; |
---|
| 198 | |
---|
| 199 | |
---|
| 200 | /// First node of the graph. |
---|
| 201 | |
---|
| 202 | /// \retval i the first node. |
---|
| 203 | /// \return the first node. |
---|
| 204 | typename Gact::NodeIt &first(typename Gact::NodeIt &i) const { return actuallayer.first(i);} |
---|
| 205 | |
---|
| 206 | |
---|
| 207 | /// The first incoming edge. |
---|
| 208 | typename Gact::InEdgeIt &first(typename Gact::InEdgeIt &i, typename Gact::Node) const { return actuallayer.first(i);} |
---|
| 209 | |
---|
| 210 | |
---|
| 211 | /// The first outgoing edge. |
---|
| 212 | typename Gact::OutEdgeIt &first(typename Gact::OutEdgeIt &i, typename Gact::Node) const { return actuallayer.first(i);} |
---|
| 213 | |
---|
| 214 | |
---|
| 215 | // SymEdgeIt &first(SymEdgeIt &, Node) const { return i;} |
---|
| 216 | /// The first edge of the Graph. |
---|
| 217 | typename Gact::EdgeIt &first(typename Gact::EdgeIt &i) const { return actuallayer.first(i);} |
---|
| 218 | |
---|
| 219 | |
---|
| 220 | // Node getNext(Node) const {} |
---|
| 221 | // InEdgeIt getNext(InEdgeIt) const {} |
---|
| 222 | // OutEdgeIt getNext(OutEdgeIt) const {} |
---|
| 223 | // //SymEdgeIt getNext(SymEdgeIt) const {} |
---|
| 224 | // EdgeIt getNext(EdgeIt) const {} |
---|
| 225 | |
---|
| 226 | |
---|
| 227 | /// Go to the next node. |
---|
| 228 | typename Gact::NodeIt &next(typename Gact::NodeIt &i) const { return actuallayer.next(i);} |
---|
| 229 | /// Go to the next incoming edge. |
---|
| 230 | typename Gact::InEdgeIt &next(typename Gact::InEdgeIt &i) const { return actuallayer.next(i);} |
---|
| 231 | /// Go to the next outgoing edge. |
---|
| 232 | typename Gact::OutEdgeIt &next(typename Gact::OutEdgeIt &i) const { return actuallayer.next(i);} |
---|
| 233 | //SymEdgeIt &next(SymEdgeIt &) const {} |
---|
| 234 | /// Go to the next edge. |
---|
| 235 | typename Gact::EdgeIt &next(typename Gact::EdgeIt &i) const { return actuallayer.next(i);} |
---|
| 236 | |
---|
| 237 | ///Gives back the head node of an edge. |
---|
| 238 | typename Gact::Node head(typename Gact::Edge edge) const { return actuallayer.head(edge); } |
---|
| 239 | ///Gives back the tail node of an edge. |
---|
| 240 | typename Gact::Node tail(typename Gact::Edge edge) const { return actuallayer.tail(edge); } |
---|
| 241 | |
---|
| 242 | // Node aNode(InEdgeIt) const {} |
---|
| 243 | // Node aNode(OutEdgeIt) const {} |
---|
| 244 | // Node aNode(SymEdgeIt) const {} |
---|
| 245 | |
---|
| 246 | // Node bNode(InEdgeIt) const {} |
---|
| 247 | // Node bNode(OutEdgeIt) const {} |
---|
| 248 | // Node bNode(SymEdgeIt) const {} |
---|
| 249 | |
---|
| 250 | /// Checks if a node iterator is valid |
---|
| 251 | |
---|
| 252 | ///\todo Maybe, it would be better if iterator converted to |
---|
| 253 | ///bool directly, as Jacint prefers. |
---|
| 254 | bool valid(const typename Gact::Node& node) const { return actuallayer.valid(node);} |
---|
| 255 | /// Checks if an edge iterator is valid |
---|
| 256 | |
---|
| 257 | ///\todo Maybe, it would be better if iterator converted to |
---|
| 258 | ///bool directly, as Jacint prefers. |
---|
| 259 | bool valid(const typename Gact::Edge& edge) const { return actuallayer.valid(edge);} |
---|
| 260 | |
---|
| 261 | ///Gives back the \e id of a node. |
---|
| 262 | |
---|
| 263 | ///\warning Not all graph structures provide this feature. |
---|
| 264 | /// |
---|
| 265 | int id(const typename Gact::Node & node) const { return actuallayer.id(node);} |
---|
| 266 | ///Gives back the \e id of an edge. |
---|
| 267 | |
---|
| 268 | ///\warning Not all graph structures provide this feature. |
---|
| 269 | /// |
---|
| 270 | int id(const typename Gact::Edge & edge) const { return actuallayer.id(edge);} |
---|
| 271 | |
---|
| 272 | //void setInvalid(Node &) const {}; |
---|
| 273 | //void setInvalid(Edge &) const {}; |
---|
| 274 | |
---|
| 275 | ///Add a new node to the graph. |
---|
| 276 | |
---|
| 277 | /// \return the new node. |
---|
| 278 | /// |
---|
| 279 | typename Gact::Node addNode() { return actuallayer.addNode();} |
---|
| 280 | ///Add a new edge to the graph. |
---|
| 281 | |
---|
| 282 | ///Add a new edge to the graph with tail node \c tail |
---|
| 283 | ///and head node \c head. |
---|
| 284 | ///\return the new edge. |
---|
| 285 | typename Gact::Edge addEdge(typename Gact::Node node1, typename Gact::Node node2) { return actuallayer.addEdge(node1, node2);} |
---|
| 286 | |
---|
| 287 | /// Resets the graph. |
---|
| 288 | |
---|
| 289 | /// This function deletes all edges and nodes of the graph. |
---|
| 290 | /// It also frees the memory allocated to store them. |
---|
| 291 | void clear() {actuallayer.clear();} |
---|
| 292 | |
---|
| 293 | int nodeNum() const { return actuallayer.nodeNum();} |
---|
| 294 | int edgeNum() const { return actuallayer.edgeNum();} |
---|
| 295 | |
---|
| 296 | ///Read/write/reference map of the nodes to type \c T. |
---|
| 297 | |
---|
| 298 | ///Read/write/reference map of the nodes to type \c T. |
---|
| 299 | /// \sa MemoryMapSkeleton |
---|
| 300 | /// \todo We may need copy constructor |
---|
| 301 | /// \todo We may need conversion from other nodetype |
---|
| 302 | /// \todo We may need operator= |
---|
| 303 | /// \warning Making maps that can handle bool type (NodeMap<bool>) |
---|
| 304 | /// needs extra attention! |
---|
| 305 | |
---|
| 306 | template<class T> class NodeMap |
---|
| 307 | { |
---|
| 308 | public: |
---|
| 309 | typedef T ValueType; |
---|
| 310 | typedef Node KeyType; |
---|
| 311 | |
---|
| 312 | NodeMap(const EdgePathGraph &) {} |
---|
| 313 | NodeMap(const EdgePathGraph &, T) {} |
---|
| 314 | |
---|
| 315 | template<typename TT> NodeMap(const NodeMap<TT> &) {} |
---|
| 316 | |
---|
| 317 | /// Sets the value of a node. |
---|
| 318 | |
---|
| 319 | /// Sets the value associated with node \c i to the value \c t. |
---|
| 320 | /// |
---|
| 321 | void set(Node, T) {} |
---|
| 322 | // Gets the value of a node. |
---|
| 323 | //T get(Node i) const {return *(T*)0;} //FIXME: Is it necessary? |
---|
| 324 | T &operator[](Node) {return *(T*)0;} |
---|
| 325 | const T &operator[](Node) const {return *(T*)0;} |
---|
| 326 | |
---|
| 327 | /// Updates the map if the graph has been changed |
---|
| 328 | |
---|
| 329 | /// \todo Do we need this? |
---|
| 330 | /// |
---|
| 331 | void update() {} |
---|
| 332 | void update(T a) {} //FIXME: Is it necessary |
---|
| 333 | }; |
---|
| 334 | |
---|
| 335 | ///Read/write/reference map of the edges to type \c T. |
---|
| 336 | |
---|
| 337 | ///Read/write/reference map of the edges to type \c T. |
---|
| 338 | ///It behaves exactly in the same way as \ref NodeMap. |
---|
| 339 | /// \sa NodeMap |
---|
| 340 | /// \sa MemoryMapSkeleton |
---|
| 341 | /// \todo We may need copy constructor |
---|
| 342 | /// \todo We may need conversion from other edgetype |
---|
| 343 | /// \todo We may need operator= |
---|
| 344 | template<class T> class EdgeMap |
---|
| 345 | { |
---|
| 346 | public: |
---|
| 347 | typedef T ValueType; |
---|
| 348 | typedef Edge KeyType; |
---|
| 349 | |
---|
| 350 | EdgeMap(const EdgePathGraph &) {} |
---|
| 351 | EdgeMap(const EdgePathGraph &, T ) {} |
---|
| 352 | |
---|
| 353 | ///\todo It can copy between different types. |
---|
| 354 | /// |
---|
| 355 | template<typename TT> EdgeMap(const EdgeMap<TT> &) {} |
---|
| 356 | |
---|
| 357 | void set(Edge, T) {} |
---|
| 358 | //T get(Edge) const {return *(T*)0;} |
---|
| 359 | T &operator[](Edge) {return *(T*)0;} |
---|
| 360 | const T &operator[](Edge) const {return *(T*)0;} |
---|
| 361 | |
---|
| 362 | void update() {} |
---|
| 363 | void update(T a) {} //FIXME: Is it necessary |
---|
| 364 | }; |
---|
| 365 | }; |
---|
| 366 | |
---|
| 367 | /// An empty eraseable graph class. |
---|
| 368 | |
---|
| 369 | /// This class provides all the common features of an \e eraseable graph |
---|
| 370 | /// structure, |
---|
| 371 | /// however completely without implementations and real data structures |
---|
| 372 | /// behind the interface. |
---|
| 373 | /// All graph algorithms should compile with this class, but it will not |
---|
| 374 | /// run properly, of course. |
---|
| 375 | /// |
---|
| 376 | /// \todo This blabla could be replaced by a sepatate description about |
---|
| 377 | /// Skeletons. |
---|
| 378 | /// |
---|
| 379 | /// It can be used for checking the interface compatibility, |
---|
| 380 | /// or it can serve as a skeleton of a new graph structure. |
---|
| 381 | /// |
---|
| 382 | /// Also, you will find here the full documentation of a certain graph |
---|
| 383 | /// feature, the documentation of a real graph imlementation |
---|
| 384 | /// like @ref ListGraph or |
---|
| 385 | /// @ref SmartGraph will just refer to this structure. |
---|
| 386 | template <typename P, typename Gact, typename Gsub> |
---|
| 387 | class EraseableEdgePathGraph : public EdgePathGraph<P, Gact, Gsub> |
---|
| 388 | { |
---|
| 389 | public: |
---|
| 390 | /// Deletes a node. |
---|
| 391 | void erase(typename Gact::Node n) {actuallayer.erase(n);} |
---|
| 392 | /// Deletes an edge. |
---|
| 393 | void erase(typename Gact::Edge e) {actuallayer.erase(e);} |
---|
| 394 | |
---|
| 395 | /// Defalult constructor. |
---|
| 396 | EraseableEdgePathGraph() {} |
---|
| 397 | ///Copy consructor. |
---|
| 398 | EraseableEdgePathGraph(const EdgePathGraph<P, Gact, Gsub> &EPG) {} |
---|
| 399 | }; |
---|
| 400 | |
---|
| 401 | |
---|
| 402 | // @} |
---|
| 403 | |
---|
| 404 | } //namespace hugo |
---|
| 405 | |
---|
| 406 | |
---|
| 407 | #endif // HUGO_SKELETON_GRAPH_H |
---|