1 | // -*- c++ -*- |
---|
2 | #ifndef LEMON_NET_GRAPH_H |
---|
3 | #define LEMON_NET_GRAPH_H |
---|
4 | |
---|
5 | ///\file |
---|
6 | ///\brief Declaration of EdgePathGraph. |
---|
7 | |
---|
8 | #include <lemon/invalid.h> |
---|
9 | #include <lemon/maps.h> |
---|
10 | |
---|
11 | /// The namespace of LEMON |
---|
12 | namespace lemon { |
---|
13 | |
---|
14 | // @defgroup empty_graph The EdgePathGraph class |
---|
15 | // @{ |
---|
16 | |
---|
17 | /// A graph class in that a simple edge can represent a path. |
---|
18 | |
---|
19 | /// This class provides all the common features of a graph structure |
---|
20 | /// that represents a network. You can handle with it layers. This |
---|
21 | /// means that an edge in one layer can be a complete path in a nother |
---|
22 | /// layer. |
---|
23 | |
---|
24 | template <typename P, class Gact, class Gsub> |
---|
25 | class EdgePathGraph |
---|
26 | { |
---|
27 | |
---|
28 | public: |
---|
29 | |
---|
30 | /// The actual layer |
---|
31 | Gact actuallayer; |
---|
32 | |
---|
33 | |
---|
34 | /// The layer on which the edges in this layer can represent paths. |
---|
35 | Gsub * sublayer; |
---|
36 | |
---|
37 | |
---|
38 | /// Map of nodes that represent the nodes of this layer in the sublayer |
---|
39 | typename Gact::template NodeMap<typename Gsub::Node *> projection; |
---|
40 | |
---|
41 | |
---|
42 | /// Map of routes that are represented by some edges in this layer |
---|
43 | typename Gact::template EdgeMap<P *> edgepath; |
---|
44 | |
---|
45 | |
---|
46 | /// Defalult constructor. |
---|
47 | /// We don't need any extra lines, because the actuallayer |
---|
48 | /// variable has run its constructor, when we have created this class |
---|
49 | /// So only the two maps has to be initialised here. |
---|
50 | EdgePathGraph() : projection(actuallayer), edgepath(actuallayer) |
---|
51 | { |
---|
52 | } |
---|
53 | |
---|
54 | |
---|
55 | ///Copy consructor. |
---|
56 | EdgePathGraph(const EdgePathGraph<P, Gact, Gsub> & EPG ) : actuallayer(EPG.actuallayer) , edgepath(actuallayer), projection(actuallayer) |
---|
57 | { |
---|
58 | } |
---|
59 | |
---|
60 | |
---|
61 | /// Map adder |
---|
62 | |
---|
63 | /// This function gets two edgemaps. One belongs to the actual layer and the |
---|
64 | /// other belongs to the sublayer. |
---|
65 | /// The function iterates through all of the edges in the edgemap belonging to the actual layer. |
---|
66 | /// It gets the value that belongs to the actual edge, and adds it to the value of each edge in the |
---|
67 | /// path represented by itself in the edgemap that belongs to the sublayer. |
---|
68 | |
---|
69 | template <typename T1, typename T2> void addMap (typename Gact::EdgeMap<T1> & actmap, typename Gsub::EdgeMap<T2> & submap) |
---|
70 | { |
---|
71 | for(EdgeIt e(actuallayer);actuallayer.valid(e);actuallayer.next(e)) |
---|
72 | { |
---|
73 | typedef typename P::EdgeIt PEdgeIt; |
---|
74 | PEdgeIt f; |
---|
75 | |
---|
76 | //dep//cout << "Edge " << id(source(e)) << " - " << id(target(e)) << " in actual layer is"; |
---|
77 | T1 incr=actmap[e]; |
---|
78 | //cout << incr << endl; |
---|
79 | |
---|
80 | if(edgepath[e]) |
---|
81 | { |
---|
82 | //dep//cout << endl << "Path"; |
---|
83 | for(edgepath[e]->first(f); edgepath[e]->valid(f); edgepath[e]->next(f)) |
---|
84 | { |
---|
85 | //dep//cout << " " << sublayer->id(sublayer->source(f)) << "-" << sublayer->id(sublayer->target(f)); |
---|
86 | submap[f]+=incr; |
---|
87 | } |
---|
88 | //dep////cout << EPGr2.id(EPGr2.target(f)) << endl; |
---|
89 | //dep//cout << endl; |
---|
90 | } |
---|
91 | else |
---|
92 | { |
---|
93 | //dep//cout << " itself." <<endl; |
---|
94 | } |
---|
95 | } |
---|
96 | |
---|
97 | }; |
---|
98 | |
---|
99 | |
---|
100 | /// Describe |
---|
101 | /// This function walks thorugh the edges of the actual layer |
---|
102 | /// and displays the path represented by the actual edge. |
---|
103 | void describe () |
---|
104 | { |
---|
105 | for(EdgeIt e(actuallayer);actuallayer.valid(e);actuallayer.next(e)) |
---|
106 | { |
---|
107 | typedef typename P::EdgeIt PEdgeIt; |
---|
108 | PEdgeIt f; |
---|
109 | |
---|
110 | cout << "Edge " << id(source(e)) << " - " << id(target(e)) << " in actual layer is"; |
---|
111 | if(edgepath[e]) |
---|
112 | { |
---|
113 | cout << endl << "Path"; |
---|
114 | for(edgepath[e]->first(f); edgepath[e]->valid(f); edgepath[e]->next(f)) |
---|
115 | { |
---|
116 | cout << " " << sublayer->id(sublayer->source(f)) << "-" << sublayer->id(sublayer->target(f)); |
---|
117 | } |
---|
118 | //cout << EPGr2.id(EPGr2.target(f)) << endl; |
---|
119 | cout << endl; |
---|
120 | } |
---|
121 | else |
---|
122 | { |
---|
123 | cout << " itself." <<endl; |
---|
124 | } |
---|
125 | } |
---|
126 | |
---|
127 | }; |
---|
128 | |
---|
129 | |
---|
130 | |
---|
131 | |
---|
132 | /// The base type of the node iterators. |
---|
133 | |
---|
134 | /// This is the base type of each node iterators, |
---|
135 | /// thus each kind of node iterator will convert to this. |
---|
136 | /// The Node type of the EdgePathGraph is the Node type of the actual layer. |
---|
137 | typedef typename Gact::Node Node; |
---|
138 | |
---|
139 | |
---|
140 | /// This iterator goes through each node. |
---|
141 | |
---|
142 | /// Its usage is quite simple, for example you can count the number |
---|
143 | /// of nodes in graph \c G of type \c Graph like this: |
---|
144 | /// \code |
---|
145 | ///int count=0; |
---|
146 | ///for(Graph::NodeIt n(G);G.valid(n);G.next(n)) count++; |
---|
147 | /// \endcode |
---|
148 | /// The NodeIt type of the EdgePathGraph is the NodeIt type of the actual layer. |
---|
149 | typedef typename Gact::NodeIt NodeIt; |
---|
150 | |
---|
151 | |
---|
152 | /// The base type of the edge iterators. |
---|
153 | /// The Edge type of the EdgePathGraph is the Edge type of the actual layer. |
---|
154 | typedef typename Gact::Edge Edge; |
---|
155 | |
---|
156 | |
---|
157 | /// This iterator goes trough the outgoing edges of a node. |
---|
158 | |
---|
159 | /// This iterator goes trough the \e outgoing edges of a certain node |
---|
160 | /// of a graph. |
---|
161 | /// Its usage is quite simple, for example you can count the number |
---|
162 | /// of outgoing edges of a node \c n |
---|
163 | /// in graph \c G of type \c Graph as follows. |
---|
164 | /// \code |
---|
165 | ///int count=0; |
---|
166 | ///for(Graph::OutEdgeIt e(G,n);G.valid(e);G.next(e)) count++; |
---|
167 | /// \endcode |
---|
168 | /// The OutEdgeIt type of the EdgePathGraph is the OutEdgeIt type of the actual layer. |
---|
169 | typedef typename Gact::OutEdgeIt OutEdgeIt; |
---|
170 | |
---|
171 | |
---|
172 | /// This iterator goes trough the incoming edges of a node. |
---|
173 | |
---|
174 | /// This iterator goes trough the \e incoming edges of a certain node |
---|
175 | /// of a graph. |
---|
176 | /// Its usage is quite simple, for example you can count the number |
---|
177 | /// of outgoing edges of a node \c n |
---|
178 | /// in graph \c G of type \c Graph as follows. |
---|
179 | /// \code |
---|
180 | ///int count=0; |
---|
181 | ///for(Graph::InEdgeIt e(G,n);G.valid(e);G.next(e)) count++; |
---|
182 | /// \endcode |
---|
183 | /// The InEdgeIt type of the EdgePathGraph is the InEdgeIt type of the actual layer. |
---|
184 | typedef typename Gact::InEdgeIt InEdgeIt; |
---|
185 | |
---|
186 | |
---|
187 | /// This iterator goes through each edge. |
---|
188 | |
---|
189 | /// This iterator goes through each edge of a graph. |
---|
190 | /// Its usage is quite simple, for example you can count the number |
---|
191 | /// of edges in a graph \c G of type \c Graph as follows: |
---|
192 | /// \code |
---|
193 | ///int count=0; |
---|
194 | ///for(Graph::EdgeIt e(G);G.valid(e);G.next(e)) count++; |
---|
195 | /// \endcode |
---|
196 | /// The EdgeIt type of the EdgePathGraph is the EdgeIt type of the actual layer. |
---|
197 | typedef typename Gact::EdgeIt EdgeIt; |
---|
198 | |
---|
199 | |
---|
200 | /// First node of the graph. |
---|
201 | |
---|
202 | /// \retval i the first node. |
---|
203 | /// \return the first node. |
---|
204 | typename Gact::NodeIt &first(typename Gact::NodeIt &i) const { return actuallayer.first(i);} |
---|
205 | |
---|
206 | |
---|
207 | /// The first incoming edge. |
---|
208 | typename Gact::InEdgeIt &first(typename Gact::InEdgeIt &i, typename Gact::Node) const { return actuallayer.first(i);} |
---|
209 | |
---|
210 | |
---|
211 | /// The first outgoing edge. |
---|
212 | typename Gact::OutEdgeIt &first(typename Gact::OutEdgeIt &i, typename Gact::Node) const { return actuallayer.first(i);} |
---|
213 | |
---|
214 | |
---|
215 | // SymEdgeIt &first(SymEdgeIt &, Node) const { return i;} |
---|
216 | /// The first edge of the Graph. |
---|
217 | typename Gact::EdgeIt &first(typename Gact::EdgeIt &i) const { return actuallayer.first(i);} |
---|
218 | |
---|
219 | |
---|
220 | // Node getNext(Node) const {} |
---|
221 | // InEdgeIt getNext(InEdgeIt) const {} |
---|
222 | // OutEdgeIt getNext(OutEdgeIt) const {} |
---|
223 | // //SymEdgeIt getNext(SymEdgeIt) const {} |
---|
224 | // EdgeIt getNext(EdgeIt) const {} |
---|
225 | |
---|
226 | |
---|
227 | /// Go to the next node. |
---|
228 | typename Gact::NodeIt &next(typename Gact::NodeIt &i) const { return actuallayer.next(i);} |
---|
229 | /// Go to the next incoming edge. |
---|
230 | typename Gact::InEdgeIt &next(typename Gact::InEdgeIt &i) const { return actuallayer.next(i);} |
---|
231 | /// Go to the next outgoing edge. |
---|
232 | typename Gact::OutEdgeIt &next(typename Gact::OutEdgeIt &i) const { return actuallayer.next(i);} |
---|
233 | //SymEdgeIt &next(SymEdgeIt &) const {} |
---|
234 | /// Go to the next edge. |
---|
235 | typename Gact::EdgeIt &next(typename Gact::EdgeIt &i) const { return actuallayer.next(i);} |
---|
236 | |
---|
237 | ///Gives back the target node of an edge. |
---|
238 | typename Gact::Node target(typename Gact::Edge edge) const { return actuallayer.target(edge); } |
---|
239 | ///Gives back the source node of an edge. |
---|
240 | typename Gact::Node source(typename Gact::Edge edge) const { return actuallayer.source(edge); } |
---|
241 | |
---|
242 | // Node aNode(InEdgeIt) const {} |
---|
243 | // Node aNode(OutEdgeIt) const {} |
---|
244 | // Node aNode(SymEdgeIt) const {} |
---|
245 | |
---|
246 | // Node bNode(InEdgeIt) const {} |
---|
247 | // Node bNode(OutEdgeIt) const {} |
---|
248 | // Node bNode(SymEdgeIt) const {} |
---|
249 | |
---|
250 | /// Checks if a node iterator is valid |
---|
251 | |
---|
252 | ///\todo Maybe, it would be better if iterator converted to |
---|
253 | ///bool directly, as Jacint prefers. |
---|
254 | bool valid(const typename Gact::Node& node) const { return actuallayer.valid(node);} |
---|
255 | /// Checks if an edge iterator is valid |
---|
256 | |
---|
257 | ///\todo Maybe, it would be better if iterator converted to |
---|
258 | ///bool directly, as Jacint prefers. |
---|
259 | bool valid(const typename Gact::Edge& edge) const { return actuallayer.valid(edge);} |
---|
260 | |
---|
261 | ///Gives back the \e id of a node. |
---|
262 | |
---|
263 | ///\warning Not all graph structures provide this feature. |
---|
264 | /// |
---|
265 | int id(const typename Gact::Node & node) const { return actuallayer.id(node);} |
---|
266 | ///Gives back the \e id of an edge. |
---|
267 | |
---|
268 | ///\warning Not all graph structures provide this feature. |
---|
269 | /// |
---|
270 | int id(const typename Gact::Edge & edge) const { return actuallayer.id(edge);} |
---|
271 | |
---|
272 | //void setInvalid(Node &) const {}; |
---|
273 | //void setInvalid(Edge &) const {}; |
---|
274 | |
---|
275 | ///Add a new node to the graph. |
---|
276 | |
---|
277 | /// \return the new node. |
---|
278 | /// |
---|
279 | typename Gact::Node addNode() { return actuallayer.addNode();} |
---|
280 | ///Add a new edge to the graph. |
---|
281 | |
---|
282 | ///Add a new edge to the graph with source node \c source |
---|
283 | ///and target node \c target. |
---|
284 | ///\return the new edge. |
---|
285 | typename Gact::Edge addEdge(typename Gact::Node node1, typename Gact::Node node2) { return actuallayer.addEdge(node1, node2);} |
---|
286 | |
---|
287 | /// Resets the graph. |
---|
288 | |
---|
289 | /// This function deletes all edges and nodes of the graph. |
---|
290 | /// It also frees the memory allocated to store them. |
---|
291 | void clear() {actuallayer.clear();} |
---|
292 | |
---|
293 | int nodeNum() const { return actuallayer.nodeNum();} |
---|
294 | int edgeNum() const { return actuallayer.edgeNum();} |
---|
295 | |
---|
296 | ///Read/write/reference map of the nodes to type \c T. |
---|
297 | |
---|
298 | ///Read/write/reference map of the nodes to type \c T. |
---|
299 | /// \sa MemoryMap |
---|
300 | /// \todo We may need copy constructor |
---|
301 | /// \todo We may need conversion from other nodetype |
---|
302 | /// \todo We may need operator= |
---|
303 | /// \warning Making maps that can handle bool type (NodeMap<bool>) |
---|
304 | /// needs extra attention! |
---|
305 | |
---|
306 | template<class T> class NodeMap |
---|
307 | { |
---|
308 | public: |
---|
309 | typedef T Value; |
---|
310 | typedef Node Key; |
---|
311 | |
---|
312 | NodeMap(const EdgePathGraph &) {} |
---|
313 | NodeMap(const EdgePathGraph &, T) {} |
---|
314 | |
---|
315 | template<typename TT> NodeMap(const NodeMap<TT> &) {} |
---|
316 | |
---|
317 | /// Sets the value of a node. |
---|
318 | |
---|
319 | /// Sets the value associated with node \c i to the value \c t. |
---|
320 | /// |
---|
321 | void set(Node, T) {} |
---|
322 | // Gets the value of a node. |
---|
323 | //T get(Node i) const {return *(T*)0;} //FIXME: Is it necessary? |
---|
324 | T &operator[](Node) {return *(T*)0;} |
---|
325 | const T &operator[](Node) const {return *(T*)0;} |
---|
326 | |
---|
327 | /// Updates the map if the graph has been changed |
---|
328 | |
---|
329 | /// \todo Do we need this? |
---|
330 | /// |
---|
331 | void update() {} |
---|
332 | void update(T a) {} //FIXME: Is it necessary |
---|
333 | }; |
---|
334 | |
---|
335 | ///Read/write/reference map of the edges to type \c T. |
---|
336 | |
---|
337 | ///Read/write/reference map of the edges to type \c T. |
---|
338 | ///It behaves exactly in the same way as \ref NodeMap. |
---|
339 | /// \sa NodeMap |
---|
340 | /// \sa MemoryMap |
---|
341 | /// \todo We may need copy constructor |
---|
342 | /// \todo We may need conversion from other edgetype |
---|
343 | /// \todo We may need operator= |
---|
344 | template<class T> class EdgeMap |
---|
345 | { |
---|
346 | public: |
---|
347 | typedef T Value; |
---|
348 | typedef Edge Key; |
---|
349 | |
---|
350 | EdgeMap(const EdgePathGraph &) {} |
---|
351 | EdgeMap(const EdgePathGraph &, T ) {} |
---|
352 | |
---|
353 | ///\todo It can copy between different types. |
---|
354 | /// |
---|
355 | template<typename TT> EdgeMap(const EdgeMap<TT> &) {} |
---|
356 | |
---|
357 | void set(Edge, T) {} |
---|
358 | //T get(Edge) const {return *(T*)0;} |
---|
359 | T &operator[](Edge) {return *(T*)0;} |
---|
360 | const T &operator[](Edge) const {return *(T*)0;} |
---|
361 | |
---|
362 | void update() {} |
---|
363 | void update(T a) {} //FIXME: Is it necessary |
---|
364 | }; |
---|
365 | }; |
---|
366 | |
---|
367 | /// An empty erasable graph class. |
---|
368 | |
---|
369 | /// This class provides all the common features of an \e erasable graph |
---|
370 | /// structure, |
---|
371 | /// however completely without implementations and real data structures |
---|
372 | /// behind the interface. |
---|
373 | /// All graph algorithms should compile with this class, but it will not |
---|
374 | /// run properly, of course. |
---|
375 | /// |
---|
376 | /// \todo This blabla could be replaced by a sepatate description about |
---|
377 | /// s. |
---|
378 | /// |
---|
379 | /// It can be used for checking the interface compatibility, |
---|
380 | /// or it can serve as a skeleton of a new graph structure. |
---|
381 | /// |
---|
382 | /// Also, you will find here the full documentation of a certain graph |
---|
383 | /// feature, the documentation of a real graph imlementation |
---|
384 | /// like @ref ListGraph or |
---|
385 | /// @ref SmartGraph will just refer to this structure. |
---|
386 | template <typename P, typename Gact, typename Gsub> |
---|
387 | class ErasableEdgePathGraph : public EdgePathGraph<P, Gact, Gsub> |
---|
388 | { |
---|
389 | public: |
---|
390 | /// Deletes a node. |
---|
391 | void erase(typename Gact::Node n) {actuallayer.erase(n);} |
---|
392 | /// Deletes an edge. |
---|
393 | void erase(typename Gact::Edge e) {actuallayer.erase(e);} |
---|
394 | |
---|
395 | /// Defalult constructor. |
---|
396 | ErasableEdgePathGraph() {} |
---|
397 | ///Copy consructor. |
---|
398 | ErasableEdgePathGraph(const EdgePathGraph<P, Gact, Gsub> &EPG) {} |
---|
399 | }; |
---|
400 | |
---|
401 | |
---|
402 | // @} |
---|
403 | |
---|
404 | } //namespace lemon |
---|
405 | |
---|
406 | |
---|
407 | #endif // LEMON_SKELETON_GRAPH_H |
---|