1 | /* -*- C++ -*- |
---|
2 | * |
---|
3 | * This file is a part of LEMON, a generic C++ optimization library |
---|
4 | * |
---|
5 | * Copyright (C) 2003-2008 |
---|
6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
---|
8 | * |
---|
9 | * Permission to use, modify and distribute this software is granted |
---|
10 | * provided that this copyright notice appears in all copies. For |
---|
11 | * precise terms see the accompanying LICENSE file. |
---|
12 | * |
---|
13 | * This software is provided "AS IS" with no warranty of any kind, |
---|
14 | * express or implied, and with no claim as to its suitability for any |
---|
15 | * purpose. |
---|
16 | * |
---|
17 | */ |
---|
18 | |
---|
19 | ///\ingroup tools |
---|
20 | ///\file |
---|
21 | ///\brief Special plane graph generator. |
---|
22 | /// |
---|
23 | ///Graph generator application for various types of plane graphs. |
---|
24 | /// |
---|
25 | ///\verbatim |
---|
26 | /// Usage: |
---|
27 | /// ./tools/lgf-gen [-2con|-tree|-tsp|-tsp2|-dela] [-disc|-square|-gauss] |
---|
28 | /// [-rand|-seed int] [--help|-h|-help] [-area num] [-cities int] [-dir] |
---|
29 | /// [-eps] [-g int] [-n int] [prefix] |
---|
30 | /// Where: |
---|
31 | /// [prefix] |
---|
32 | /// Prefix of the output files. Default is 'lgf-gen-out' |
---|
33 | /// --help|-h|-help |
---|
34 | /// Print a short help message |
---|
35 | /// -2con |
---|
36 | /// Create a two connected planar graph |
---|
37 | /// -area num |
---|
38 | /// Full relative area of the cities (default is 1) |
---|
39 | /// -cities int |
---|
40 | /// Number of cities (default is 1) |
---|
41 | /// -dela |
---|
42 | /// Delaunay triangulation graph |
---|
43 | /// -dir |
---|
44 | /// Directed graph is generated (each edges are replaced by two directed ones) |
---|
45 | /// -disc |
---|
46 | /// Nodes are evenly distributed on a unit disc (default) |
---|
47 | /// -eps |
---|
48 | /// Also generate .eps output (prefix.eps) |
---|
49 | /// -g int |
---|
50 | /// Girth parameter (default is 10) |
---|
51 | /// -gauss |
---|
52 | /// Nodes are located according to a two-dim gauss distribution |
---|
53 | /// -n int |
---|
54 | /// Number of nodes (default is 100) |
---|
55 | /// -rand |
---|
56 | /// Use time seed for random number generator |
---|
57 | /// -seed int |
---|
58 | /// Random seed |
---|
59 | /// -square |
---|
60 | /// Nodes are evenly distributed on a unit square |
---|
61 | /// -tree |
---|
62 | /// Create a min. cost spanning tree |
---|
63 | /// -tsp |
---|
64 | /// Create a TSP tour |
---|
65 | /// -tsp2 |
---|
66 | /// Create a TSP tour (tree based) |
---|
67 | ///\endverbatim |
---|
68 | /// \image html plane_tree.png |
---|
69 | /// \image latex plane_tree.eps "Eucledian spanning tree" width=\textwidth |
---|
70 | /// |
---|
71 | |
---|
72 | |
---|
73 | #include <lemon/list_graph.h> |
---|
74 | #include <lemon/graph_utils.h> |
---|
75 | #include <lemon/random.h> |
---|
76 | #include <lemon/dim2.h> |
---|
77 | #include <lemon/bfs.h> |
---|
78 | #include <lemon/counter.h> |
---|
79 | #include <lemon/suurballe.h> |
---|
80 | #include <lemon/graph_to_eps.h> |
---|
81 | #include <lemon/graph_writer.h> |
---|
82 | #include <lemon/arg_parser.h> |
---|
83 | #include <lemon/euler.h> |
---|
84 | #include <lemon/math.h> |
---|
85 | #include <algorithm> |
---|
86 | #include <lemon/kruskal.h> |
---|
87 | #include <lemon/time_measure.h> |
---|
88 | |
---|
89 | using namespace lemon; |
---|
90 | |
---|
91 | typedef dim2::Point<double> Point; |
---|
92 | |
---|
93 | UGRAPH_TYPEDEFS(ListUGraph); |
---|
94 | |
---|
95 | bool progress=true; |
---|
96 | |
---|
97 | int N; |
---|
98 | // int girth; |
---|
99 | |
---|
100 | ListUGraph g; |
---|
101 | |
---|
102 | std::vector<Node> nodes; |
---|
103 | ListUGraph::NodeMap<Point> coords(g); |
---|
104 | |
---|
105 | |
---|
106 | double totalLen(){ |
---|
107 | double tlen=0; |
---|
108 | for(UEdgeIt e(g);e!=INVALID;++e) |
---|
109 | tlen+=sqrt((coords[g.source(e)]-coords[g.target(e)]).normSquare()); |
---|
110 | return tlen; |
---|
111 | } |
---|
112 | |
---|
113 | int tsp_impr_num=0; |
---|
114 | |
---|
115 | const double EPSILON=1e-8; |
---|
116 | bool tsp_improve(Node u, Node v) |
---|
117 | { |
---|
118 | double luv=std::sqrt((coords[v]-coords[u]).normSquare()); |
---|
119 | Node u2=u; |
---|
120 | Node v2=v; |
---|
121 | do { |
---|
122 | Node n; |
---|
123 | for(IncEdgeIt e(g,v2);(n=g.runningNode(e))==u2;++e); |
---|
124 | u2=v2; |
---|
125 | v2=n; |
---|
126 | if(luv+std::sqrt((coords[v2]-coords[u2]).normSquare())-EPSILON> |
---|
127 | std::sqrt((coords[u]-coords[u2]).normSquare())+ |
---|
128 | std::sqrt((coords[v]-coords[v2]).normSquare())) |
---|
129 | { |
---|
130 | g.erase(findUEdge(g,u,v)); |
---|
131 | g.erase(findUEdge(g,u2,v2)); |
---|
132 | g.addEdge(u2,u); |
---|
133 | g.addEdge(v,v2); |
---|
134 | tsp_impr_num++; |
---|
135 | return true; |
---|
136 | } |
---|
137 | } while(v2!=u); |
---|
138 | return false; |
---|
139 | } |
---|
140 | |
---|
141 | bool tsp_improve(Node u) |
---|
142 | { |
---|
143 | for(IncEdgeIt e(g,u);e!=INVALID;++e) |
---|
144 | if(tsp_improve(u,g.runningNode(e))) return true; |
---|
145 | return false; |
---|
146 | } |
---|
147 | |
---|
148 | void tsp_improve() |
---|
149 | { |
---|
150 | bool b; |
---|
151 | do { |
---|
152 | b=false; |
---|
153 | for(NodeIt n(g);n!=INVALID;++n) |
---|
154 | if(tsp_improve(n)) b=true; |
---|
155 | } while(b); |
---|
156 | } |
---|
157 | |
---|
158 | void tsp() |
---|
159 | { |
---|
160 | for(int i=0;i<N;i++) g.addEdge(nodes[i],nodes[(i+1)%N]); |
---|
161 | tsp_improve(); |
---|
162 | } |
---|
163 | |
---|
164 | class Line |
---|
165 | { |
---|
166 | public: |
---|
167 | Point a; |
---|
168 | Point b; |
---|
169 | Line(Point _a,Point _b) :a(_a),b(_b) {} |
---|
170 | Line(Node _a,Node _b) : a(coords[_a]),b(coords[_b]) {} |
---|
171 | Line(const Edge &e) : a(coords[g.source(e)]),b(coords[g.target(e)]) {} |
---|
172 | Line(const UEdge &e) : a(coords[g.source(e)]),b(coords[g.target(e)]) {} |
---|
173 | }; |
---|
174 | |
---|
175 | inline std::ostream& operator<<(std::ostream &os, const Line &l) |
---|
176 | { |
---|
177 | os << l.a << "->" << l.b; |
---|
178 | return os; |
---|
179 | } |
---|
180 | |
---|
181 | bool cross(Line a, Line b) |
---|
182 | { |
---|
183 | Point ao=rot90(a.b-a.a); |
---|
184 | Point bo=rot90(b.b-b.a); |
---|
185 | return (ao*(b.a-a.a))*(ao*(b.b-a.a))<0 && |
---|
186 | (bo*(a.a-b.a))*(bo*(a.b-b.a))<0; |
---|
187 | } |
---|
188 | |
---|
189 | struct Pedge |
---|
190 | { |
---|
191 | Node a; |
---|
192 | Node b; |
---|
193 | double len; |
---|
194 | }; |
---|
195 | |
---|
196 | bool pedgeLess(Pedge a,Pedge b) |
---|
197 | { |
---|
198 | return a.len<b.len; |
---|
199 | } |
---|
200 | |
---|
201 | std::vector<UEdge> edges; |
---|
202 | |
---|
203 | namespace _delaunay_bits { |
---|
204 | |
---|
205 | struct Part { |
---|
206 | int prev, curr, next; |
---|
207 | |
---|
208 | Part(int p, int c, int n) : prev(p), curr(c), next(n) {} |
---|
209 | }; |
---|
210 | |
---|
211 | inline std::ostream& operator<<(std::ostream& os, const Part& part) { |
---|
212 | os << '(' << part.prev << ',' << part.curr << ',' << part.next << ')'; |
---|
213 | return os; |
---|
214 | } |
---|
215 | |
---|
216 | inline double circle_point(const Point& p, const Point& q, const Point& r) { |
---|
217 | double a = p.x * (q.y - r.y) + q.x * (r.y - p.y) + r.x * (p.y - q.y); |
---|
218 | if (a == 0) return std::numeric_limits<double>::quiet_NaN(); |
---|
219 | |
---|
220 | double d = (p.x * p.x + p.y * p.y) * (q.y - r.y) + |
---|
221 | (q.x * q.x + q.y * q.y) * (r.y - p.y) + |
---|
222 | (r.x * r.x + r.y * r.y) * (p.y - q.y); |
---|
223 | |
---|
224 | double e = (p.x * p.x + p.y * p.y) * (q.x - r.x) + |
---|
225 | (q.x * q.x + q.y * q.y) * (r.x - p.x) + |
---|
226 | (r.x * r.x + r.y * r.y) * (p.x - q.x); |
---|
227 | |
---|
228 | double f = (p.x * p.x + p.y * p.y) * (q.x * r.y - r.x * q.y) + |
---|
229 | (q.x * q.x + q.y * q.y) * (r.x * p.y - p.x * r.y) + |
---|
230 | (r.x * r.x + r.y * r.y) * (p.x * q.y - q.x * p.y); |
---|
231 | |
---|
232 | return d / (2 * a) + sqrt((d * d + e * e) / (4 * a * a) + f / a); |
---|
233 | } |
---|
234 | |
---|
235 | inline bool circle_form(const Point& p, const Point& q, const Point& r) { |
---|
236 | return rot90(q - p) * (r - q) < 0.0; |
---|
237 | } |
---|
238 | |
---|
239 | inline double intersection(const Point& p, const Point& q, double sx) { |
---|
240 | const double epsilon = 1e-8; |
---|
241 | |
---|
242 | if (p.x == q.x) return (p.y + q.y) / 2.0; |
---|
243 | |
---|
244 | if (sx < p.x + epsilon) return p.y; |
---|
245 | if (sx < q.x + epsilon) return q.y; |
---|
246 | |
---|
247 | double a = q.x - p.x; |
---|
248 | double b = (q.x - sx) * p.y - (p.x - sx) * q.y; |
---|
249 | double d = (q.x - sx) * (p.x - sx) * (p - q).normSquare(); |
---|
250 | return (b - sqrt(d)) / a; |
---|
251 | } |
---|
252 | |
---|
253 | struct YLess { |
---|
254 | |
---|
255 | |
---|
256 | YLess(const std::vector<Point>& points, double& sweep) |
---|
257 | : _points(points), _sweep(sweep) {} |
---|
258 | |
---|
259 | bool operator()(const Part& l, const Part& r) const { |
---|
260 | const double epsilon = 1e-8; |
---|
261 | |
---|
262 | // std::cerr << l << " vs " << r << std::endl; |
---|
263 | double lbx = l.prev != -1 ? |
---|
264 | intersection(_points[l.prev], _points[l.curr], _sweep) : |
---|
265 | - std::numeric_limits<double>::infinity(); |
---|
266 | double rbx = r.prev != -1 ? |
---|
267 | intersection(_points[r.prev], _points[r.curr], _sweep) : |
---|
268 | - std::numeric_limits<double>::infinity(); |
---|
269 | double lex = l.next != -1 ? |
---|
270 | intersection(_points[l.curr], _points[l.next], _sweep) : |
---|
271 | std::numeric_limits<double>::infinity(); |
---|
272 | double rex = r.next != -1 ? |
---|
273 | intersection(_points[r.curr], _points[r.next], _sweep) : |
---|
274 | std::numeric_limits<double>::infinity(); |
---|
275 | |
---|
276 | if (lbx > lex) std::swap(lbx, lex); |
---|
277 | if (rbx > rex) std::swap(rbx, rex); |
---|
278 | |
---|
279 | if (lex < epsilon + rex && lbx + epsilon < rex) return true; |
---|
280 | if (rex < epsilon + lex && rbx + epsilon < lex) return false; |
---|
281 | return lex < rex; |
---|
282 | } |
---|
283 | |
---|
284 | const std::vector<Point>& _points; |
---|
285 | double& _sweep; |
---|
286 | }; |
---|
287 | |
---|
288 | struct BeachIt; |
---|
289 | |
---|
290 | typedef std::multimap<double, BeachIt> SpikeHeap; |
---|
291 | |
---|
292 | typedef std::multimap<Part, SpikeHeap::iterator, YLess> Beach; |
---|
293 | |
---|
294 | struct BeachIt { |
---|
295 | Beach::iterator it; |
---|
296 | |
---|
297 | BeachIt(Beach::iterator iter) : it(iter) {} |
---|
298 | }; |
---|
299 | |
---|
300 | } |
---|
301 | |
---|
302 | inline void delaunay() { |
---|
303 | Counter cnt("Number of edges added: "); |
---|
304 | |
---|
305 | using namespace _delaunay_bits; |
---|
306 | |
---|
307 | typedef _delaunay_bits::Part Part; |
---|
308 | typedef std::vector<std::pair<double, int> > SiteHeap; |
---|
309 | |
---|
310 | |
---|
311 | std::vector<Point> points; |
---|
312 | std::vector<Node> nodes; |
---|
313 | |
---|
314 | for (NodeIt it(g); it != INVALID; ++it) { |
---|
315 | nodes.push_back(it); |
---|
316 | points.push_back(coords[it]); |
---|
317 | } |
---|
318 | |
---|
319 | SiteHeap siteheap(points.size()); |
---|
320 | |
---|
321 | double sweep; |
---|
322 | |
---|
323 | |
---|
324 | for (int i = 0; i < int(siteheap.size()); ++i) { |
---|
325 | siteheap[i] = std::make_pair(points[i].x, i); |
---|
326 | } |
---|
327 | |
---|
328 | std::sort(siteheap.begin(), siteheap.end()); |
---|
329 | sweep = siteheap.front().first; |
---|
330 | |
---|
331 | YLess yless(points, sweep); |
---|
332 | Beach beach(yless); |
---|
333 | |
---|
334 | SpikeHeap spikeheap; |
---|
335 | |
---|
336 | std::set<std::pair<int, int> > edges; |
---|
337 | |
---|
338 | int siteindex = 0; |
---|
339 | { |
---|
340 | SiteHeap front; |
---|
341 | |
---|
342 | while (siteindex < int(siteheap.size()) && |
---|
343 | siteheap[0].first == siteheap[siteindex].first) { |
---|
344 | front.push_back(std::make_pair(points[siteheap[siteindex].second].y, |
---|
345 | siteheap[siteindex].second)); |
---|
346 | ++siteindex; |
---|
347 | } |
---|
348 | |
---|
349 | std::sort(front.begin(), front.end()); |
---|
350 | |
---|
351 | for (int i = 0; i < int(front.size()); ++i) { |
---|
352 | int prev = (i == 0 ? -1 : front[i - 1].second); |
---|
353 | int curr = front[i].second; |
---|
354 | int next = (i + 1 == int(front.size()) ? -1 : front[i + 1].second); |
---|
355 | |
---|
356 | beach.insert(std::make_pair(Part(prev, curr, next), |
---|
357 | spikeheap.end())); |
---|
358 | } |
---|
359 | } |
---|
360 | |
---|
361 | while (siteindex < int(points.size()) || !spikeheap.empty()) { |
---|
362 | |
---|
363 | SpikeHeap::iterator spit = spikeheap.begin(); |
---|
364 | |
---|
365 | if (siteindex < int(points.size()) && |
---|
366 | (spit == spikeheap.end() || siteheap[siteindex].first < spit->first)) { |
---|
367 | int site = siteheap[siteindex].second; |
---|
368 | sweep = siteheap[siteindex].first; |
---|
369 | |
---|
370 | Beach::iterator bit = beach.upper_bound(Part(site, site, site)); |
---|
371 | |
---|
372 | if (bit->second != spikeheap.end()) { |
---|
373 | spikeheap.erase(bit->second); |
---|
374 | } |
---|
375 | |
---|
376 | int prev = bit->first.prev; |
---|
377 | int curr = bit->first.curr; |
---|
378 | int next = bit->first.next; |
---|
379 | |
---|
380 | beach.erase(bit); |
---|
381 | |
---|
382 | SpikeHeap::iterator pit = spikeheap.end(); |
---|
383 | if (prev != -1 && |
---|
384 | circle_form(points[prev], points[curr], points[site])) { |
---|
385 | double x = circle_point(points[prev], points[curr], points[site]); |
---|
386 | pit = spikeheap.insert(std::make_pair(x, BeachIt(beach.end()))); |
---|
387 | pit->second.it = |
---|
388 | beach.insert(std::make_pair(Part(prev, curr, site), pit)); |
---|
389 | } else { |
---|
390 | beach.insert(std::make_pair(Part(prev, curr, site), pit)); |
---|
391 | } |
---|
392 | |
---|
393 | beach.insert(std::make_pair(Part(curr, site, curr), spikeheap.end())); |
---|
394 | |
---|
395 | SpikeHeap::iterator nit = spikeheap.end(); |
---|
396 | if (next != -1 && |
---|
397 | circle_form(points[site], points[curr],points[next])) { |
---|
398 | double x = circle_point(points[site], points[curr], points[next]); |
---|
399 | nit = spikeheap.insert(std::make_pair(x, BeachIt(beach.end()))); |
---|
400 | nit->second.it = |
---|
401 | beach.insert(std::make_pair(Part(site, curr, next), nit)); |
---|
402 | } else { |
---|
403 | beach.insert(std::make_pair(Part(site, curr, next), nit)); |
---|
404 | } |
---|
405 | |
---|
406 | ++siteindex; |
---|
407 | } else { |
---|
408 | sweep = spit->first; |
---|
409 | |
---|
410 | Beach::iterator bit = spit->second.it; |
---|
411 | |
---|
412 | int prev = bit->first.prev; |
---|
413 | int curr = bit->first.curr; |
---|
414 | int next = bit->first.next; |
---|
415 | |
---|
416 | { |
---|
417 | std::pair<int, int> edge; |
---|
418 | |
---|
419 | edge = prev < curr ? |
---|
420 | std::make_pair(prev, curr) : std::make_pair(curr, prev); |
---|
421 | |
---|
422 | if (edges.find(edge) == edges.end()) { |
---|
423 | edges.insert(edge); |
---|
424 | g.addEdge(nodes[prev], nodes[curr]); |
---|
425 | ++cnt; |
---|
426 | } |
---|
427 | |
---|
428 | edge = curr < next ? |
---|
429 | std::make_pair(curr, next) : std::make_pair(next, curr); |
---|
430 | |
---|
431 | if (edges.find(edge) == edges.end()) { |
---|
432 | edges.insert(edge); |
---|
433 | g.addEdge(nodes[curr], nodes[next]); |
---|
434 | ++cnt; |
---|
435 | } |
---|
436 | } |
---|
437 | |
---|
438 | Beach::iterator pbit = bit; --pbit; |
---|
439 | int ppv = pbit->first.prev; |
---|
440 | Beach::iterator nbit = bit; ++nbit; |
---|
441 | int nnt = nbit->first.next; |
---|
442 | |
---|
443 | if (bit->second != spikeheap.end()) spikeheap.erase(bit->second); |
---|
444 | if (pbit->second != spikeheap.end()) spikeheap.erase(pbit->second); |
---|
445 | if (nbit->second != spikeheap.end()) spikeheap.erase(nbit->second); |
---|
446 | |
---|
447 | beach.erase(nbit); |
---|
448 | beach.erase(bit); |
---|
449 | beach.erase(pbit); |
---|
450 | |
---|
451 | SpikeHeap::iterator pit = spikeheap.end(); |
---|
452 | if (ppv != -1 && ppv != next && |
---|
453 | circle_form(points[ppv], points[prev], points[next])) { |
---|
454 | double x = circle_point(points[ppv], points[prev], points[next]); |
---|
455 | if (x < sweep) x = sweep; |
---|
456 | pit = spikeheap.insert(std::make_pair(x, BeachIt(beach.end()))); |
---|
457 | pit->second.it = |
---|
458 | beach.insert(std::make_pair(Part(ppv, prev, next), pit)); |
---|
459 | } else { |
---|
460 | beach.insert(std::make_pair(Part(ppv, prev, next), pit)); |
---|
461 | } |
---|
462 | |
---|
463 | SpikeHeap::iterator nit = spikeheap.end(); |
---|
464 | if (nnt != -1 && prev != nnt && |
---|
465 | circle_form(points[prev], points[next], points[nnt])) { |
---|
466 | double x = circle_point(points[prev], points[next], points[nnt]); |
---|
467 | if (x < sweep) x = sweep; |
---|
468 | nit = spikeheap.insert(std::make_pair(x, BeachIt(beach.end()))); |
---|
469 | nit->second.it = |
---|
470 | beach.insert(std::make_pair(Part(prev, next, nnt), nit)); |
---|
471 | } else { |
---|
472 | beach.insert(std::make_pair(Part(prev, next, nnt), nit)); |
---|
473 | } |
---|
474 | |
---|
475 | } |
---|
476 | } |
---|
477 | |
---|
478 | for (Beach::iterator it = beach.begin(); it != beach.end(); ++it) { |
---|
479 | int curr = it->first.curr; |
---|
480 | int next = it->first.next; |
---|
481 | |
---|
482 | if (next == -1) continue; |
---|
483 | |
---|
484 | std::pair<int, int> edge; |
---|
485 | |
---|
486 | edge = curr < next ? |
---|
487 | std::make_pair(curr, next) : std::make_pair(next, curr); |
---|
488 | |
---|
489 | if (edges.find(edge) == edges.end()) { |
---|
490 | edges.insert(edge); |
---|
491 | g.addEdge(nodes[curr], nodes[next]); |
---|
492 | ++cnt; |
---|
493 | } |
---|
494 | } |
---|
495 | } |
---|
496 | |
---|
497 | void sparse(int d) |
---|
498 | { |
---|
499 | Counter cnt("Number of edges removed: "); |
---|
500 | Bfs<ListUGraph> bfs(g); |
---|
501 | for(std::vector<UEdge>::reverse_iterator ei=edges.rbegin(); |
---|
502 | ei!=edges.rend();++ei) |
---|
503 | { |
---|
504 | Node a=g.source(*ei); |
---|
505 | Node b=g.target(*ei); |
---|
506 | g.erase(*ei); |
---|
507 | bfs.run(a,b); |
---|
508 | if(bfs.predEdge(b)==INVALID || bfs.dist(b)>d) |
---|
509 | g.addEdge(a,b); |
---|
510 | else cnt++; |
---|
511 | } |
---|
512 | } |
---|
513 | |
---|
514 | void sparse2(int d) |
---|
515 | { |
---|
516 | Counter cnt("Number of edges removed: "); |
---|
517 | for(std::vector<UEdge>::reverse_iterator ei=edges.rbegin(); |
---|
518 | ei!=edges.rend();++ei) |
---|
519 | { |
---|
520 | Node a=g.source(*ei); |
---|
521 | Node b=g.target(*ei); |
---|
522 | g.erase(*ei); |
---|
523 | ConstMap<Edge,int> cegy(1); |
---|
524 | Suurballe<ListUGraph,ConstMap<Edge,int> > sur(g,cegy,a,b); |
---|
525 | int k=sur.run(2); |
---|
526 | if(k<2 || sur.totalLength()>d) |
---|
527 | g.addEdge(a,b); |
---|
528 | else cnt++; |
---|
529 | // else std::cout << "Remove edge " << g.id(a) << "-" << g.id(b) << '\n'; |
---|
530 | } |
---|
531 | } |
---|
532 | |
---|
533 | void sparseTriangle(int d) |
---|
534 | { |
---|
535 | Counter cnt("Number of edges added: "); |
---|
536 | std::vector<Pedge> pedges; |
---|
537 | for(NodeIt n(g);n!=INVALID;++n) |
---|
538 | for(NodeIt m=++(NodeIt(n));m!=INVALID;++m) |
---|
539 | { |
---|
540 | Pedge p; |
---|
541 | p.a=n; |
---|
542 | p.b=m; |
---|
543 | p.len=(coords[m]-coords[n]).normSquare(); |
---|
544 | pedges.push_back(p); |
---|
545 | } |
---|
546 | std::sort(pedges.begin(),pedges.end(),pedgeLess); |
---|
547 | for(std::vector<Pedge>::iterator pi=pedges.begin();pi!=pedges.end();++pi) |
---|
548 | { |
---|
549 | Line li(pi->a,pi->b); |
---|
550 | UEdgeIt e(g); |
---|
551 | for(;e!=INVALID && !cross(e,li);++e) ; |
---|
552 | UEdge ne; |
---|
553 | if(e==INVALID) { |
---|
554 | ConstMap<Edge,int> cegy(1); |
---|
555 | Suurballe<ListUGraph,ConstMap<Edge,int> > |
---|
556 | sur(g,cegy,pi->a,pi->b); |
---|
557 | int k=sur.run(2); |
---|
558 | if(k<2 || sur.totalLength()>d) |
---|
559 | { |
---|
560 | ne=g.addEdge(pi->a,pi->b); |
---|
561 | edges.push_back(ne); |
---|
562 | cnt++; |
---|
563 | } |
---|
564 | } |
---|
565 | } |
---|
566 | } |
---|
567 | |
---|
568 | template <typename UGraph, typename CoordMap> |
---|
569 | class LengthSquareMap { |
---|
570 | public: |
---|
571 | typedef typename UGraph::UEdge Key; |
---|
572 | typedef typename CoordMap::Value::Value Value; |
---|
573 | |
---|
574 | LengthSquareMap(const UGraph& ugraph, const CoordMap& coords) |
---|
575 | : _ugraph(ugraph), _coords(coords) {} |
---|
576 | |
---|
577 | Value operator[](const Key& key) const { |
---|
578 | return (_coords[_ugraph.target(key)] - |
---|
579 | _coords[_ugraph.source(key)]).normSquare(); |
---|
580 | } |
---|
581 | |
---|
582 | private: |
---|
583 | |
---|
584 | const UGraph& _ugraph; |
---|
585 | const CoordMap& _coords; |
---|
586 | }; |
---|
587 | |
---|
588 | void minTree() { |
---|
589 | std::vector<Pedge> pedges; |
---|
590 | Timer T; |
---|
591 | std::cout << T.realTime() << "s: Creating delaunay triangulation...\n"; |
---|
592 | delaunay(); |
---|
593 | std::cout << T.realTime() << "s: Calculating spanning tree...\n"; |
---|
594 | LengthSquareMap<ListUGraph, ListUGraph::NodeMap<Point> > ls(g, coords); |
---|
595 | ListUGraph::UEdgeMap<bool> tree(g); |
---|
596 | kruskal(g, ls, tree); |
---|
597 | std::cout << T.realTime() << "s: Removing non tree edges...\n"; |
---|
598 | std::vector<UEdge> remove; |
---|
599 | for (UEdgeIt e(g); e != INVALID; ++e) { |
---|
600 | if (!tree[e]) remove.push_back(e); |
---|
601 | } |
---|
602 | for(int i = 0; i < int(remove.size()); ++i) { |
---|
603 | g.erase(remove[i]); |
---|
604 | } |
---|
605 | std::cout << T.realTime() << "s: Done\n"; |
---|
606 | } |
---|
607 | |
---|
608 | void tsp2() |
---|
609 | { |
---|
610 | std::cout << "Find a tree..." << std::endl; |
---|
611 | |
---|
612 | minTree(); |
---|
613 | |
---|
614 | std::cout << "Total edge length (tree) : " << totalLen() << std::endl; |
---|
615 | |
---|
616 | std::cout << "Make it Euler..." << std::endl; |
---|
617 | |
---|
618 | { |
---|
619 | std::vector<Node> leafs; |
---|
620 | for(NodeIt n(g);n!=INVALID;++n) |
---|
621 | if(countIncEdges(g,n)%2==1) leafs.push_back(n); |
---|
622 | |
---|
623 | // for(unsigned int i=0;i<leafs.size();i+=2) |
---|
624 | // g.addEdge(leafs[i],leafs[i+1]); |
---|
625 | |
---|
626 | std::vector<Pedge> pedges; |
---|
627 | for(unsigned int i=0;i<leafs.size()-1;i++) |
---|
628 | for(unsigned int j=i+1;j<leafs.size();j++) |
---|
629 | { |
---|
630 | Node n=leafs[i]; |
---|
631 | Node m=leafs[j]; |
---|
632 | Pedge p; |
---|
633 | p.a=n; |
---|
634 | p.b=m; |
---|
635 | p.len=(coords[m]-coords[n]).normSquare(); |
---|
636 | pedges.push_back(p); |
---|
637 | } |
---|
638 | std::sort(pedges.begin(),pedges.end(),pedgeLess); |
---|
639 | for(unsigned int i=0;i<pedges.size();i++) |
---|
640 | if(countIncEdges(g,pedges[i].a)%2 && |
---|
641 | countIncEdges(g,pedges[i].b)%2) |
---|
642 | g.addEdge(pedges[i].a,pedges[i].b); |
---|
643 | } |
---|
644 | |
---|
645 | for(NodeIt n(g);n!=INVALID;++n) |
---|
646 | if(countIncEdges(g,n)%2 || countIncEdges(g,n)==0 ) |
---|
647 | std::cout << "GEBASZ!!!" << std::endl; |
---|
648 | |
---|
649 | for(UEdgeIt e(g);e!=INVALID;++e) |
---|
650 | if(g.source(e)==g.target(e)) |
---|
651 | std::cout << "LOOP GEBASZ!!!" << std::endl; |
---|
652 | |
---|
653 | std::cout << "Number of edges : " << countUEdges(g) << std::endl; |
---|
654 | |
---|
655 | std::cout << "Total edge length (euler) : " << totalLen() << std::endl; |
---|
656 | |
---|
657 | ListUGraph::UEdgeMap<Edge> enext(g); |
---|
658 | { |
---|
659 | UEulerIt<ListUGraph> e(g); |
---|
660 | Edge eo=e; |
---|
661 | Edge ef=e; |
---|
662 | // std::cout << "Tour edge: " << g.id(UEdge(e)) << std::endl; |
---|
663 | for(++e;e!=INVALID;++e) |
---|
664 | { |
---|
665 | // std::cout << "Tour edge: " << g.id(UEdge(e)) << std::endl; |
---|
666 | enext[eo]=e; |
---|
667 | eo=e; |
---|
668 | } |
---|
669 | enext[eo]=ef; |
---|
670 | } |
---|
671 | |
---|
672 | std::cout << "Creating a tour from that..." << std::endl; |
---|
673 | |
---|
674 | int nnum = countNodes(g); |
---|
675 | int ednum = countUEdges(g); |
---|
676 | |
---|
677 | for(Edge p=enext[UEdgeIt(g)];ednum>nnum;p=enext[p]) |
---|
678 | { |
---|
679 | // std::cout << "Checking edge " << g.id(p) << std::endl; |
---|
680 | Edge e=enext[p]; |
---|
681 | Edge f=enext[e]; |
---|
682 | Node n2=g.source(f); |
---|
683 | Node n1=g.oppositeNode(n2,e); |
---|
684 | Node n3=g.oppositeNode(n2,f); |
---|
685 | if(countIncEdges(g,n2)>2) |
---|
686 | { |
---|
687 | // std::cout << "Remove an Edge" << std::endl; |
---|
688 | Edge ff=enext[f]; |
---|
689 | g.erase(e); |
---|
690 | g.erase(f); |
---|
691 | if(n1!=n3) |
---|
692 | { |
---|
693 | Edge ne=g.direct(g.addEdge(n1,n3),n1); |
---|
694 | enext[p]=ne; |
---|
695 | enext[ne]=ff; |
---|
696 | ednum--; |
---|
697 | } |
---|
698 | else { |
---|
699 | enext[p]=ff; |
---|
700 | ednum-=2; |
---|
701 | } |
---|
702 | } |
---|
703 | } |
---|
704 | |
---|
705 | std::cout << "Total edge length (tour) : " << totalLen() << std::endl; |
---|
706 | |
---|
707 | std::cout << "2-opt the tour..." << std::endl; |
---|
708 | |
---|
709 | tsp_improve(); |
---|
710 | |
---|
711 | std::cout << "Total edge length (2-opt tour) : " << totalLen() << std::endl; |
---|
712 | } |
---|
713 | |
---|
714 | |
---|
715 | int main(int argc,const char **argv) |
---|
716 | { |
---|
717 | ArgParser ap(argc,argv); |
---|
718 | |
---|
719 | // bool eps; |
---|
720 | bool disc_d, square_d, gauss_d; |
---|
721 | // bool tsp_a,two_a,tree_a; |
---|
722 | int num_of_cities=1; |
---|
723 | double area=1; |
---|
724 | N=100; |
---|
725 | // girth=10; |
---|
726 | std::string ndist("disc"); |
---|
727 | ap.refOption("n", "Number of nodes (default is 100)", N) |
---|
728 | .intOption("g", "Girth parameter (default is 10)", 10) |
---|
729 | .refOption("cities", "Number of cities (default is 1)", num_of_cities) |
---|
730 | .refOption("area", "Full relative area of the cities (default is 1)", area) |
---|
731 | .refOption("disc", "Nodes are evenly distributed on a unit disc (default)",disc_d) |
---|
732 | .optionGroup("dist", "disc") |
---|
733 | .refOption("square", "Nodes are evenly distributed on a unit square", square_d) |
---|
734 | .optionGroup("dist", "square") |
---|
735 | .refOption("gauss", |
---|
736 | "Nodes are located according to a two-dim gauss distribution", |
---|
737 | gauss_d) |
---|
738 | .optionGroup("dist", "gauss") |
---|
739 | // .mandatoryGroup("dist") |
---|
740 | .onlyOneGroup("dist") |
---|
741 | .boolOption("eps", "Also generate .eps output (prefix.eps)") |
---|
742 | .boolOption("dir", "Directed graph is generated (each edges are replaced by two directed ones)") |
---|
743 | .boolOption("2con", "Create a two connected planar graph") |
---|
744 | .optionGroup("alg","2con") |
---|
745 | .boolOption("tree", "Create a min. cost spanning tree") |
---|
746 | .optionGroup("alg","tree") |
---|
747 | .boolOption("tsp", "Create a TSP tour") |
---|
748 | .optionGroup("alg","tsp") |
---|
749 | .boolOption("tsp2", "Create a TSP tour (tree based)") |
---|
750 | .optionGroup("alg","tsp2") |
---|
751 | .boolOption("dela", "Delaunay triangulation graph") |
---|
752 | .optionGroup("alg","dela") |
---|
753 | .onlyOneGroup("alg") |
---|
754 | .boolOption("rand", "Use time seed for random number generator") |
---|
755 | .optionGroup("rand", "rand") |
---|
756 | .intOption("seed", "Random seed", -1) |
---|
757 | .optionGroup("rand", "seed") |
---|
758 | .onlyOneGroup("rand") |
---|
759 | .other("[prefix]","Prefix of the output files. Default is 'lgf-gen-out'") |
---|
760 | .run(); |
---|
761 | |
---|
762 | if (ap["rand"]) { |
---|
763 | int seed = time(0); |
---|
764 | std::cout << "Random number seed: " << seed << std::endl; |
---|
765 | rnd = Random(seed); |
---|
766 | } |
---|
767 | if (ap.given("seed")) { |
---|
768 | int seed = ap["seed"]; |
---|
769 | std::cout << "Random number seed: " << seed << std::endl; |
---|
770 | rnd = Random(seed); |
---|
771 | } |
---|
772 | |
---|
773 | std::string prefix; |
---|
774 | switch(ap.files().size()) |
---|
775 | { |
---|
776 | case 0: |
---|
777 | prefix="lgf-gen-out"; |
---|
778 | break; |
---|
779 | case 1: |
---|
780 | prefix=ap.files()[0]; |
---|
781 | break; |
---|
782 | default: |
---|
783 | std::cerr << "\nAt most one prefix can be given\n\n"; |
---|
784 | exit(1); |
---|
785 | } |
---|
786 | |
---|
787 | double sum_sizes=0; |
---|
788 | std::vector<double> sizes; |
---|
789 | std::vector<double> cum_sizes; |
---|
790 | for(int s=0;s<num_of_cities;s++) |
---|
791 | { |
---|
792 | // sum_sizes+=rnd.exponential(); |
---|
793 | double d=rnd(); |
---|
794 | sum_sizes+=d; |
---|
795 | sizes.push_back(d); |
---|
796 | cum_sizes.push_back(sum_sizes); |
---|
797 | } |
---|
798 | int i=0; |
---|
799 | for(int s=0;s<num_of_cities;s++) |
---|
800 | { |
---|
801 | Point center=(num_of_cities==1?Point(0,0):rnd.disc()); |
---|
802 | if(gauss_d) |
---|
803 | for(;i<N*(cum_sizes[s]/sum_sizes);i++) { |
---|
804 | Node n=g.addNode(); |
---|
805 | nodes.push_back(n); |
---|
806 | coords[n]=center+rnd.gauss2()*area* |
---|
807 | std::sqrt(sizes[s]/sum_sizes); |
---|
808 | } |
---|
809 | else if(square_d) |
---|
810 | for(;i<N*(cum_sizes[s]/sum_sizes);i++) { |
---|
811 | Node n=g.addNode(); |
---|
812 | nodes.push_back(n); |
---|
813 | coords[n]=center+Point(rnd()*2-1,rnd()*2-1)*area* |
---|
814 | std::sqrt(sizes[s]/sum_sizes); |
---|
815 | } |
---|
816 | else if(disc_d || true) |
---|
817 | for(;i<N*(cum_sizes[s]/sum_sizes);i++) { |
---|
818 | Node n=g.addNode(); |
---|
819 | nodes.push_back(n); |
---|
820 | coords[n]=center+rnd.disc()*area* |
---|
821 | std::sqrt(sizes[s]/sum_sizes); |
---|
822 | } |
---|
823 | } |
---|
824 | |
---|
825 | // for (ListUGraph::NodeIt n(g); n != INVALID; ++n) { |
---|
826 | // std::cerr << coords[n] << std::endl; |
---|
827 | // } |
---|
828 | |
---|
829 | if(ap["tsp"]) { |
---|
830 | tsp(); |
---|
831 | std::cout << "#2-opt improvements: " << tsp_impr_num << std::endl; |
---|
832 | } |
---|
833 | if(ap["tsp2"]) { |
---|
834 | tsp2(); |
---|
835 | std::cout << "#2-opt improvements: " << tsp_impr_num << std::endl; |
---|
836 | } |
---|
837 | else if(ap["2con"]) { |
---|
838 | std::cout << "Make triangles\n"; |
---|
839 | // triangle(); |
---|
840 | sparseTriangle(ap["g"]); |
---|
841 | std::cout << "Make it sparser\n"; |
---|
842 | sparse2(ap["g"]); |
---|
843 | } |
---|
844 | else if(ap["tree"]) { |
---|
845 | minTree(); |
---|
846 | } |
---|
847 | else if(ap["dela"]) { |
---|
848 | delaunay(); |
---|
849 | } |
---|
850 | |
---|
851 | |
---|
852 | std::cout << "Number of nodes : " << countNodes(g) << std::endl; |
---|
853 | std::cout << "Number of edges : " << countUEdges(g) << std::endl; |
---|
854 | double tlen=0; |
---|
855 | for(UEdgeIt e(g);e!=INVALID;++e) |
---|
856 | tlen+=sqrt((coords[g.source(e)]-coords[g.target(e)]).normSquare()); |
---|
857 | std::cout << "Total edge length : " << tlen << std::endl; |
---|
858 | |
---|
859 | if(ap["eps"]) |
---|
860 | graphToEps(g,prefix+".eps").scaleToA4(). |
---|
861 | scale(600).nodeScale(.2).edgeWidthScale(.001).preScale(false). |
---|
862 | coords(coords).run(); |
---|
863 | |
---|
864 | if(ap["dir"]) |
---|
865 | GraphWriter<ListUGraph>(prefix+".lgf",g). |
---|
866 | writeNodeMap("coordinates_x",scaleMap(xMap(coords),600)). |
---|
867 | writeNodeMap("coordinates_y",scaleMap(yMap(coords),600)). |
---|
868 | run(); |
---|
869 | else UGraphWriter<ListUGraph>(prefix+".lgf",g). |
---|
870 | writeNodeMap("coordinates_x",scaleMap(xMap(coords),600)). |
---|
871 | writeNodeMap("coordinates_y",scaleMap(yMap(coords),600)). |
---|
872 | run(); |
---|
873 | } |
---|
874 | |
---|