COIN-OR::LEMON - Graph Library

source: lemon-1.0/lemon/random.h @ 12:435bbc8127b3

Last change on this file since 12:435bbc8127b3 was 12:435bbc8127b3, checked in by Alpar Juttner <alpar@…>, 17 years ago

A better way of generating pareto distr, and swap its parameters.

  • Pareto distribution is now generated as a composition of a Gamma and an exponential one
  • Similarly to gamma() and weibull(), the shape parameter became the first one.
File size: 26.0 KB
Line 
1/* -*- C++ -*-
2 *
3 * This file is a part of LEMON, a generic C++ optimization library
4 *
5 * Copyright (C) 2003-2007
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 *
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
12 *
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
15 * purpose.
16 *
17 */
18
19/*
20 * This file contains the reimplemented version of the Mersenne Twister
21 * Generator of Matsumoto and Nishimura.
22 *
23 * See the appropriate copyright notice below.
24 *
25 * Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
26 * All rights reserved.                         
27 *
28 * Redistribution and use in source and binary forms, with or without
29 * modification, are permitted provided that the following conditions
30 * are met:
31 *
32 * 1. Redistributions of source code must retain the above copyright
33 *    notice, this list of conditions and the following disclaimer.
34 *
35 * 2. Redistributions in binary form must reproduce the above copyright
36 *    notice, this list of conditions and the following disclaimer in the
37 *    documentation and/or other materials provided with the distribution.
38 *
39 * 3. The names of its contributors may not be used to endorse or promote
40 *    products derived from this software without specific prior written
41 *    permission.
42 *
43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
46 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
47 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
48 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
49 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
50 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
51 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
52 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
53 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
54 * OF THE POSSIBILITY OF SUCH DAMAGE.
55 *
56 *
57 * Any feedback is very welcome.
58 * http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
59 * email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)
60 */
61
62#ifndef LEMON_RANDOM_H
63#define LEMON_RANDOM_H
64
65#include <algorithm>
66#include <iterator>
67#include <vector>
68
69#include <ctime>
70#include <cmath>
71
72#include <lemon/dim2.h>
73///\ingroup misc
74///\file
75///\brief Mersenne Twister random number generator
76///
77///\author Balazs Dezso
78
79namespace lemon {
80
81  namespace _random_bits {
82   
83    template <typename _Word, int _bits = std::numeric_limits<_Word>::digits>
84    struct RandomTraits {};
85
86    template <typename _Word>
87    struct RandomTraits<_Word, 32> {
88
89      typedef _Word Word;
90      static const int bits = 32;
91
92      static const int length = 624;
93      static const int shift = 397;
94     
95      static const Word mul = 0x6c078965u;
96      static const Word arrayInit = 0x012BD6AAu;
97      static const Word arrayMul1 = 0x0019660Du;
98      static const Word arrayMul2 = 0x5D588B65u;
99
100      static const Word mask = 0x9908B0DFu;
101      static const Word loMask = (1u << 31) - 1;
102      static const Word hiMask = ~loMask;
103
104
105      static Word tempering(Word rnd) {
106        rnd ^= (rnd >> 11);
107        rnd ^= (rnd << 7) & 0x9D2C5680u;
108        rnd ^= (rnd << 15) & 0xEFC60000u;
109        rnd ^= (rnd >> 18);
110        return rnd;
111      }
112
113    };
114
115    template <typename _Word>
116    struct RandomTraits<_Word, 64> {
117
118      typedef _Word Word;
119      static const int bits = 64;
120
121      static const int length = 312;
122      static const int shift = 156;
123
124      static const Word mul = Word(0x5851F42Du) << 32 | Word(0x4C957F2Du);
125      static const Word arrayInit = Word(0x00000000u) << 32 |Word(0x012BD6AAu);
126      static const Word arrayMul1 = Word(0x369DEA0Fu) << 32 |Word(0x31A53F85u);
127      static const Word arrayMul2 = Word(0x27BB2EE6u) << 32 |Word(0x87B0B0FDu);
128
129      static const Word mask = Word(0xB5026F5Au) << 32 | Word(0xA96619E9u);
130      static const Word loMask = (Word(1u) << 31) - 1;
131      static const Word hiMask = ~loMask;
132
133      static Word tempering(Word rnd) {
134        rnd ^= (rnd >> 29) & (Word(0x55555555u) << 32 | Word(0x55555555u));
135        rnd ^= (rnd << 17) & (Word(0x71D67FFFu) << 32 | Word(0xEDA60000u));
136        rnd ^= (rnd << 37) & (Word(0xFFF7EEE0u) << 32 | Word(0x00000000u));
137        rnd ^= (rnd >> 43);
138        return rnd;
139      }
140
141    };
142
143    template <typename _Word>
144    class RandomCore {
145    public:
146
147      typedef _Word Word;
148
149    private:
150
151      static const int bits = RandomTraits<Word>::bits;
152
153      static const int length = RandomTraits<Word>::length;
154      static const int shift = RandomTraits<Word>::shift;
155
156    public:
157
158      void initState() {
159        static const Word seedArray[4] = {
160          0x12345u, 0x23456u, 0x34567u, 0x45678u
161        };
162   
163        initState(seedArray, seedArray + 4);
164      }
165
166      void initState(Word seed) {
167
168        static const Word mul = RandomTraits<Word>::mul;
169
170        current = state;
171
172        Word *curr = state + length - 1;
173        curr[0] = seed; --curr;
174        for (int i = 1; i < length; ++i) {
175          curr[0] = (mul * ( curr[1] ^ (curr[1] >> (bits - 2)) ) + i);
176          --curr;
177        }
178      }
179
180      template <typename Iterator>
181      void initState(Iterator begin, Iterator end) {
182
183        static const Word init = RandomTraits<Word>::arrayInit;
184        static const Word mul1 = RandomTraits<Word>::arrayMul1;
185        static const Word mul2 = RandomTraits<Word>::arrayMul2;
186
187
188        Word *curr = state + length - 1; --curr;
189        Iterator it = begin; int cnt = 0;
190        int num;
191
192        initState(init);
193
194        num = length > end - begin ? length : end - begin;
195        while (num--) {
196          curr[0] = (curr[0] ^ ((curr[1] ^ (curr[1] >> (bits - 2))) * mul1))
197            + *it + cnt;
198          ++it; ++cnt;
199          if (it == end) {
200            it = begin; cnt = 0;
201          }
202          if (curr == state) {
203            curr = state + length - 1; curr[0] = state[0];
204          }
205          --curr;
206        }
207
208        num = length - 1; cnt = length - (curr - state) - 1;
209        while (num--) {
210          curr[0] = (curr[0] ^ ((curr[1] ^ (curr[1] >> (bits - 2))) * mul2))
211            - cnt;
212          --curr; ++cnt;
213          if (curr == state) {
214            curr = state + length - 1; curr[0] = state[0]; --curr;
215            cnt = 1;
216          }
217        }
218       
219        state[length - 1] = Word(1) << (bits - 1);
220      }
221     
222      void copyState(const RandomCore& other) {
223        std::copy(other.state, other.state + length, state);
224        current = state + (other.current - other.state);
225      }
226
227      Word operator()() {
228        if (current == state) fillState();
229        --current;
230        Word rnd = *current;
231        return RandomTraits<Word>::tempering(rnd);
232      }
233
234    private:
235
236 
237      void fillState() {
238        static const Word mask[2] = { 0x0ul, RandomTraits<Word>::mask };
239        static const Word loMask = RandomTraits<Word>::loMask;
240        static const Word hiMask = RandomTraits<Word>::hiMask;
241
242        current = state + length;
243
244        register Word *curr = state + length - 1;
245        register long num;
246     
247        num = length - shift;
248        while (num--) {
249          curr[0] = (((curr[0] & hiMask) | (curr[-1] & loMask)) >> 1) ^
250            curr[- shift] ^ mask[curr[-1] & 1ul];
251          --curr;
252        }
253        num = shift - 1;
254        while (num--) {
255          curr[0] = (((curr[0] & hiMask) | (curr[-1] & loMask)) >> 1) ^
256            curr[length - shift] ^ mask[curr[-1] & 1ul];
257          --curr;
258        }
259        curr[0] = (((curr[0] & hiMask) | (curr[length - 1] & loMask)) >> 1) ^
260          curr[length - shift] ^ mask[curr[length - 1] & 1ul];
261
262      }
263
264 
265      Word *current;
266      Word state[length];
267     
268    };
269
270
271    template <typename Result,
272              int shift = (std::numeric_limits<Result>::digits + 1) / 2>
273    struct Masker {
274      static Result mask(const Result& result) {
275        return Masker<Result, (shift + 1) / 2>::
276          mask(static_cast<Result>(result | (result >> shift)));
277      }
278    };
279   
280    template <typename Result>
281    struct Masker<Result, 1> {
282      static Result mask(const Result& result) {
283        return static_cast<Result>(result | (result >> 1));
284      }
285    };
286
287    template <typename Result, typename Word,
288              int rest = std::numeric_limits<Result>::digits, int shift = 0,
289              bool last = rest <= std::numeric_limits<Word>::digits>
290    struct IntConversion {
291      static const int bits = std::numeric_limits<Word>::digits;
292   
293      static Result convert(RandomCore<Word>& rnd) {
294        return static_cast<Result>(rnd() >> (bits - rest)) << shift;
295      }
296     
297    };
298
299    template <typename Result, typename Word, int rest, int shift>
300    struct IntConversion<Result, Word, rest, shift, false> {
301      static const int bits = std::numeric_limits<Word>::digits;
302
303      static Result convert(RandomCore<Word>& rnd) {
304        return (static_cast<Result>(rnd()) << shift) |
305          IntConversion<Result, Word, rest - bits, shift + bits>::convert(rnd);
306      }
307    };
308
309
310    template <typename Result, typename Word,
311              bool one_word = (std::numeric_limits<Word>::digits <
312                               std::numeric_limits<Result>::digits) >
313    struct Mapping {
314      static Result map(RandomCore<Word>& rnd, const Result& bound) {
315        Word max = Word(bound - 1);
316        Result mask = Masker<Result>::mask(bound - 1);
317        Result num;
318        do {
319          num = IntConversion<Result, Word>::convert(rnd) & mask;
320        } while (num > max);
321        return num;
322      }
323    };
324
325    template <typename Result, typename Word>
326    struct Mapping<Result, Word, false> {
327      static Result map(RandomCore<Word>& rnd, const Result& bound) {
328        Word max = Word(bound - 1);
329        Word mask = Masker<Word, (std::numeric_limits<Result>::digits + 1) / 2>
330          ::mask(max);
331        Word num;
332        do {
333          num = rnd() & mask;
334        } while (num > max);
335        return num;
336      }
337    };
338
339    template <typename Result, int exp, bool pos = (exp >= 0)>
340    struct ShiftMultiplier {
341      static const Result multiplier() {
342        Result res = ShiftMultiplier<Result, exp / 2>::multiplier();
343        res *= res;
344        if ((exp & 1) == 1) res *= static_cast<Result>(2.0);
345        return res;
346      }
347    };
348
349    template <typename Result, int exp>
350    struct ShiftMultiplier<Result, exp, false> {
351      static const Result multiplier() {
352        Result res = ShiftMultiplier<Result, exp / 2>::multiplier();
353        res *= res;
354        if ((exp & 1) == 1) res *= static_cast<Result>(0.5);
355        return res;
356      }
357    };
358
359    template <typename Result>
360    struct ShiftMultiplier<Result, 0, true> {
361      static const Result multiplier() {
362        return static_cast<Result>(1.0);
363      }
364    };
365
366    template <typename Result>
367    struct ShiftMultiplier<Result, -20, true> {
368      static const Result multiplier() {
369        return static_cast<Result>(1.0/1048576.0);
370      }
371    };
372   
373    template <typename Result>
374    struct ShiftMultiplier<Result, -32, true> {
375      static const Result multiplier() {
376        return static_cast<Result>(1.0/424967296.0);
377      }
378    };
379
380    template <typename Result>
381    struct ShiftMultiplier<Result, -53, true> {
382      static const Result multiplier() {
383        return static_cast<Result>(1.0/9007199254740992.0);
384      }
385    };
386
387    template <typename Result>
388    struct ShiftMultiplier<Result, -64, true> {
389      static const Result multiplier() {
390        return static_cast<Result>(1.0/18446744073709551616.0);
391      }
392    };
393
394    template <typename Result, int exp>
395    struct Shifting {
396      static Result shift(const Result& result) {
397        return result * ShiftMultiplier<Result, exp>::multiplier();
398      }
399    };
400
401    template <typename Result, typename Word,
402              int rest = std::numeric_limits<Result>::digits, int shift = 0,
403              bool last = rest <= std::numeric_limits<Word>::digits>
404    struct RealConversion{
405      static const int bits = std::numeric_limits<Word>::digits;
406
407      static Result convert(RandomCore<Word>& rnd) {
408        return Shifting<Result, - shift - rest>::
409          shift(static_cast<Result>(rnd() >> (bits - rest)));
410      }
411    };
412
413    template <typename Result, typename Word, int rest, int shift>
414    struct RealConversion<Result, Word, rest, shift, false> {
415      static const int bits = std::numeric_limits<Word>::digits;
416
417      static Result convert(RandomCore<Word>& rnd) {
418        return Shifting<Result, - shift - bits>::
419          shift(static_cast<Result>(rnd())) +
420          RealConversion<Result, Word, rest-bits, shift + bits>::
421          convert(rnd);
422      }
423    };
424
425    template <typename Result, typename Word>
426    struct Initializer {
427
428      template <typename Iterator>
429      static void init(RandomCore<Word>& rnd, Iterator begin, Iterator end) {
430        std::vector<Word> ws;
431        for (Iterator it = begin; it != end; ++it) {
432          ws.push_back(Word(*it));
433        }
434        rnd.initState(ws.begin(), ws.end());
435      }
436
437      static void init(RandomCore<Word>& rnd, Result seed) {
438        rnd.initState(seed);
439      }
440    };
441
442    template <typename Word>
443    struct BoolConversion {
444      static bool convert(RandomCore<Word>& rnd) {
445        return (rnd() & 1) == 1;
446      }
447    };
448
449    template <typename Word>
450    struct BoolProducer {
451      Word buffer;
452      int num;
453     
454      BoolProducer() : num(0) {}
455
456      bool convert(RandomCore<Word>& rnd) {
457        if (num == 0) {
458          buffer = rnd();
459          num = RandomTraits<Word>::bits;
460        }
461        bool r = (buffer & 1);
462        buffer >>= 1;
463        --num;
464        return r;
465      }
466    };
467
468  }
469
470  /// \ingroup misc
471  ///
472  /// \brief Mersenne Twister random number generator
473  ///
474  /// The Mersenne Twister is a twisted generalized feedback
475  /// shift-register generator of Matsumoto and Nishimura. The period
476  /// of this generator is \f$ 2^{19937} - 1 \f$ and it is
477  /// equi-distributed in 623 dimensions for 32-bit numbers. The time
478  /// performance of this generator is comparable to the commonly used
479  /// generators.
480  ///
481  /// This implementation is specialized for both 32-bit and 64-bit
482  /// architectures. The generators differ sligthly in the
483  /// initialization and generation phase so they produce two
484  /// completly different sequences.
485  ///
486  /// The generator gives back random numbers of serveral types. To
487  /// get a random number from a range of a floating point type you
488  /// can use one form of the \c operator() or the \c real() member
489  /// function. If you want to get random number from the {0, 1, ...,
490  /// n-1} integer range use the \c operator[] or the \c integer()
491  /// method. And to get random number from the whole range of an
492  /// integer type you can use the argumentless \c integer() or \c
493  /// uinteger() functions. After all you can get random bool with
494  /// equal chance of true and false or given probability of true
495  /// result with the \c boolean() member functions.
496  ///
497  ///\code
498  /// // The commented code is identical to the other
499  /// double a = rnd();                     // [0.0, 1.0)
500  /// // double a = rnd.real();             // [0.0, 1.0)
501  /// double b = rnd(100.0);                // [0.0, 100.0)
502  /// // double b = rnd.real(100.0);        // [0.0, 100.0)
503  /// double c = rnd(1.0, 2.0);             // [1.0, 2.0)
504  /// // double c = rnd.real(1.0, 2.0);     // [1.0, 2.0)
505  /// int d = rnd[100000];                  // 0..99999
506  /// // int d = rnd.integer(100000);       // 0..99999
507  /// int e = rnd[6] + 1;                   // 1..6
508  /// // int e = rnd.integer(1, 1 + 6);     // 1..6
509  /// int b = rnd.uinteger<int>();          // 0 .. 2^31 - 1
510  /// int c = rnd.integer<int>();           // - 2^31 .. 2^31 - 1
511  /// bool g = rnd.boolean();               // P(g = true) = 0.5
512  /// bool h = rnd.boolean(0.8);            // P(h = true) = 0.8
513  ///\endcode
514  ///
515  /// The lemon provides a global instance of the random number
516  /// generator which name is \ref lemon::rnd "rnd". Usually it is a
517  /// good programming convenience to use this global generator to get
518  /// random numbers.
519  ///
520  /// \author Balazs Dezso
521  class Random {
522  private:
523
524    // architecture word
525    typedef unsigned long Word;
526   
527    _random_bits::RandomCore<Word> core;
528    _random_bits::BoolProducer<Word> bool_producer;
529   
530
531  public:
532
533    /// \brief Constructor
534    ///
535    /// Constructor with constant seeding.
536    Random() { core.initState(); }
537
538    /// \brief Constructor
539    ///
540    /// Constructor with seed. The current number type will be converted
541    /// to the architecture word type.
542    template <typename Number>
543    Random(Number seed) {
544      _random_bits::Initializer<Number, Word>::init(core, seed);
545    }
546
547    /// \brief Constructor
548    ///
549    /// Constructor with array seeding. The given range should contain
550    /// any number type and the numbers will be converted to the
551    /// architecture word type.
552    template <typename Iterator>
553    Random(Iterator begin, Iterator end) {
554      typedef typename std::iterator_traits<Iterator>::value_type Number;
555      _random_bits::Initializer<Number, Word>::init(core, begin, end);
556    }
557
558    /// \brief Copy constructor
559    ///
560    /// Copy constructor. The generated sequence will be identical to
561    /// the other sequence. It can be used to save the current state
562    /// of the generator and later use it to generate the same
563    /// sequence.
564    Random(const Random& other) {
565      core.copyState(other.core);
566    }
567
568    /// \brief Assign operator
569    ///
570    /// Assign operator. The generated sequence will be identical to
571    /// the other sequence. It can be used to save the current state
572    /// of the generator and later use it to generate the same
573    /// sequence.
574    Random& operator=(const Random& other) {
575      if (&other != this) {
576        core.copyState(other.core);
577      }
578      return *this;
579    }
580
581    /// \brief Returns a random real number from the range [0, 1)
582    ///
583    /// It returns a random real number from the range [0, 1). The
584    /// default Number type is double.
585    template <typename Number>
586    Number real() {
587      return _random_bits::RealConversion<Number, Word>::convert(core);
588    }
589
590    double real() {
591      return real<double>();
592    }
593
594    /// \brief Returns a random real number the range [0, b)
595    ///
596    /// It returns a random real number from the range [0, b).
597    template <typename Number>
598    Number real(Number b) {
599      return real<Number>() * b;
600    }
601
602    /// \brief Returns a random real number from the range [a, b)
603    ///
604    /// It returns a random real number from the range [a, b).
605    template <typename Number>
606    Number real(Number a, Number b) {
607      return real<Number>() * (b - a) + a;
608    }
609
610    /// \brief Returns a random real number from the range [0, 1)
611    ///
612    /// It returns a random double from the range [0, 1).
613    double operator()() {
614      return real<double>();
615    }
616
617    /// \brief Returns a random real number from the range [0, b)
618    ///
619    /// It returns a random real number from the range [0, b).
620    template <typename Number>
621    Number operator()(Number b) {
622      return real<Number>() * b;
623    }
624
625    /// \brief Returns a random real number from the range [a, b)
626    ///
627    /// It returns a random real number from the range [a, b).
628    template <typename Number>
629    Number operator()(Number a, Number b) {
630      return real<Number>() * (b - a) + a;
631    }
632
633    /// \brief Returns a random integer from a range
634    ///
635    /// It returns a random integer from the range {0, 1, ..., b - 1}.
636    template <typename Number>
637    Number integer(Number b) {
638      return _random_bits::Mapping<Number, Word>::map(core, b);
639    }
640
641    /// \brief Returns a random integer from a range
642    ///
643    /// It returns a random integer from the range {a, a + 1, ..., b - 1}.
644    template <typename Number>
645    Number integer(Number a, Number b) {
646      return _random_bits::Mapping<Number, Word>::map(core, b - a) + a;
647    }
648
649    /// \brief Returns a random integer from a range
650    ///
651    /// It returns a random integer from the range {0, 1, ..., b - 1}.
652    template <typename Number>
653    Number operator[](Number b) {
654      return _random_bits::Mapping<Number, Word>::map(core, b);
655    }
656
657    /// \brief Returns a random non-negative integer
658    ///
659    /// It returns a random non-negative integer uniformly from the
660    /// whole range of the current \c Number type.  The default result
661    /// type of this function is unsigned int.
662    template <typename Number>
663    Number uinteger() {
664      return _random_bits::IntConversion<Number, Word>::convert(core);
665    }
666
667    unsigned int uinteger() {
668      return uinteger<unsigned int>();
669    }
670
671    /// \brief Returns a random integer
672    ///
673    /// It returns a random integer uniformly from the whole range of
674    /// the current \c Number type. The default result type of this
675    /// function is int.
676    template <typename Number>
677    Number integer() {
678      static const int nb = std::numeric_limits<Number>::digits +
679        (std::numeric_limits<Number>::is_signed ? 1 : 0);
680      return _random_bits::IntConversion<Number, Word, nb>::convert(core);
681    }
682
683    int integer() {
684      return integer<int>();
685    }
686   
687    /// \brief Returns a random bool
688    ///
689    /// It returns a random bool. The generator holds a buffer for
690    /// random bits. Every time when it become empty the generator makes
691    /// a new random word and fill the buffer up.
692    bool boolean() {
693      return bool_producer.convert(core);
694    }
695
696    ///\name Nonuniform distributions
697    ///
698   
699    ///@{
700   
701    /// \brief Returns a random bool
702    ///
703    /// It returns a random bool with given probability of true result
704    bool boolean(double p) {
705      return operator()() < p;
706    }
707
708    /// Standard Gauss distribution
709
710    /// Standard Gauss distribution.
711    /// \note The Cartesian form of the Box-Muller
712    /// transformation is used to generate a random normal distribution.
713    /// \todo Consider using the "ziggurat" method instead.
714    double gauss()
715    {
716      double V1,V2,S;
717      do {
718        V1=2*real<double>()-1;
719        V2=2*real<double>()-1;
720        S=V1*V1+V2*V2;
721      } while(S>=1);
722      return std::sqrt(-2*std::log(S)/S)*V1;
723    }
724    /// Gauss distribution with given mean and standard deviation
725
726    /// \sa gauss()
727    ///
728    double gauss(double mean,double std_dev)
729    {
730      return gauss()*std_dev+mean;
731    }
732
733    /// Exponential distribution with given mean
734
735    /// This function generates an exponential distribution random number
736    /// with mean <tt>1/lambda</tt>.
737    ///
738    double exponential(double lambda=1.0)
739    {
740      return -std::log(1.0-real<double>())/lambda;
741    }
742
743    /// Gamma distribution with given integer shape
744
745    /// This function generates a gamma distribution random number.
746    ///
747    ///\param k shape parameter (<tt>k>0</tt> integer)
748    double gamma(int k)
749    {
750      double s = 0;
751      for(int i=0;i<k;i++) s-=std::log(1.0-real<double>());
752      return s;
753    }
754   
755    /// Gamma distribution with given shape and scale parameter
756
757    /// This function generates a gamma distribution random number.
758    ///
759    ///\param k shape parameter (<tt>k>0</tt>)
760    ///\param theta scale parameter
761    ///
762    double gamma(double k,double theta=1.0)
763    {
764      double xi,nu;
765      const double delta = k-std::floor(k);
766      const double v0=M_E/(M_E-delta);
767      do {
768        double V0=1.0-real<double>();
769        double V1=1.0-real<double>();
770        double V2=1.0-real<double>();
771        if(V2<=v0)
772          {
773            xi=std::pow(V1,1.0/delta);
774            nu=V0*std::pow(xi,delta-1.0);
775          }
776        else
777          {
778            xi=1.0-std::log(V1);
779            nu=V0*std::exp(-xi);
780          }
781      } while(nu>std::pow(xi,delta-1.0)*std::exp(-xi));
782      return theta*(xi-gamma(int(std::floor(k))));
783    }
784   
785    /// Weibull distribution
786
787    /// This function generates a Weibull distribution random number.
788    ///
789    ///\param k shape parameter (<tt>k>0</tt>)
790    ///\param lambda scale parameter (<tt>lambda>0</tt>)
791    ///
792    double weibull(double k,double lambda)
793    {
794      return lambda*pow(-std::log(1.0-real<double>()),1.0/k);
795    } 
796     
797    /// Pareto distribution
798
799    /// This function generates a Pareto distribution random number.
800    ///
801    ///\param k shape parameter (<tt>k>0</tt>)
802    ///\param x_min location parameter (<tt>x_min>0</tt>)
803    ///
804    double pareto(double k,double x_min)
805    {
806      return exponential(gamma(k,1.0/x_min));
807    } 
808     
809    ///@}
810   
811    ///\name Two dimensional distributions
812    ///
813
814    ///@{
815   
816    /// Uniform distribution on the full unit circle.
817    dim2::Point<double> disc()
818    {
819      double V1,V2;
820      do {
821        V1=2*real<double>()-1;
822        V2=2*real<double>()-1;
823       
824      } while(V1*V1+V2*V2>=1);
825      return dim2::Point<double>(V1,V2);
826    }
827    /// A kind of two dimensional Gauss distribution
828
829    /// This function provides a turning symmetric two-dimensional distribution.
830    /// Both coordinates are of standard normal distribution, but they are not
831    /// independent.
832    ///
833    /// \note The coordinates are the two random variables provided by
834    /// the Box-Muller method.
835    dim2::Point<double> gauss2()
836    {
837      double V1,V2,S;
838      do {
839        V1=2*real<double>()-1;
840        V2=2*real<double>()-1;
841        S=V1*V1+V2*V2;
842      } while(S>=1);
843      double W=std::sqrt(-2*std::log(S)/S);
844      return dim2::Point<double>(W*V1,W*V2);
845    }
846    /// A kind of two dimensional exponential distribution
847
848    /// This function provides a turning symmetric two-dimensional distribution.
849    /// The x-coordinate is of conditionally exponential distribution
850    /// with the condition that x is positive and y=0. If x is negative and
851    /// y=0 then, -x is of exponential distribution. The same is true for the
852    /// y-coordinate.
853    dim2::Point<double> exponential2()
854    {
855      double V1,V2,S;
856      do {
857        V1=2*real<double>()-1;
858        V2=2*real<double>()-1;
859        S=V1*V1+V2*V2;
860      } while(S>=1);
861      double W=-std::log(S)/S;
862      return dim2::Point<double>(W*V1,W*V2);
863    }
864
865    ///@}   
866  };
867
868
869  extern Random rnd;
870
871}
872
873#endif
Note: See TracBrowser for help on using the repository browser.