COIN-OR::LEMON - Graph Library

source: lemon-1.1/lemon/bfs.h @ 280:e7f8647ce760

Last change on this file since 280:e7f8647ce760 was 280:e7f8647ce760, checked in by Alpar Juttner <alpar@…>, 16 years ago

Remove todo-s and convert them to trac tickets

File size: 53.0 KB
RevLine 
[209]1/* -*- mode: C++; indent-tabs-mode: nil; -*-
[100]2 *
[209]3 * This file is a part of LEMON, a generic C++ optimization library.
[100]4 *
5 * Copyright (C) 2003-2008
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 *
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
12 *
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
15 * purpose.
16 *
17 */
18
19#ifndef LEMON_BFS_H
20#define LEMON_BFS_H
21
22///\ingroup search
23///\file
[244]24///\brief BFS algorithm.
[100]25
26#include <lemon/list_graph.h>
27#include <lemon/bits/path_dump.h>
[220]28#include <lemon/core.h>
[100]29#include <lemon/error.h>
30#include <lemon/maps.h>
31
32namespace lemon {
33
34  ///Default traits class of Bfs class.
35
36  ///Default traits class of Bfs class.
[157]37  ///\tparam GR Digraph type.
[100]38  template<class GR>
39  struct BfsDefaultTraits
40  {
[244]41    ///The type of the digraph the algorithm runs on.
[100]42    typedef GR Digraph;
[244]43
44    ///\brief The type of the map that stores the predecessor
[100]45    ///arcs of the shortest paths.
[209]46    ///
[244]47    ///The type of the map that stores the predecessor
[100]48    ///arcs of the shortest paths.
49    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
[244]50    typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
51    ///Instantiates a \ref PredMap.
[209]52
53    ///This function instantiates a \ref PredMap.
[244]54    ///\param g is the digraph, to which we would like to define the
55    ///\ref PredMap.
56    static PredMap *createPredMap(const Digraph &g)
[100]57    {
[244]58      return new PredMap(g);
[100]59    }
[244]60
[100]61    ///The type of the map that indicates which nodes are processed.
[209]62
[100]63    ///The type of the map that indicates which nodes are processed.
64    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
65    typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
[244]66    ///Instantiates a \ref ProcessedMap.
[209]67
68    ///This function instantiates a \ref ProcessedMap.
[100]69    ///\param g is the digraph, to which
70    ///we would like to define the \ref ProcessedMap
71#ifdef DOXYGEN
[244]72    static ProcessedMap *createProcessedMap(const Digraph &g)
[100]73#else
[244]74    static ProcessedMap *createProcessedMap(const Digraph &)
[100]75#endif
76    {
77      return new ProcessedMap();
78    }
[244]79
[100]80    ///The type of the map that indicates which nodes are reached.
[209]81
[100]82    ///The type of the map that indicates which nodes are reached.
[244]83    ///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
[100]84    typedef typename Digraph::template NodeMap<bool> ReachedMap;
[244]85    ///Instantiates a \ref ReachedMap.
[209]86
87    ///This function instantiates a \ref ReachedMap.
[244]88    ///\param g is the digraph, to which
[100]89    ///we would like to define the \ref ReachedMap.
[244]90    static ReachedMap *createReachedMap(const Digraph &g)
[100]91    {
[244]92      return new ReachedMap(g);
[100]93    }
[209]94
[244]95    ///The type of the map that stores the distances of the nodes.
96
97    ///The type of the map that stores the distances of the nodes.
[100]98    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
99    typedef typename Digraph::template NodeMap<int> DistMap;
[244]100    ///Instantiates a \ref DistMap.
[209]101
102    ///This function instantiates a \ref DistMap.
[244]103    ///\param g is the digraph, to which we would like to define the
104    ///\ref DistMap.
105    static DistMap *createDistMap(const Digraph &g)
[100]106    {
[244]107      return new DistMap(g);
[100]108    }
109  };
[209]110
[100]111  ///%BFS algorithm class.
[209]112
[100]113  ///\ingroup search
114  ///This class provides an efficient implementation of the %BFS algorithm.
115  ///
[244]116  ///There is also a \ref bfs() "function type interface" for the BFS
117  ///algorithm, which is convenient in the simplier cases and it can be
118  ///used easier.
119  ///
120  ///\tparam GR The type of the digraph the algorithm runs on.
121  ///The default value is \ref ListDigraph. The value of GR is not used
122  ///directly by \ref Bfs, it is only passed to \ref BfsDefaultTraits.
[157]123  ///\tparam TR Traits class to set various data types used by the algorithm.
[100]124  ///The default traits class is
125  ///\ref BfsDefaultTraits "BfsDefaultTraits<GR>".
126  ///See \ref BfsDefaultTraits for the documentation of
127  ///a Bfs traits class.
128#ifdef DOXYGEN
129  template <typename GR,
[209]130            typename TR>
[100]131#else
132  template <typename GR=ListDigraph,
[209]133            typename TR=BfsDefaultTraits<GR> >
[100]134#endif
135  class Bfs {
136  public:
[244]137    ///\ref Exception for uninitialized parameters.
138
139    ///This error represents problems in the initialization of the
140    ///parameters of the algorithm.
[100]141    class UninitializedParameter : public lemon::UninitializedParameter {
142    public:
143      virtual const char* what() const throw() {
[209]144        return "lemon::Bfs::UninitializedParameter";
[100]145      }
146    };
147
[244]148    ///The type of the digraph the algorithm runs on.
[100]149    typedef typename TR::Digraph Digraph;
[209]150
[244]151    ///\brief The type of the map that stores the predecessor arcs of the
152    ///shortest paths.
[100]153    typedef typename TR::PredMap PredMap;
[244]154    ///The type of the map that stores the distances of the nodes.
155    typedef typename TR::DistMap DistMap;
156    ///The type of the map that indicates which nodes are reached.
[100]157    typedef typename TR::ReachedMap ReachedMap;
[244]158    ///The type of the map that indicates which nodes are processed.
[100]159    typedef typename TR::ProcessedMap ProcessedMap;
[244]160    ///The type of the paths.
161    typedef PredMapPath<Digraph, PredMap> Path;
162
163    ///The traits class.
164    typedef TR Traits;
165
[100]166  private:
167
168    typedef typename Digraph::Node Node;
169    typedef typename Digraph::NodeIt NodeIt;
170    typedef typename Digraph::Arc Arc;
171    typedef typename Digraph::OutArcIt OutArcIt;
172
[244]173    //Pointer to the underlying digraph.
[100]174    const Digraph *G;
[244]175    //Pointer to the map of predecessor arcs.
[100]176    PredMap *_pred;
[244]177    //Indicates if _pred is locally allocated (true) or not.
[100]178    bool local_pred;
[244]179    //Pointer to the map of distances.
[100]180    DistMap *_dist;
[244]181    //Indicates if _dist is locally allocated (true) or not.
[100]182    bool local_dist;
[244]183    //Pointer to the map of reached status of the nodes.
[100]184    ReachedMap *_reached;
[244]185    //Indicates if _reached is locally allocated (true) or not.
[100]186    bool local_reached;
[244]187    //Pointer to the map of processed status of the nodes.
[100]188    ProcessedMap *_processed;
[244]189    //Indicates if _processed is locally allocated (true) or not.
[100]190    bool local_processed;
191
192    std::vector<typename Digraph::Node> _queue;
193    int _queue_head,_queue_tail,_queue_next_dist;
194    int _curr_dist;
195
[280]196    //Creates the maps if necessary.
[209]197    void create_maps()
[100]198    {
199      if(!_pred) {
[209]200        local_pred = true;
201        _pred = Traits::createPredMap(*G);
[100]202      }
203      if(!_dist) {
[209]204        local_dist = true;
205        _dist = Traits::createDistMap(*G);
[100]206      }
207      if(!_reached) {
[209]208        local_reached = true;
209        _reached = Traits::createReachedMap(*G);
[100]210      }
211      if(!_processed) {
[209]212        local_processed = true;
213        _processed = Traits::createProcessedMap(*G);
[100]214      }
215    }
216
217  protected:
[209]218
[100]219    Bfs() {}
[209]220
[100]221  public:
[209]222
[100]223    typedef Bfs Create;
224
225    ///\name Named template parameters
226
227    ///@{
228
229    template <class T>
[257]230    struct SetPredMapTraits : public Traits {
[100]231      typedef T PredMap;
[209]232      static PredMap *createPredMap(const Digraph &)
[100]233      {
[209]234        throw UninitializedParameter();
[100]235      }
236    };
237    ///\brief \ref named-templ-param "Named parameter" for setting
[244]238    ///\ref PredMap type.
[100]239    ///
[244]240    ///\ref named-templ-param "Named parameter" for setting
241    ///\ref PredMap type.
[100]242    template <class T>
[257]243    struct SetPredMap : public Bfs< Digraph, SetPredMapTraits<T> > {
244      typedef Bfs< Digraph, SetPredMapTraits<T> > Create;
[100]245    };
[209]246
[100]247    template <class T>
[257]248    struct SetDistMapTraits : public Traits {
[100]249      typedef T DistMap;
[209]250      static DistMap *createDistMap(const Digraph &)
[100]251      {
[209]252        throw UninitializedParameter();
[100]253      }
254    };
255    ///\brief \ref named-templ-param "Named parameter" for setting
[244]256    ///\ref DistMap type.
[100]257    ///
[244]258    ///\ref named-templ-param "Named parameter" for setting
259    ///\ref DistMap type.
[100]260    template <class T>
[257]261    struct SetDistMap : public Bfs< Digraph, SetDistMapTraits<T> > {
262      typedef Bfs< Digraph, SetDistMapTraits<T> > Create;
[100]263    };
[209]264
[100]265    template <class T>
[257]266    struct SetReachedMapTraits : public Traits {
[100]267      typedef T ReachedMap;
[209]268      static ReachedMap *createReachedMap(const Digraph &)
[100]269      {
[209]270        throw UninitializedParameter();
[100]271      }
272    };
273    ///\brief \ref named-templ-param "Named parameter" for setting
[244]274    ///\ref ReachedMap type.
[100]275    ///
[244]276    ///\ref named-templ-param "Named parameter" for setting
277    ///\ref ReachedMap type.
[100]278    template <class T>
[257]279    struct SetReachedMap : public Bfs< Digraph, SetReachedMapTraits<T> > {
280      typedef Bfs< Digraph, SetReachedMapTraits<T> > Create;
[100]281    };
[209]282
[100]283    template <class T>
[257]284    struct SetProcessedMapTraits : public Traits {
[100]285      typedef T ProcessedMap;
[209]286      static ProcessedMap *createProcessedMap(const Digraph &)
[100]287      {
[209]288        throw UninitializedParameter();
[100]289      }
290    };
291    ///\brief \ref named-templ-param "Named parameter" for setting
[244]292    ///\ref ProcessedMap type.
[100]293    ///
[244]294    ///\ref named-templ-param "Named parameter" for setting
295    ///\ref ProcessedMap type.
[100]296    template <class T>
[257]297    struct SetProcessedMap : public Bfs< Digraph, SetProcessedMapTraits<T> > {
298      typedef Bfs< Digraph, SetProcessedMapTraits<T> > Create;
[100]299    };
[209]300
[257]301    struct SetStandardProcessedMapTraits : public Traits {
[100]302      typedef typename Digraph::template NodeMap<bool> ProcessedMap;
[244]303      static ProcessedMap *createProcessedMap(const Digraph &g)
[100]304      {
[244]305        return new ProcessedMap(g);
[100]306      }
307    };
[244]308    ///\brief \ref named-templ-param "Named parameter" for setting
309    ///\ref ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
[100]310    ///
[244]311    ///\ref named-templ-param "Named parameter" for setting
312    ///\ref ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
[100]313    ///If you don't set it explicitly, it will be automatically allocated.
[257]314    struct SetStandardProcessedMap :
315      public Bfs< Digraph, SetStandardProcessedMapTraits > {
316      typedef Bfs< Digraph, SetStandardProcessedMapTraits > Create;
[100]317    };
[209]318
[100]319    ///@}
320
[209]321  public:
322
[100]323    ///Constructor.
[209]324
[244]325    ///Constructor.
326    ///\param g The digraph the algorithm runs on.
327    Bfs(const Digraph &g) :
328      G(&g),
[100]329      _pred(NULL), local_pred(false),
330      _dist(NULL), local_dist(false),
331      _reached(NULL), local_reached(false),
332      _processed(NULL), local_processed(false)
333    { }
[209]334
[100]335    ///Destructor.
[209]336    ~Bfs()
[100]337    {
338      if(local_pred) delete _pred;
339      if(local_dist) delete _dist;
340      if(local_reached) delete _reached;
341      if(local_processed) delete _processed;
342    }
343
[244]344    ///Sets the map that stores the predecessor arcs.
[100]345
[244]346    ///Sets the map that stores the predecessor arcs.
[100]347    ///If you don't use this function before calling \ref run(),
348    ///it will allocate one. The destructor deallocates this
349    ///automatically allocated map, of course.
350    ///\return <tt> (*this) </tt>
[209]351    Bfs &predMap(PredMap &m)
[100]352    {
353      if(local_pred) {
[209]354        delete _pred;
355        local_pred=false;
[100]356      }
357      _pred = &m;
358      return *this;
359    }
360
[244]361    ///Sets the map that indicates which nodes are reached.
[100]362
[244]363    ///Sets the map that indicates which nodes are reached.
[100]364    ///If you don't use this function before calling \ref run(),
365    ///it will allocate one. The destructor deallocates this
366    ///automatically allocated map, of course.
367    ///\return <tt> (*this) </tt>
[209]368    Bfs &reachedMap(ReachedMap &m)
[100]369    {
370      if(local_reached) {
[209]371        delete _reached;
372        local_reached=false;
[100]373      }
374      _reached = &m;
375      return *this;
376    }
377
[244]378    ///Sets the map that indicates which nodes are processed.
[100]379
[244]380    ///Sets the map that indicates which nodes are processed.
[100]381    ///If you don't use this function before calling \ref run(),
382    ///it will allocate one. The destructor deallocates this
383    ///automatically allocated map, of course.
384    ///\return <tt> (*this) </tt>
[209]385    Bfs &processedMap(ProcessedMap &m)
[100]386    {
387      if(local_processed) {
[209]388        delete _processed;
389        local_processed=false;
[100]390      }
391      _processed = &m;
392      return *this;
393    }
394
[244]395    ///Sets the map that stores the distances of the nodes.
[100]396
[244]397    ///Sets the map that stores the distances of the nodes calculated by
398    ///the algorithm.
[100]399    ///If you don't use this function before calling \ref run(),
400    ///it will allocate one. The destructor deallocates this
401    ///automatically allocated map, of course.
402    ///\return <tt> (*this) </tt>
[209]403    Bfs &distMap(DistMap &m)
[100]404    {
405      if(local_dist) {
[209]406        delete _dist;
407        local_dist=false;
[100]408      }
409      _dist = &m;
410      return *this;
411    }
412
413  public:
[244]414
[100]415    ///\name Execution control
416    ///The simplest way to execute the algorithm is to use
[244]417    ///one of the member functions called \ref lemon::Bfs::run() "run()".
[100]418    ///\n
[244]419    ///If you need more control on the execution, first you must call
420    ///\ref lemon::Bfs::init() "init()", then you can add several source
421    ///nodes with \ref lemon::Bfs::addSource() "addSource()".
422    ///Finally \ref lemon::Bfs::start() "start()" will perform the
423    ///actual path computation.
[100]424
425    ///@{
426
[244]427    ///Initializes the internal data structures.
428
[100]429    ///Initializes the internal data structures.
430    ///
431    void init()
432    {
433      create_maps();
434      _queue.resize(countNodes(*G));
435      _queue_head=_queue_tail=0;
436      _curr_dist=1;
437      for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
[209]438        _pred->set(u,INVALID);
439        _reached->set(u,false);
440        _processed->set(u,false);
[100]441      }
442    }
[209]443
[100]444    ///Adds a new source node.
445
446    ///Adds a new source node to the set of nodes to be processed.
447    ///
448    void addSource(Node s)
449    {
450      if(!(*_reached)[s])
[209]451        {
452          _reached->set(s,true);
453          _pred->set(s,INVALID);
454          _dist->set(s,0);
455          _queue[_queue_head++]=s;
456          _queue_next_dist=_queue_head;
457        }
[100]458    }
[209]459
[100]460    ///Processes the next node.
461
462    ///Processes the next node.
463    ///
464    ///\return The processed node.
465    ///
[244]466    ///\pre The queue must not be empty.
[100]467    Node processNextNode()
468    {
469      if(_queue_tail==_queue_next_dist) {
[209]470        _curr_dist++;
471        _queue_next_dist=_queue_head;
[100]472      }
473      Node n=_queue[_queue_tail++];
474      _processed->set(n,true);
475      Node m;
476      for(OutArcIt e(*G,n);e!=INVALID;++e)
[209]477        if(!(*_reached)[m=G->target(e)]) {
478          _queue[_queue_head++]=m;
479          _reached->set(m,true);
480          _pred->set(m,e);
481          _dist->set(m,_curr_dist);
482        }
[100]483      return n;
484    }
485
486    ///Processes the next node.
487
[244]488    ///Processes the next node and checks if the given target node
[100]489    ///is reached. If the target node is reachable from the processed
[244]490    ///node, then the \c reach parameter will be set to \c true.
[100]491    ///
492    ///\param target The target node.
[244]493    ///\retval reach Indicates if the target node is reached.
494    ///It should be initially \c false.
495    ///
[100]496    ///\return The processed node.
497    ///
[244]498    ///\pre The queue must not be empty.
[100]499    Node processNextNode(Node target, bool& reach)
500    {
501      if(_queue_tail==_queue_next_dist) {
[209]502        _curr_dist++;
503        _queue_next_dist=_queue_head;
[100]504      }
505      Node n=_queue[_queue_tail++];
506      _processed->set(n,true);
507      Node m;
508      for(OutArcIt e(*G,n);e!=INVALID;++e)
[209]509        if(!(*_reached)[m=G->target(e)]) {
510          _queue[_queue_head++]=m;
511          _reached->set(m,true);
512          _pred->set(m,e);
513          _dist->set(m,_curr_dist);
[100]514          reach = reach || (target == m);
[209]515        }
[100]516      return n;
517    }
518
519    ///Processes the next node.
520
[244]521    ///Processes the next node and checks if at least one of reached
522    ///nodes has \c true value in the \c nm node map. If one node
523    ///with \c true value is reachable from the processed node, then the
524    ///\c rnode parameter will be set to the first of such nodes.
[100]525    ///
[244]526    ///\param nm A \c bool (or convertible) node map that indicates the
527    ///possible targets.
[100]528    ///\retval rnode The reached target node.
[244]529    ///It should be initially \c INVALID.
530    ///
[100]531    ///\return The processed node.
532    ///
[244]533    ///\pre The queue must not be empty.
[100]534    template<class NM>
535    Node processNextNode(const NM& nm, Node& rnode)
536    {
537      if(_queue_tail==_queue_next_dist) {
[209]538        _curr_dist++;
539        _queue_next_dist=_queue_head;
[100]540      }
541      Node n=_queue[_queue_tail++];
542      _processed->set(n,true);
543      Node m;
544      for(OutArcIt e(*G,n);e!=INVALID;++e)
[209]545        if(!(*_reached)[m=G->target(e)]) {
546          _queue[_queue_head++]=m;
547          _reached->set(m,true);
548          _pred->set(m,e);
549          _dist->set(m,_curr_dist);
550          if (nm[m] && rnode == INVALID) rnode = m;
551        }
[100]552      return n;
553    }
[209]554
[244]555    ///The next node to be processed.
[100]556
[244]557    ///Returns the next node to be processed or \c INVALID if the queue
558    ///is empty.
559    Node nextNode() const
[209]560    {
[100]561      return _queue_tail<_queue_head?_queue[_queue_tail]:INVALID;
562    }
[209]563
[100]564    ///\brief Returns \c false if there are nodes
[244]565    ///to be processed.
[100]566    ///
567    ///Returns \c false if there are nodes
[244]568    ///to be processed in the queue.
569    bool emptyQueue() const { return _queue_tail==_queue_head; }
570
[100]571    ///Returns the number of the nodes to be processed.
[209]572
[100]573    ///Returns the number of the nodes to be processed in the queue.
[244]574    int queueSize() const { return _queue_head-_queue_tail; }
[209]575
[100]576    ///Executes the algorithm.
577
578    ///Executes the algorithm.
579    ///
[244]580    ///This method runs the %BFS algorithm from the root node(s)
581    ///in order to compute the shortest path to each node.
[100]582    ///
[244]583    ///The algorithm computes
584    ///- the shortest path tree (forest),
585    ///- the distance of each node from the root(s).
586    ///
587    ///\pre init() must be called and at least one root node should be
588    ///added with addSource() before using this function.
589    ///
590    ///\note <tt>b.start()</tt> is just a shortcut of the following code.
591    ///\code
592    ///  while ( !b.emptyQueue() ) {
593    ///    b.processNextNode();
594    ///  }
595    ///\endcode
[100]596    void start()
597    {
598      while ( !emptyQueue() ) processNextNode();
599    }
[209]600
[244]601    ///Executes the algorithm until the given target node is reached.
[100]602
[244]603    ///Executes the algorithm until the given target node is reached.
[100]604    ///
605    ///This method runs the %BFS algorithm from the root node(s)
606    ///in order to compute the shortest path to \c dest.
[244]607    ///
[100]608    ///The algorithm computes
[244]609    ///- the shortest path to \c dest,
610    ///- the distance of \c dest from the root(s).
611    ///
612    ///\pre init() must be called and at least one root node should be
613    ///added with addSource() before using this function.
614    ///
615    ///\note <tt>b.start(t)</tt> is just a shortcut of the following code.
616    ///\code
617    ///  bool reach = false;
618    ///  while ( !b.emptyQueue() && !reach ) {
619    ///    b.processNextNode(t, reach);
620    ///  }
621    ///\endcode
[100]622    void start(Node dest)
623    {
624      bool reach = false;
625      while ( !emptyQueue() && !reach ) processNextNode(dest, reach);
626    }
[209]627
[100]628    ///Executes the algorithm until a condition is met.
629
630    ///Executes the algorithm until a condition is met.
631    ///
[244]632    ///This method runs the %BFS algorithm from the root node(s) in
633    ///order to compute the shortest path to a node \c v with
634    /// <tt>nm[v]</tt> true, if such a node can be found.
[100]635    ///
[244]636    ///\param nm A \c bool (or convertible) node map. The algorithm
637    ///will stop when it reaches a node \c v with <tt>nm[v]</tt> true.
[100]638    ///
639    ///\return The reached node \c v with <tt>nm[v]</tt> true or
640    ///\c INVALID if no such node was found.
[244]641    ///
642    ///\pre init() must be called and at least one root node should be
643    ///added with addSource() before using this function.
644    ///
645    ///\note <tt>b.start(nm)</tt> is just a shortcut of the following code.
646    ///\code
647    ///  Node rnode = INVALID;
648    ///  while ( !b.emptyQueue() && rnode == INVALID ) {
649    ///    b.processNextNode(nm, rnode);
650    ///  }
651    ///  return rnode;
652    ///\endcode
653    template<class NodeBoolMap>
654    Node start(const NodeBoolMap &nm)
[100]655    {
656      Node rnode = INVALID;
657      while ( !emptyQueue() && rnode == INVALID ) {
[209]658        processNextNode(nm, rnode);
[100]659      }
660      return rnode;
661    }
[209]662
[244]663    ///Runs the algorithm from the given node.
[209]664
[244]665    ///This method runs the %BFS algorithm from node \c s
666    ///in order to compute the shortest path to each node.
[100]667    ///
[244]668    ///The algorithm computes
669    ///- the shortest path tree,
670    ///- the distance of each node from the root.
671    ///
672    ///\note <tt>b.run(s)</tt> is just a shortcut of the following code.
[100]673    ///\code
674    ///  b.init();
675    ///  b.addSource(s);
676    ///  b.start();
677    ///\endcode
678    void run(Node s) {
679      init();
680      addSource(s);
681      start();
682    }
[209]683
[100]684    ///Finds the shortest path between \c s and \c t.
[209]685
[244]686    ///This method runs the %BFS algorithm from node \c s
687    ///in order to compute the shortest path to \c t.
[100]688    ///
[244]689    ///\return The length of the shortest <tt>s</tt>--<tt>t</tt> path,
690    ///if \c t is reachable form \c s, \c 0 otherwise.
691    ///
692    ///\note Apart from the return value, <tt>b.run(s,t)</tt> is just a
693    ///shortcut of the following code.
[100]694    ///\code
695    ///  b.init();
696    ///  b.addSource(s);
697    ///  b.start(t);
698    ///\endcode
699    int run(Node s,Node t) {
700      init();
701      addSource(s);
702      start(t);
703      return reached(t) ? _curr_dist : 0;
704    }
[209]705
[244]706    ///Runs the algorithm to visit all nodes in the digraph.
707
708    ///This method runs the %BFS algorithm in order to
709    ///compute the shortest path to each node.
710    ///
711    ///The algorithm computes
712    ///- the shortest path tree (forest),
713    ///- the distance of each node from the root(s).
714    ///
715    ///\note <tt>b.run(s)</tt> is just a shortcut of the following code.
716    ///\code
717    ///  b.init();
718    ///  for (NodeIt n(gr); n != INVALID; ++n) {
719    ///    if (!b.reached(n)) {
720    ///      b.addSource(n);
721    ///      b.start();
722    ///    }
723    ///  }
724    ///\endcode
725    void run() {
726      init();
727      for (NodeIt n(*G); n != INVALID; ++n) {
728        if (!reached(n)) {
729          addSource(n);
730          start();
731        }
732      }
733    }
734
[100]735    ///@}
736
737    ///\name Query Functions
738    ///The result of the %BFS algorithm can be obtained using these
739    ///functions.\n
[244]740    ///Either \ref lemon::Bfs::run() "run()" or \ref lemon::Bfs::start()
741    ///"start()" must be called before using them.
[209]742
[100]743    ///@{
744
[244]745    ///The shortest path to a node.
[100]746
[244]747    ///Returns the shortest path to a node.
748    ///
749    ///\warning \c t should be reachable from the root(s).
750    ///
751    ///\pre Either \ref run() or \ref start() must be called before
752    ///using this function.
753    Path path(Node t) const { return Path(*G, *_pred, t); }
[100]754
755    ///The distance of a node from the root(s).
756
757    ///Returns the distance of a node from the root(s).
[244]758    ///
759    ///\warning If node \c v is not reachable from the root(s), then
760    ///the return value of this function is undefined.
761    ///
762    ///\pre Either \ref run() or \ref start() must be called before
763    ///using this function.
[100]764    int dist(Node v) const { return (*_dist)[v]; }
765
[244]766    ///Returns the 'previous arc' of the shortest path tree for a node.
[100]767
[244]768    ///This function returns the 'previous arc' of the shortest path
769    ///tree for the node \c v, i.e. it returns the last arc of a
770    ///shortest path from the root(s) to \c v. It is \c INVALID if \c v
771    ///is not reachable from the root(s) or if \c v is a root.
772    ///
773    ///The shortest path tree used here is equal to the shortest path
774    ///tree used in \ref predNode().
775    ///
776    ///\pre Either \ref run() or \ref start() must be called before
777    ///using this function.
[100]778    Arc predArc(Node v) const { return (*_pred)[v];}
779
[244]780    ///Returns the 'previous node' of the shortest path tree for a node.
[100]781
[244]782    ///This function returns the 'previous node' of the shortest path
783    ///tree for the node \c v, i.e. it returns the last but one node
784    ///from a shortest path from the root(s) to \c v. It is \c INVALID
785    ///if \c v is not reachable from the root(s) or if \c v is a root.
786    ///
[100]787    ///The shortest path tree used here is equal to the shortest path
788    ///tree used in \ref predArc().
[244]789    ///
[100]790    ///\pre Either \ref run() or \ref start() must be called before
791    ///using this function.
792    Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
[209]793                                  G->source((*_pred)[v]); }
794
[244]795    ///\brief Returns a const reference to the node map that stores the
796    /// distances of the nodes.
797    ///
798    ///Returns a const reference to the node map that stores the distances
799    ///of the nodes calculated by the algorithm.
800    ///
801    ///\pre Either \ref run() or \ref init()
802    ///must be called before using this function.
[100]803    const DistMap &distMap() const { return *_dist;}
[209]804
[244]805    ///\brief Returns a const reference to the node map that stores the
806    ///predecessor arcs.
807    ///
808    ///Returns a const reference to the node map that stores the predecessor
809    ///arcs, which form the shortest path tree.
810    ///
[100]811    ///\pre Either \ref run() or \ref init()
812    ///must be called before using this function.
813    const PredMap &predMap() const { return *_pred;}
[209]814
[244]815    ///Checks if a node is reachable from the root(s).
[100]816
[244]817    ///Returns \c true if \c v is reachable from the root(s).
[100]818    ///\pre Either \ref run() or \ref start()
819    ///must be called before using this function.
[244]820    bool reached(Node v) const { return (*_reached)[v]; }
[209]821
[100]822    ///@}
823  };
824
[244]825  ///Default traits class of bfs() function.
[100]826
[244]827  ///Default traits class of bfs() function.
[157]828  ///\tparam GR Digraph type.
[100]829  template<class GR>
830  struct BfsWizardDefaultTraits
831  {
[244]832    ///The type of the digraph the algorithm runs on.
[100]833    typedef GR Digraph;
[244]834
835    ///\brief The type of the map that stores the predecessor
[100]836    ///arcs of the shortest paths.
[209]837    ///
[244]838    ///The type of the map that stores the predecessor
[100]839    ///arcs of the shortest paths.
840    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
[244]841    typedef NullMap<typename Digraph::Node,typename Digraph::Arc> PredMap;
842    ///Instantiates a \ref PredMap.
[209]843
844    ///This function instantiates a \ref PredMap.
[244]845    ///\param g is the digraph, to which we would like to define the
846    ///\ref PredMap.
[100]847#ifdef DOXYGEN
[244]848    static PredMap *createPredMap(const Digraph &g)
[100]849#else
[244]850    static PredMap *createPredMap(const Digraph &)
[100]851#endif
852    {
853      return new PredMap();
854    }
855
856    ///The type of the map that indicates which nodes are processed.
[209]857
[100]858    ///The type of the map that indicates which nodes are processed.
859    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
860    typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
[244]861    ///Instantiates a \ref ProcessedMap.
[209]862
863    ///This function instantiates a \ref ProcessedMap.
[100]864    ///\param g is the digraph, to which
[244]865    ///we would like to define the \ref ProcessedMap.
[100]866#ifdef DOXYGEN
[244]867    static ProcessedMap *createProcessedMap(const Digraph &g)
[100]868#else
[244]869    static ProcessedMap *createProcessedMap(const Digraph &)
[100]870#endif
871    {
872      return new ProcessedMap();
873    }
[244]874
[100]875    ///The type of the map that indicates which nodes are reached.
[209]876
[100]877    ///The type of the map that indicates which nodes are reached.
[244]878    ///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
[100]879    typedef typename Digraph::template NodeMap<bool> ReachedMap;
[244]880    ///Instantiates a \ref ReachedMap.
[209]881
882    ///This function instantiates a \ref ReachedMap.
[244]883    ///\param g is the digraph, to which
[100]884    ///we would like to define the \ref ReachedMap.
[244]885    static ReachedMap *createReachedMap(const Digraph &g)
[100]886    {
[244]887      return new ReachedMap(g);
[100]888    }
[209]889
[244]890    ///The type of the map that stores the distances of the nodes.
891
892    ///The type of the map that stores the distances of the nodes.
[100]893    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
894    ///
895    typedef NullMap<typename Digraph::Node,int> DistMap;
[244]896    ///Instantiates a \ref DistMap.
[209]897
898    ///This function instantiates a \ref DistMap.
[210]899    ///\param g is the digraph, to which we would like to define
900    ///the \ref DistMap
[100]901#ifdef DOXYGEN
[244]902    static DistMap *createDistMap(const Digraph &g)
[100]903#else
[244]904    static DistMap *createDistMap(const Digraph &)
[100]905#endif
906    {
907      return new DistMap();
908    }
909  };
[209]910
[244]911  /// Default traits class used by \ref BfsWizard
[100]912
913  /// To make it easier to use Bfs algorithm
[244]914  /// we have created a wizard class.
[100]915  /// This \ref BfsWizard class needs default traits,
[244]916  /// as well as the \ref Bfs class.
[100]917  /// The \ref BfsWizardBase is a class to be the default traits of the
918  /// \ref BfsWizard class.
919  template<class GR>
920  class BfsWizardBase : public BfsWizardDefaultTraits<GR>
921  {
922
923    typedef BfsWizardDefaultTraits<GR> Base;
924  protected:
[244]925    //The type of the nodes in the digraph.
[100]926    typedef typename Base::Digraph::Node Node;
927
[244]928    //Pointer to the digraph the algorithm runs on.
[100]929    void *_g;
[244]930    //Pointer to the map of reached nodes.
[100]931    void *_reached;
[244]932    //Pointer to the map of processed nodes.
[100]933    void *_processed;
[244]934    //Pointer to the map of predecessors arcs.
[100]935    void *_pred;
[244]936    //Pointer to the map of distances.
[100]937    void *_dist;
[244]938    //Pointer to the source node.
[100]939    Node _source;
[209]940
[100]941    public:
942    /// Constructor.
[209]943
[100]944    /// This constructor does not require parameters, therefore it initiates
945    /// all of the attributes to default values (0, INVALID).
946    BfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0),
[244]947                      _dist(0), _source(INVALID) {}
[100]948
949    /// Constructor.
[209]950
[100]951    /// This constructor requires some parameters,
952    /// listed in the parameters list.
953    /// Others are initiated to 0.
[244]954    /// \param g The digraph the algorithm runs on.
955    /// \param s The source node.
[100]956    BfsWizardBase(const GR &g, Node s=INVALID) :
[209]957      _g(reinterpret_cast<void*>(const_cast<GR*>(&g))),
[100]958      _reached(0), _processed(0), _pred(0), _dist(0), _source(s) {}
959
960  };
[209]961
[244]962  /// Auxiliary class for the function type interface of BFS algorithm.
[100]963
[244]964  /// This auxiliary class is created to implement the function type
965  /// interface of \ref Bfs algorithm. It uses the functions and features
966  /// of the plain \ref Bfs, but it is much simpler to use it.
967  /// It should only be used through the \ref bfs() function, which makes
968  /// it easier to use the algorithm.
[100]969  ///
970  /// Simplicity means that the way to change the types defined
971  /// in the traits class is based on functions that returns the new class
972  /// and not on templatable built-in classes.
973  /// When using the plain \ref Bfs
974  /// the new class with the modified type comes from
975  /// the original class by using the ::
976  /// operator. In the case of \ref BfsWizard only
[244]977  /// a function have to be called, and it will
[100]978  /// return the needed class.
979  ///
[244]980  /// It does not have own \ref run() method. When its \ref run() method
981  /// is called, it initiates a plain \ref Bfs object, and calls the
982  /// \ref Bfs::run() method of it.
[100]983  template<class TR>
984  class BfsWizard : public TR
985  {
986    typedef TR Base;
987
[244]988    ///The type of the digraph the algorithm runs on.
[100]989    typedef typename TR::Digraph Digraph;
[244]990
[100]991    typedef typename Digraph::Node Node;
992    typedef typename Digraph::NodeIt NodeIt;
993    typedef typename Digraph::Arc Arc;
994    typedef typename Digraph::OutArcIt OutArcIt;
[209]995
[244]996    ///\brief The type of the map that stores the predecessor
[100]997    ///arcs of the shortest paths.
998    typedef typename TR::PredMap PredMap;
[244]999    ///\brief The type of the map that stores the distances of the nodes.
[100]1000    typedef typename TR::DistMap DistMap;
[244]1001    ///\brief The type of the map that indicates which nodes are reached.
1002    typedef typename TR::ReachedMap ReachedMap;
1003    ///\brief The type of the map that indicates which nodes are processed.
1004    typedef typename TR::ProcessedMap ProcessedMap;
[100]1005
1006  public:
[244]1007
[100]1008    /// Constructor.
1009    BfsWizard() : TR() {}
1010
1011    /// Constructor that requires parameters.
1012
1013    /// Constructor that requires parameters.
1014    /// These parameters will be the default values for the traits class.
1015    BfsWizard(const Digraph &g, Node s=INVALID) :
1016      TR(g,s) {}
1017
1018    ///Copy constructor
1019    BfsWizard(const TR &b) : TR(b) {}
1020
1021    ~BfsWizard() {}
1022
[244]1023    ///Runs BFS algorithm from a source node.
[209]1024
[244]1025    ///Runs BFS algorithm from a source node.
1026    ///The node can be given with the \ref source() function.
[100]1027    void run()
1028    {
1029      if(Base::_source==INVALID) throw UninitializedParameter();
1030      Bfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g));
1031      if(Base::_reached)
[209]1032        alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached));
1033      if(Base::_processed)
[100]1034        alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed));
[209]1035      if(Base::_pred)
[100]1036        alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
[209]1037      if(Base::_dist)
[100]1038        alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
1039      alg.run(Base::_source);
1040    }
1041
[244]1042    ///Runs BFS algorithm from the given node.
[100]1043
[244]1044    ///Runs BFS algorithm from the given node.
[100]1045    ///\param s is the given source.
1046    void run(Node s)
1047    {
1048      Base::_source=s;
1049      run();
1050    }
1051
1052    /// Sets the source node, from which the Bfs algorithm runs.
1053
1054    /// Sets the source node, from which the Bfs algorithm runs.
1055    /// \param s is the source node.
[209]1056    BfsWizard<TR> &source(Node s)
[100]1057    {
1058      Base::_source=s;
1059      return *this;
1060    }
[209]1061
[244]1062    template<class T>
[257]1063    struct SetPredMapBase : public Base {
[244]1064      typedef T PredMap;
1065      static PredMap *createPredMap(const Digraph &) { return 0; };
[257]1066      SetPredMapBase(const TR &b) : TR(b) {}
[244]1067    };
1068    ///\brief \ref named-templ-param "Named parameter"
1069    ///for setting \ref PredMap object.
1070    ///
1071    /// \ref named-templ-param "Named parameter"
1072    ///for setting \ref PredMap object.
1073    template<class T>
[257]1074    BfsWizard<SetPredMapBase<T> > predMap(const T &t)
[244]1075    {
1076      Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
[257]1077      return BfsWizard<SetPredMapBase<T> >(*this);
[244]1078    }
1079
1080    template<class T>
[257]1081    struct SetReachedMapBase : public Base {
[244]1082      typedef T ReachedMap;
1083      static ReachedMap *createReachedMap(const Digraph &) { return 0; };
[257]1084      SetReachedMapBase(const TR &b) : TR(b) {}
[244]1085    };
1086    ///\brief \ref named-templ-param "Named parameter"
1087    ///for setting \ref ReachedMap object.
1088    ///
1089    /// \ref named-templ-param "Named parameter"
1090    ///for setting \ref ReachedMap object.
1091    template<class T>
[257]1092    BfsWizard<SetReachedMapBase<T> > reachedMap(const T &t)
[244]1093    {
1094      Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t));
[257]1095      return BfsWizard<SetReachedMapBase<T> >(*this);
[244]1096    }
1097
1098    template<class T>
[257]1099    struct SetProcessedMapBase : public Base {
[244]1100      typedef T ProcessedMap;
1101      static ProcessedMap *createProcessedMap(const Digraph &) { return 0; };
[257]1102      SetProcessedMapBase(const TR &b) : TR(b) {}
[244]1103    };
1104    ///\brief \ref named-templ-param "Named parameter"
1105    ///for setting \ref ProcessedMap object.
1106    ///
1107    /// \ref named-templ-param "Named parameter"
1108    ///for setting \ref ProcessedMap object.
1109    template<class T>
[257]1110    BfsWizard<SetProcessedMapBase<T> > processedMap(const T &t)
[244]1111    {
1112      Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t));
[257]1113      return BfsWizard<SetProcessedMapBase<T> >(*this);
[244]1114    }
1115
1116    template<class T>
[257]1117    struct SetDistMapBase : public Base {
[244]1118      typedef T DistMap;
1119      static DistMap *createDistMap(const Digraph &) { return 0; };
[257]1120      SetDistMapBase(const TR &b) : TR(b) {}
[244]1121    };
1122    ///\brief \ref named-templ-param "Named parameter"
1123    ///for setting \ref DistMap object.
1124    ///
1125    /// \ref named-templ-param "Named parameter"
1126    ///for setting \ref DistMap object.
1127    template<class T>
[257]1128    BfsWizard<SetDistMapBase<T> > distMap(const T &t)
[244]1129    {
1130      Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t));
[257]1131      return BfsWizard<SetDistMapBase<T> >(*this);
[244]1132    }
1133
[100]1134  };
[209]1135
[100]1136  ///Function type interface for Bfs algorithm.
1137
1138  /// \ingroup search
1139  ///Function type interface for Bfs algorithm.
1140  ///
1141  ///This function also has several
1142  ///\ref named-templ-func-param "named parameters",
1143  ///they are declared as the members of class \ref BfsWizard.
1144  ///The following
1145  ///example shows how to use these parameters.
1146  ///\code
1147  ///  bfs(g,source).predMap(preds).run();
1148  ///\endcode
1149  ///\warning Don't forget to put the \ref BfsWizard::run() "run()"
1150  ///to the end of the parameter list.
1151  ///\sa BfsWizard
1152  ///\sa Bfs
1153  template<class GR>
1154  BfsWizard<BfsWizardBase<GR> >
1155  bfs(const GR &g,typename GR::Node s=INVALID)
1156  {
1157    return BfsWizard<BfsWizardBase<GR> >(g,s);
1158  }
1159
1160#ifdef DOXYGEN
[244]1161  /// \brief Visitor class for BFS.
[209]1162  ///
[100]1163  /// This class defines the interface of the BfsVisit events, and
[244]1164  /// it could be the base of a real visitor class.
[100]1165  template <typename _Digraph>
1166  struct BfsVisitor {
1167    typedef _Digraph Digraph;
1168    typedef typename Digraph::Arc Arc;
1169    typedef typename Digraph::Node Node;
[244]1170    /// \brief Called for the source node(s) of the BFS.
[209]1171    ///
[244]1172    /// This function is called for the source node(s) of the BFS.
1173    void start(const Node& node) {}
1174    /// \brief Called when a node is reached first time.
1175    ///
1176    /// This function is called when a node is reached first time.
1177    void reach(const Node& node) {}
1178    /// \brief Called when a node is processed.
1179    ///
1180    /// This function is called when a node is processed.
1181    void process(const Node& node) {}
1182    /// \brief Called when an arc reaches a new node.
1183    ///
1184    /// This function is called when the BFS finds an arc whose target node
1185    /// is not reached yet.
[100]1186    void discover(const Arc& arc) {}
[244]1187    /// \brief Called when an arc is examined but its target node is
[100]1188    /// already discovered.
[209]1189    ///
[244]1190    /// This function is called when an arc is examined but its target node is
[100]1191    /// already discovered.
1192    void examine(const Arc& arc) {}
1193  };
1194#else
1195  template <typename _Digraph>
1196  struct BfsVisitor {
1197    typedef _Digraph Digraph;
1198    typedef typename Digraph::Arc Arc;
1199    typedef typename Digraph::Node Node;
[244]1200    void start(const Node&) {}
1201    void reach(const Node&) {}
1202    void process(const Node&) {}
[100]1203    void discover(const Arc&) {}
1204    void examine(const Arc&) {}
1205
1206    template <typename _Visitor>
1207    struct Constraints {
1208      void constraints() {
[209]1209        Arc arc;
1210        Node node;
[244]1211        visitor.start(node);
1212        visitor.reach(node);
1213        visitor.process(node);
[209]1214        visitor.discover(arc);
1215        visitor.examine(arc);
[100]1216      }
1217      _Visitor& visitor;
1218    };
1219  };
1220#endif
1221
1222  /// \brief Default traits class of BfsVisit class.
1223  ///
1224  /// Default traits class of BfsVisit class.
[244]1225  /// \tparam _Digraph The type of the digraph the algorithm runs on.
[100]1226  template<class _Digraph>
1227  struct BfsVisitDefaultTraits {
1228
[244]1229    /// \brief The type of the digraph the algorithm runs on.
[100]1230    typedef _Digraph Digraph;
1231
1232    /// \brief The type of the map that indicates which nodes are reached.
[209]1233    ///
[100]1234    /// The type of the map that indicates which nodes are reached.
[244]1235    /// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
[100]1236    typedef typename Digraph::template NodeMap<bool> ReachedMap;
1237
[244]1238    /// \brief Instantiates a \ref ReachedMap.
[100]1239    ///
[209]1240    /// This function instantiates a \ref ReachedMap.
[100]1241    /// \param digraph is the digraph, to which
1242    /// we would like to define the \ref ReachedMap.
1243    static ReachedMap *createReachedMap(const Digraph &digraph) {
1244      return new ReachedMap(digraph);
1245    }
1246
1247  };
1248
1249  /// \ingroup search
[209]1250  ///
[244]1251  /// \brief %BFS algorithm class with visitor interface.
[209]1252  ///
[100]1253  /// This class provides an efficient implementation of the %BFS algorithm
1254  /// with visitor interface.
1255  ///
1256  /// The %BfsVisit class provides an alternative interface to the Bfs
1257  /// class. It works with callback mechanism, the BfsVisit object calls
[244]1258  /// the member functions of the \c Visitor class on every BFS event.
[100]1259  ///
[252]1260  /// This interface of the BFS algorithm should be used in special cases
1261  /// when extra actions have to be performed in connection with certain
1262  /// events of the BFS algorithm. Otherwise consider to use Bfs or bfs()
1263  /// instead.
1264  ///
[244]1265  /// \tparam _Digraph The type of the digraph the algorithm runs on.
[210]1266  /// The default value is
[244]1267  /// \ref ListDigraph. The value of _Digraph is not used directly by
1268  /// \ref BfsVisit, it is only passed to \ref BfsVisitDefaultTraits.
1269  /// \tparam _Visitor The Visitor type that is used by the algorithm.
1270  /// \ref BfsVisitor "BfsVisitor<_Digraph>" is an empty visitor, which
1271  /// does not observe the BFS events. If you want to observe the BFS
1272  /// events, you should implement your own visitor class.
[209]1273  /// \tparam _Traits Traits class to set various data types used by the
[100]1274  /// algorithm. The default traits class is
1275  /// \ref BfsVisitDefaultTraits "BfsVisitDefaultTraits<_Digraph>".
1276  /// See \ref BfsVisitDefaultTraits for the documentation of
[244]1277  /// a BFS visit traits class.
[100]1278#ifdef DOXYGEN
1279  template <typename _Digraph, typename _Visitor, typename _Traits>
1280#else
1281  template <typename _Digraph = ListDigraph,
[209]1282            typename _Visitor = BfsVisitor<_Digraph>,
1283            typename _Traits = BfsDefaultTraits<_Digraph> >
[100]1284#endif
1285  class BfsVisit {
1286  public:
[209]1287
[100]1288    /// \brief \ref Exception for uninitialized parameters.
1289    ///
1290    /// This error represents problems in the initialization
[244]1291    /// of the parameters of the algorithm.
[100]1292    class UninitializedParameter : public lemon::UninitializedParameter {
1293    public:
[209]1294      virtual const char* what() const throw()
[100]1295      {
[209]1296        return "lemon::BfsVisit::UninitializedParameter";
[100]1297      }
1298    };
1299
[244]1300    ///The traits class.
[100]1301    typedef _Traits Traits;
1302
[244]1303    ///The type of the digraph the algorithm runs on.
[100]1304    typedef typename Traits::Digraph Digraph;
1305
[244]1306    ///The visitor type used by the algorithm.
[100]1307    typedef _Visitor Visitor;
1308
[244]1309    ///The type of the map that indicates which nodes are reached.
[100]1310    typedef typename Traits::ReachedMap ReachedMap;
1311
1312  private:
1313
1314    typedef typename Digraph::Node Node;
1315    typedef typename Digraph::NodeIt NodeIt;
1316    typedef typename Digraph::Arc Arc;
1317    typedef typename Digraph::OutArcIt OutArcIt;
1318
[244]1319    //Pointer to the underlying digraph.
[100]1320    const Digraph *_digraph;
[244]1321    //Pointer to the visitor object.
[100]1322    Visitor *_visitor;
[244]1323    //Pointer to the map of reached status of the nodes.
[100]1324    ReachedMap *_reached;
[244]1325    //Indicates if _reached is locally allocated (true) or not.
[100]1326    bool local_reached;
1327
1328    std::vector<typename Digraph::Node> _list;
1329    int _list_front, _list_back;
1330
[280]1331    //Creates the maps if necessary.
[100]1332    void create_maps() {
1333      if(!_reached) {
[209]1334        local_reached = true;
1335        _reached = Traits::createReachedMap(*_digraph);
[100]1336      }
1337    }
1338
1339  protected:
1340
1341    BfsVisit() {}
[209]1342
[100]1343  public:
1344
1345    typedef BfsVisit Create;
1346
1347    /// \name Named template parameters
1348
1349    ///@{
1350    template <class T>
[257]1351    struct SetReachedMapTraits : public Traits {
[100]1352      typedef T ReachedMap;
1353      static ReachedMap *createReachedMap(const Digraph &digraph) {
[209]1354        throw UninitializedParameter();
[100]1355      }
1356    };
[209]1357    /// \brief \ref named-templ-param "Named parameter" for setting
[244]1358    /// ReachedMap type.
[100]1359    ///
[244]1360    /// \ref named-templ-param "Named parameter" for setting ReachedMap type.
[100]1361    template <class T>
[257]1362    struct SetReachedMap : public BfsVisit< Digraph, Visitor,
1363                                            SetReachedMapTraits<T> > {
1364      typedef BfsVisit< Digraph, Visitor, SetReachedMapTraits<T> > Create;
[100]1365    };
1366    ///@}
1367
[209]1368  public:
1369
[100]1370    /// \brief Constructor.
1371    ///
1372    /// Constructor.
1373    ///
[244]1374    /// \param digraph The digraph the algorithm runs on.
1375    /// \param visitor The visitor object of the algorithm.
[209]1376    BfsVisit(const Digraph& digraph, Visitor& visitor)
[100]1377      : _digraph(&digraph), _visitor(&visitor),
[209]1378        _reached(0), local_reached(false) {}
1379
[100]1380    /// \brief Destructor.
1381    ~BfsVisit() {
1382      if(local_reached) delete _reached;
1383    }
1384
[244]1385    /// \brief Sets the map that indicates which nodes are reached.
[100]1386    ///
[244]1387    /// Sets the map that indicates which nodes are reached.
[100]1388    /// If you don't use this function before calling \ref run(),
[244]1389    /// it will allocate one. The destructor deallocates this
[100]1390    /// automatically allocated map, of course.
1391    /// \return <tt> (*this) </tt>
1392    BfsVisit &reachedMap(ReachedMap &m) {
1393      if(local_reached) {
[209]1394        delete _reached;
1395        local_reached = false;
[100]1396      }
1397      _reached = &m;
1398      return *this;
1399    }
1400
1401  public:
[244]1402
[100]1403    /// \name Execution control
1404    /// The simplest way to execute the algorithm is to use
[244]1405    /// one of the member functions called \ref lemon::BfsVisit::run()
1406    /// "run()".
[100]1407    /// \n
[244]1408    /// If you need more control on the execution, first you must call
1409    /// \ref lemon::BfsVisit::init() "init()", then you can add several
1410    /// source nodes with \ref lemon::BfsVisit::addSource() "addSource()".
1411    /// Finally \ref lemon::BfsVisit::start() "start()" will perform the
1412    /// actual path computation.
[100]1413
1414    /// @{
[244]1415
[100]1416    /// \brief Initializes the internal data structures.
1417    ///
1418    /// Initializes the internal data structures.
1419    void init() {
1420      create_maps();
1421      _list.resize(countNodes(*_digraph));
1422      _list_front = _list_back = -1;
1423      for (NodeIt u(*_digraph) ; u != INVALID ; ++u) {
[209]1424        _reached->set(u, false);
[100]1425      }
1426    }
[209]1427
[100]1428    /// \brief Adds a new source node.
1429    ///
1430    /// Adds a new source node to the set of nodes to be processed.
1431    void addSource(Node s) {
1432      if(!(*_reached)[s]) {
[209]1433          _reached->set(s,true);
1434          _visitor->start(s);
1435          _visitor->reach(s);
[100]1436          _list[++_list_back] = s;
[209]1437        }
[100]1438    }
[209]1439
[100]1440    /// \brief Processes the next node.
1441    ///
1442    /// Processes the next node.
1443    ///
1444    /// \return The processed node.
1445    ///
[244]1446    /// \pre The queue must not be empty.
[209]1447    Node processNextNode() {
[100]1448      Node n = _list[++_list_front];
1449      _visitor->process(n);
1450      Arc e;
1451      for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) {
1452        Node m = _digraph->target(e);
1453        if (!(*_reached)[m]) {
1454          _visitor->discover(e);
1455          _visitor->reach(m);
1456          _reached->set(m, true);
1457          _list[++_list_back] = m;
1458        } else {
1459          _visitor->examine(e);
1460        }
1461      }
1462      return n;
1463    }
1464
1465    /// \brief Processes the next node.
1466    ///
[244]1467    /// Processes the next node and checks if the given target node
[100]1468    /// is reached. If the target node is reachable from the processed
[244]1469    /// node, then the \c reach parameter will be set to \c true.
[100]1470    ///
1471    /// \param target The target node.
[244]1472    /// \retval reach Indicates if the target node is reached.
1473    /// It should be initially \c false.
1474    ///
[100]1475    /// \return The processed node.
1476    ///
[244]1477    /// \pre The queue must not be empty.
[100]1478    Node processNextNode(Node target, bool& reach) {
1479      Node n = _list[++_list_front];
1480      _visitor->process(n);
1481      Arc e;
1482      for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) {
1483        Node m = _digraph->target(e);
1484        if (!(*_reached)[m]) {
1485          _visitor->discover(e);
1486          _visitor->reach(m);
1487          _reached->set(m, true);
1488          _list[++_list_back] = m;
1489          reach = reach || (target == m);
1490        } else {
1491          _visitor->examine(e);
1492        }
1493      }
1494      return n;
1495    }
1496
1497    /// \brief Processes the next node.
1498    ///
[244]1499    /// Processes the next node and checks if at least one of reached
1500    /// nodes has \c true value in the \c nm node map. If one node
1501    /// with \c true value is reachable from the processed node, then the
1502    /// \c rnode parameter will be set to the first of such nodes.
[100]1503    ///
[244]1504    /// \param nm A \c bool (or convertible) node map that indicates the
1505    /// possible targets.
[100]1506    /// \retval rnode The reached target node.
[244]1507    /// It should be initially \c INVALID.
1508    ///
[100]1509    /// \return The processed node.
1510    ///
[244]1511    /// \pre The queue must not be empty.
[100]1512    template <typename NM>
1513    Node processNextNode(const NM& nm, Node& rnode) {
1514      Node n = _list[++_list_front];
1515      _visitor->process(n);
1516      Arc e;
1517      for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) {
1518        Node m = _digraph->target(e);
1519        if (!(*_reached)[m]) {
1520          _visitor->discover(e);
1521          _visitor->reach(m);
1522          _reached->set(m, true);
1523          _list[++_list_back] = m;
1524          if (nm[m] && rnode == INVALID) rnode = m;
1525        } else {
1526          _visitor->examine(e);
1527        }
1528      }
1529      return n;
1530    }
1531
[244]1532    /// \brief The next node to be processed.
[100]1533    ///
[244]1534    /// Returns the next node to be processed or \c INVALID if the queue
1535    /// is empty.
1536    Node nextNode() const {
[100]1537      return _list_front != _list_back ? _list[_list_front + 1] : INVALID;
1538    }
1539
1540    /// \brief Returns \c false if there are nodes
[244]1541    /// to be processed.
[100]1542    ///
1543    /// Returns \c false if there are nodes
[244]1544    /// to be processed in the queue.
1545    bool emptyQueue() const { return _list_front == _list_back; }
[100]1546
1547    /// \brief Returns the number of the nodes to be processed.
1548    ///
1549    /// Returns the number of the nodes to be processed in the queue.
[244]1550    int queueSize() const { return _list_back - _list_front; }
[209]1551
[100]1552    /// \brief Executes the algorithm.
1553    ///
1554    /// Executes the algorithm.
1555    ///
[244]1556    /// This method runs the %BFS algorithm from the root node(s)
1557    /// in order to compute the shortest path to each node.
1558    ///
1559    /// The algorithm computes
1560    /// - the shortest path tree (forest),
1561    /// - the distance of each node from the root(s).
1562    ///
1563    /// \pre init() must be called and at least one root node should be added
[100]1564    /// with addSource() before using this function.
[244]1565    ///
1566    /// \note <tt>b.start()</tt> is just a shortcut of the following code.
1567    /// \code
1568    ///   while ( !b.emptyQueue() ) {
1569    ///     b.processNextNode();
1570    ///   }
1571    /// \endcode
[100]1572    void start() {
1573      while ( !emptyQueue() ) processNextNode();
1574    }
[209]1575
[244]1576    /// \brief Executes the algorithm until the given target node is reached.
[100]1577    ///
[244]1578    /// Executes the algorithm until the given target node is reached.
[100]1579    ///
[244]1580    /// This method runs the %BFS algorithm from the root node(s)
1581    /// in order to compute the shortest path to \c dest.
1582    ///
1583    /// The algorithm computes
1584    /// - the shortest path to \c dest,
1585    /// - the distance of \c dest from the root(s).
1586    ///
1587    /// \pre init() must be called and at least one root node should be
1588    /// added with addSource() before using this function.
1589    ///
1590    /// \note <tt>b.start(t)</tt> is just a shortcut of the following code.
1591    /// \code
1592    ///   bool reach = false;
1593    ///   while ( !b.emptyQueue() && !reach ) {
1594    ///     b.processNextNode(t, reach);
1595    ///   }
1596    /// \endcode
[100]1597    void start(Node dest) {
1598      bool reach = false;
1599      while ( !emptyQueue() && !reach ) processNextNode(dest, reach);
1600    }
[209]1601
[100]1602    /// \brief Executes the algorithm until a condition is met.
1603    ///
1604    /// Executes the algorithm until a condition is met.
1605    ///
[244]1606    /// This method runs the %BFS algorithm from the root node(s) in
1607    /// order to compute the shortest path to a node \c v with
1608    /// <tt>nm[v]</tt> true, if such a node can be found.
[100]1609    ///
[244]1610    /// \param nm must be a bool (or convertible) node map. The
1611    /// algorithm will stop when it reaches a node \c v with
[100]1612    /// <tt>nm[v]</tt> true.
1613    ///
[244]1614    /// \return The reached node \c v with <tt>nm[v]</tt> true or
1615    /// \c INVALID if no such node was found.
1616    ///
1617    /// \pre init() must be called and at least one root node should be
1618    /// added with addSource() before using this function.
1619    ///
1620    /// \note <tt>b.start(nm)</tt> is just a shortcut of the following code.
1621    /// \code
1622    ///   Node rnode = INVALID;
1623    ///   while ( !b.emptyQueue() && rnode == INVALID ) {
1624    ///     b.processNextNode(nm, rnode);
1625    ///   }
1626    ///   return rnode;
1627    /// \endcode
[100]1628    template <typename NM>
1629    Node start(const NM &nm) {
1630      Node rnode = INVALID;
1631      while ( !emptyQueue() && rnode == INVALID ) {
[209]1632        processNextNode(nm, rnode);
[100]1633      }
1634      return rnode;
1635    }
1636
[244]1637    /// \brief Runs the algorithm from the given node.
[100]1638    ///
[244]1639    /// This method runs the %BFS algorithm from node \c s
1640    /// in order to compute the shortest path to each node.
1641    ///
1642    /// The algorithm computes
1643    /// - the shortest path tree,
1644    /// - the distance of each node from the root.
1645    ///
1646    /// \note <tt>b.run(s)</tt> is just a shortcut of the following code.
[100]1647    ///\code
1648    ///   b.init();
1649    ///   b.addSource(s);
1650    ///   b.start();
1651    ///\endcode
1652    void run(Node s) {
1653      init();
1654      addSource(s);
1655      start();
1656    }
1657
[244]1658    /// \brief Runs the algorithm to visit all nodes in the digraph.
[209]1659    ///
[100]1660    /// This method runs the %BFS algorithm in order to
[244]1661    /// compute the shortest path to each node.
[100]1662    ///
[244]1663    /// The algorithm computes
1664    /// - the shortest path tree (forest),
1665    /// - the distance of each node from the root(s).
1666    ///
1667    /// \note <tt>b.run(s)</tt> is just a shortcut of the following code.
[100]1668    ///\code
1669    ///  b.init();
[244]1670    ///  for (NodeIt n(gr); n != INVALID; ++n) {
1671    ///    if (!b.reached(n)) {
1672    ///      b.addSource(n);
[100]1673    ///      b.start();
1674    ///    }
1675    ///  }
1676    ///\endcode
1677    void run() {
1678      init();
1679      for (NodeIt it(*_digraph); it != INVALID; ++it) {
1680        if (!reached(it)) {
1681          addSource(it);
1682          start();
1683        }
1684      }
1685    }
[244]1686
[100]1687    ///@}
1688
1689    /// \name Query Functions
1690    /// The result of the %BFS algorithm can be obtained using these
1691    /// functions.\n
[244]1692    /// Either \ref lemon::BfsVisit::run() "run()" or
1693    /// \ref lemon::BfsVisit::start() "start()" must be called before
1694    /// using them.
[100]1695    ///@{
1696
[244]1697    /// \brief Checks if a node is reachable from the root(s).
[100]1698    ///
1699    /// Returns \c true if \c v is reachable from the root(s).
1700    /// \pre Either \ref run() or \ref start()
1701    /// must be called before using this function.
1702    bool reached(Node v) { return (*_reached)[v]; }
[244]1703
[100]1704    ///@}
[244]1705
[100]1706  };
1707
1708} //END OF NAMESPACE LEMON
1709
1710#endif
Note: See TracBrowser for help on using the repository browser.