COIN-OR::LEMON - Graph Library

source: lemon-1.2/lemon/adaptors.h @ 621:b536eaacb39b

Last change on this file since 621:b536eaacb39b was 579:d11bf7998905, checked in by Peter Kovacs <kpeter@…>, 15 years ago

Various improvements and fixes (mainly in the doc) (#190)

File size: 109.7 KB
RevLine 
[416]1/* -*- mode: C++; indent-tabs-mode: nil; -*-
[414]2 *
[416]3 * This file is a part of LEMON, a generic C++ optimization library.
[414]4 *
[454]5 * Copyright (C) 2003-2009
[414]6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 *
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
12 *
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
15 * purpose.
16 *
17 */
18
[416]19#ifndef LEMON_ADAPTORS_H
20#define LEMON_ADAPTORS_H
21
22/// \ingroup graph_adaptors
23/// \file
[451]24/// \brief Adaptor classes for digraphs and graphs
[414]25///
[416]26/// This file contains several useful adaptors for digraphs and graphs.
[414]27
28#include <lemon/core.h>
29#include <lemon/maps.h>
30#include <lemon/bits/variant.h>
31
32#include <lemon/bits/graph_adaptor_extender.h>
[519]33#include <lemon/bits/map_extender.h>
[414]34#include <lemon/tolerance.h>
35
36#include <algorithm>
37
38namespace lemon {
39
[512]40#ifdef _MSC_VER
41#define LEMON_SCOPE_FIX(OUTER, NESTED) OUTER::NESTED
42#else
43#define LEMON_SCOPE_FIX(OUTER, NESTED) typename OUTER::template NESTED
44#endif
45
46  template<typename DGR>
[414]47  class DigraphAdaptorBase {
48  public:
[512]49    typedef DGR Digraph;
[414]50    typedef DigraphAdaptorBase Adaptor;
51
52  protected:
[512]53    DGR* _digraph;
[414]54    DigraphAdaptorBase() : _digraph(0) { }
[512]55    void initialize(DGR& digraph) { _digraph = &digraph; }
[414]56
57  public:
[512]58    DigraphAdaptorBase(DGR& digraph) : _digraph(&digraph) { }
59
60    typedef typename DGR::Node Node;
61    typedef typename DGR::Arc Arc;
[416]62
[414]63    void first(Node& i) const { _digraph->first(i); }
64    void first(Arc& i) const { _digraph->first(i); }
65    void firstIn(Arc& i, const Node& n) const { _digraph->firstIn(i, n); }
66    void firstOut(Arc& i, const Node& n ) const { _digraph->firstOut(i, n); }
67
68    void next(Node& i) const { _digraph->next(i); }
69    void next(Arc& i) const { _digraph->next(i); }
70    void nextIn(Arc& i) const { _digraph->nextIn(i); }
71    void nextOut(Arc& i) const { _digraph->nextOut(i); }
72
73    Node source(const Arc& a) const { return _digraph->source(a); }
74    Node target(const Arc& a) const { return _digraph->target(a); }
75
[512]76    typedef NodeNumTagIndicator<DGR> NodeNumTag;
[414]77    int nodeNum() const { return _digraph->nodeNum(); }
[416]78
[512]79    typedef ArcNumTagIndicator<DGR> ArcNumTag;
[414]80    int arcNum() const { return _digraph->arcNum(); }
81
[512]82    typedef FindArcTagIndicator<DGR> FindArcTag;
[448]83    Arc findArc(const Node& u, const Node& v, const Arc& prev = INVALID) const {
[414]84      return _digraph->findArc(u, v, prev);
85    }
[416]86
[414]87    Node addNode() { return _digraph->addNode(); }
88    Arc addArc(const Node& u, const Node& v) { return _digraph->addArc(u, v); }
89
[448]90    void erase(const Node& n) { _digraph->erase(n); }
91    void erase(const Arc& a) { _digraph->erase(a); }
92
93    void clear() { _digraph->clear(); }
[416]94
[414]95    int id(const Node& n) const { return _digraph->id(n); }
96    int id(const Arc& a) const { return _digraph->id(a); }
97
98    Node nodeFromId(int ix) const { return _digraph->nodeFromId(ix); }
99    Arc arcFromId(int ix) const { return _digraph->arcFromId(ix); }
100
101    int maxNodeId() const { return _digraph->maxNodeId(); }
102    int maxArcId() const { return _digraph->maxArcId(); }
103
[512]104    typedef typename ItemSetTraits<DGR, Node>::ItemNotifier NodeNotifier;
[416]105    NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); }
[414]106
[512]107    typedef typename ItemSetTraits<DGR, Arc>::ItemNotifier ArcNotifier;
[416]108    ArcNotifier& notifier(Arc) const { return _digraph->notifier(Arc()); }
109
[512]110    template <typename V>
111    class NodeMap : public DGR::template NodeMap<V> {
[414]112    public:
113
[512]114      typedef typename DGR::template NodeMap<V> Parent;
[414]115
[416]116      explicit NodeMap(const Adaptor& adaptor)
117        : Parent(*adaptor._digraph) {}
[414]118
[512]119      NodeMap(const Adaptor& adaptor, const V& value)
[416]120        : Parent(*adaptor._digraph, value) { }
[414]121
122    private:
123      NodeMap& operator=(const NodeMap& cmap) {
124        return operator=<NodeMap>(cmap);
125      }
126
127      template <typename CMap>
128      NodeMap& operator=(const CMap& cmap) {
129        Parent::operator=(cmap);
130        return *this;
131      }
[416]132
[414]133    };
134
[512]135    template <typename V>
136    class ArcMap : public DGR::template ArcMap<V> {
[414]137    public:
[416]138
[512]139      typedef typename DGR::template ArcMap<V> Parent;
140
141      explicit ArcMap(const DigraphAdaptorBase<DGR>& adaptor)
[416]142        : Parent(*adaptor._digraph) {}
[414]143
[512]144      ArcMap(const DigraphAdaptorBase<DGR>& adaptor, const V& value)
[416]145        : Parent(*adaptor._digraph, value) {}
[414]146
147    private:
148      ArcMap& operator=(const ArcMap& cmap) {
149        return operator=<ArcMap>(cmap);
150      }
151
152      template <typename CMap>
153      ArcMap& operator=(const CMap& cmap) {
154        Parent::operator=(cmap);
155        return *this;
156      }
157
158    };
159
160  };
161
[512]162  template<typename GR>
[416]163  class GraphAdaptorBase {
164  public:
[512]165    typedef GR Graph;
[416]166
167  protected:
[512]168    GR* _graph;
[416]169
170    GraphAdaptorBase() : _graph(0) {}
171
[512]172    void initialize(GR& graph) { _graph = &graph; }
[416]173
174  public:
[512]175    GraphAdaptorBase(GR& graph) : _graph(&graph) {}
176
177    typedef typename GR::Node Node;
178    typedef typename GR::Arc Arc;
179    typedef typename GR::Edge Edge;
[416]180
181    void first(Node& i) const { _graph->first(i); }
182    void first(Arc& i) const { _graph->first(i); }
183    void first(Edge& i) const { _graph->first(i); }
184    void firstIn(Arc& i, const Node& n) const { _graph->firstIn(i, n); }
185    void firstOut(Arc& i, const Node& n ) const { _graph->firstOut(i, n); }
186    void firstInc(Edge &i, bool &d, const Node &n) const {
187      _graph->firstInc(i, d, n);
188    }
189
190    void next(Node& i) const { _graph->next(i); }
191    void next(Arc& i) const { _graph->next(i); }
192    void next(Edge& i) const { _graph->next(i); }
193    void nextIn(Arc& i) const { _graph->nextIn(i); }
194    void nextOut(Arc& i) const { _graph->nextOut(i); }
195    void nextInc(Edge &i, bool &d) const { _graph->nextInc(i, d); }
196
197    Node u(const Edge& e) const { return _graph->u(e); }
198    Node v(const Edge& e) const { return _graph->v(e); }
199
200    Node source(const Arc& a) const { return _graph->source(a); }
201    Node target(const Arc& a) const { return _graph->target(a); }
202
203    typedef NodeNumTagIndicator<Graph> NodeNumTag;
204    int nodeNum() const { return _graph->nodeNum(); }
205
[446]206    typedef ArcNumTagIndicator<Graph> ArcNumTag;
207    int arcNum() const { return _graph->arcNum(); }
208
[416]209    typedef EdgeNumTagIndicator<Graph> EdgeNumTag;
210    int edgeNum() const { return _graph->edgeNum(); }
211
[446]212    typedef FindArcTagIndicator<Graph> FindArcTag;
[448]213    Arc findArc(const Node& u, const Node& v,
214                const Arc& prev = INVALID) const {
[416]215      return _graph->findArc(u, v, prev);
216    }
[446]217
218    typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
[448]219    Edge findEdge(const Node& u, const Node& v,
220                  const Edge& prev = INVALID) const {
[416]221      return _graph->findEdge(u, v, prev);
222    }
223
224    Node addNode() { return _graph->addNode(); }
225    Edge addEdge(const Node& u, const Node& v) { return _graph->addEdge(u, v); }
226
227    void erase(const Node& i) { _graph->erase(i); }
228    void erase(const Edge& i) { _graph->erase(i); }
229
230    void clear() { _graph->clear(); }
231
232    bool direction(const Arc& a) const { return _graph->direction(a); }
233    Arc direct(const Edge& e, bool d) const { return _graph->direct(e, d); }
234
235    int id(const Node& v) const { return _graph->id(v); }
236    int id(const Arc& a) const { return _graph->id(a); }
237    int id(const Edge& e) const { return _graph->id(e); }
238
239    Node nodeFromId(int ix) const { return _graph->nodeFromId(ix); }
240    Arc arcFromId(int ix) const { return _graph->arcFromId(ix); }
241    Edge edgeFromId(int ix) const { return _graph->edgeFromId(ix); }
242
243    int maxNodeId() const { return _graph->maxNodeId(); }
244    int maxArcId() const { return _graph->maxArcId(); }
245    int maxEdgeId() const { return _graph->maxEdgeId(); }
246
[512]247    typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier;
[416]248    NodeNotifier& notifier(Node) const { return _graph->notifier(Node()); }
249
[512]250    typedef typename ItemSetTraits<GR, Arc>::ItemNotifier ArcNotifier;
[416]251    ArcNotifier& notifier(Arc) const { return _graph->notifier(Arc()); }
252
[512]253    typedef typename ItemSetTraits<GR, Edge>::ItemNotifier EdgeNotifier;
[416]254    EdgeNotifier& notifier(Edge) const { return _graph->notifier(Edge()); }
255
[512]256    template <typename V>
257    class NodeMap : public GR::template NodeMap<V> {
[416]258    public:
[512]259      typedef typename GR::template NodeMap<V> Parent;
260      explicit NodeMap(const GraphAdaptorBase<GR>& adapter)
[416]261        : Parent(*adapter._graph) {}
[512]262      NodeMap(const GraphAdaptorBase<GR>& adapter, const V& value)
[416]263        : Parent(*adapter._graph, value) {}
264
265    private:
266      NodeMap& operator=(const NodeMap& cmap) {
267        return operator=<NodeMap>(cmap);
268      }
269
270      template <typename CMap>
271      NodeMap& operator=(const CMap& cmap) {
272        Parent::operator=(cmap);
273        return *this;
274      }
275
276    };
277
[512]278    template <typename V>
279    class ArcMap : public GR::template ArcMap<V> {
[416]280    public:
[512]281      typedef typename GR::template ArcMap<V> Parent;
282      explicit ArcMap(const GraphAdaptorBase<GR>& adapter)
[416]283        : Parent(*adapter._graph) {}
[512]284      ArcMap(const GraphAdaptorBase<GR>& adapter, const V& value)
[416]285        : Parent(*adapter._graph, value) {}
286
287    private:
288      ArcMap& operator=(const ArcMap& cmap) {
289        return operator=<ArcMap>(cmap);
290      }
291
292      template <typename CMap>
293      ArcMap& operator=(const CMap& cmap) {
294        Parent::operator=(cmap);
295        return *this;
296      }
297    };
298
[512]299    template <typename V>
300    class EdgeMap : public GR::template EdgeMap<V> {
[416]301    public:
[512]302      typedef typename GR::template EdgeMap<V> Parent;
303      explicit EdgeMap(const GraphAdaptorBase<GR>& adapter)
[416]304        : Parent(*adapter._graph) {}
[512]305      EdgeMap(const GraphAdaptorBase<GR>& adapter, const V& value)
[416]306        : Parent(*adapter._graph, value) {}
307
308    private:
309      EdgeMap& operator=(const EdgeMap& cmap) {
310        return operator=<EdgeMap>(cmap);
311      }
312
313      template <typename CMap>
314      EdgeMap& operator=(const CMap& cmap) {
315        Parent::operator=(cmap);
316        return *this;
317      }
318    };
319
320  };
[414]321
[512]322  template <typename DGR>
323  class ReverseDigraphBase : public DigraphAdaptorBase<DGR> {
[414]324  public:
[512]325    typedef DGR Digraph;
326    typedef DigraphAdaptorBase<DGR> Parent;
[414]327  protected:
[416]328    ReverseDigraphBase() : Parent() { }
[414]329  public:
330    typedef typename Parent::Node Node;
331    typedef typename Parent::Arc Arc;
332
333    void firstIn(Arc& a, const Node& n) const { Parent::firstOut(a, n); }
334    void firstOut(Arc& a, const Node& n ) const { Parent::firstIn(a, n); }
335
336    void nextIn(Arc& a) const { Parent::nextOut(a); }
337    void nextOut(Arc& a) const { Parent::nextIn(a); }
338
339    Node source(const Arc& a) const { return Parent::target(a); }
340    Node target(const Arc& a) const { return Parent::source(a); }
341
[416]342    Arc addArc(const Node& u, const Node& v) { return Parent::addArc(v, u); }
343
[512]344    typedef FindArcTagIndicator<DGR> FindArcTag;
[416]345    Arc findArc(const Node& u, const Node& v,
[448]346                const Arc& prev = INVALID) const {
[414]347      return Parent::findArc(v, u, prev);
348    }
349
350  };
[416]351
352  /// \ingroup graph_adaptors
[414]353  ///
[451]354  /// \brief Adaptor class for reversing the orientation of the arcs in
355  /// a digraph.
[414]356  ///
[451]357  /// ReverseDigraph can be used for reversing the arcs in a digraph.
358  /// It conforms to the \ref concepts::Digraph "Digraph" concept.
[414]359  ///
[451]360  /// The adapted digraph can also be modified through this adaptor
[453]361  /// by adding or removing nodes or arcs, unless the \c GR template
[451]362  /// parameter is set to be \c const.
363  ///
[512]364  /// \tparam DGR The type of the adapted digraph.
[451]365  /// It must conform to the \ref concepts::Digraph "Digraph" concept.
366  /// It can also be specified to be \c const.
367  ///
368  /// \note The \c Node and \c Arc types of this adaptor and the adapted
369  /// digraph are convertible to each other.
[512]370  template<typename DGR>
[453]371#ifdef DOXYGEN
372  class ReverseDigraph {
373#else
[416]374  class ReverseDigraph :
[512]375    public DigraphAdaptorExtender<ReverseDigraphBase<DGR> > {
[453]376#endif
[414]377  public:
[453]378    /// The type of the adapted digraph.
[512]379    typedef DGR Digraph;
380    typedef DigraphAdaptorExtender<ReverseDigraphBase<DGR> > Parent;
[414]381  protected:
[416]382    ReverseDigraph() { }
[414]383  public:
[415]384
385    /// \brief Constructor
386    ///
[451]387    /// Creates a reverse digraph adaptor for the given digraph.
[512]388    explicit ReverseDigraph(DGR& digraph) {
389      Parent::initialize(digraph);
[414]390    }
391  };
392
[451]393  /// \brief Returns a read-only ReverseDigraph adaptor
[414]394  ///
[451]395  /// This function just returns a read-only \ref ReverseDigraph adaptor.
396  /// \ingroup graph_adaptors
397  /// \relates ReverseDigraph
[512]398  template<typename DGR>
399  ReverseDigraph<const DGR> reverseDigraph(const DGR& digraph) {
400    return ReverseDigraph<const DGR>(digraph);
[414]401  }
402
[451]403
[512]404  template <typename DGR, typename NF, typename AF, bool ch = true>
405  class SubDigraphBase : public DigraphAdaptorBase<DGR> {
[414]406  public:
[512]407    typedef DGR Digraph;
408    typedef NF NodeFilterMap;
409    typedef AF ArcFilterMap;
[414]410
[416]411    typedef SubDigraphBase Adaptor;
[512]412    typedef DigraphAdaptorBase<DGR> Parent;
[414]413  protected:
[512]414    NF* _node_filter;
415    AF* _arc_filter;
[416]416    SubDigraphBase()
[414]417      : Parent(), _node_filter(0), _arc_filter(0) { }
418
[512]419    void initialize(DGR& digraph, NF& node_filter, AF& arc_filter) {
420      Parent::initialize(digraph);
[414]421      _node_filter = &node_filter;
[512]422      _arc_filter = &arc_filter;     
[414]423    }
424
425  public:
426
427    typedef typename Parent::Node Node;
428    typedef typename Parent::Arc Arc;
429
[416]430    void first(Node& i) const {
431      Parent::first(i);
432      while (i != INVALID && !(*_node_filter)[i]) Parent::next(i);
[414]433    }
434
[416]435    void first(Arc& i) const {
436      Parent::first(i);
437      while (i != INVALID && (!(*_arc_filter)[i]
438                              || !(*_node_filter)[Parent::source(i)]
439                              || !(*_node_filter)[Parent::target(i)]))
440        Parent::next(i);
[414]441    }
442
[416]443    void firstIn(Arc& i, const Node& n) const {
444      Parent::firstIn(i, n);
445      while (i != INVALID && (!(*_arc_filter)[i]
446                              || !(*_node_filter)[Parent::source(i)]))
447        Parent::nextIn(i);
[414]448    }
449
[416]450    void firstOut(Arc& i, const Node& n) const {
451      Parent::firstOut(i, n);
452      while (i != INVALID && (!(*_arc_filter)[i]
453                              || !(*_node_filter)[Parent::target(i)]))
454        Parent::nextOut(i);
[414]455    }
456
[416]457    void next(Node& i) const {
458      Parent::next(i);
459      while (i != INVALID && !(*_node_filter)[i]) Parent::next(i);
[414]460    }
461
[416]462    void next(Arc& i) const {
463      Parent::next(i);
464      while (i != INVALID && (!(*_arc_filter)[i]
465                              || !(*_node_filter)[Parent::source(i)]
466                              || !(*_node_filter)[Parent::target(i)]))
467        Parent::next(i);
[414]468    }
469
[416]470    void nextIn(Arc& i) const {
471      Parent::nextIn(i);
472      while (i != INVALID && (!(*_arc_filter)[i]
473                              || !(*_node_filter)[Parent::source(i)]))
474        Parent::nextIn(i);
[414]475    }
476
[416]477    void nextOut(Arc& i) const {
478      Parent::nextOut(i);
479      while (i != INVALID && (!(*_arc_filter)[i]
480                              || !(*_node_filter)[Parent::target(i)]))
481        Parent::nextOut(i);
[414]482    }
483
[452]484    void status(const Node& n, bool v) const { _node_filter->set(n, v); }
485    void status(const Arc& a, bool v) const { _arc_filter->set(a, v); }
486
487    bool status(const Node& n) const { return (*_node_filter)[n]; }
488    bool status(const Arc& a) const { return (*_arc_filter)[a]; }
[414]489
490    typedef False NodeNumTag;
[446]491    typedef False ArcNumTag;
492
[512]493    typedef FindArcTagIndicator<DGR> FindArcTag;
[416]494    Arc findArc(const Node& source, const Node& target,
[448]495                const Arc& prev = INVALID) const {
[414]496      if (!(*_node_filter)[source] || !(*_node_filter)[target]) {
497        return INVALID;
498      }
499      Arc arc = Parent::findArc(source, target, prev);
500      while (arc != INVALID && !(*_arc_filter)[arc]) {
501        arc = Parent::findArc(source, target, arc);
502      }
503      return arc;
504    }
505
[512]506  public:
507
508    template <typename V>
509    class NodeMap
510      : public SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>,
511              LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> {
[414]512    public:
[512]513      typedef V Value;
514      typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>,
515            LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> Parent;
516
517      NodeMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor)
518        : Parent(adaptor) {}
519      NodeMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor, const V& value)
520        : Parent(adaptor, value) {}
[416]521
[414]522    private:
523      NodeMap& operator=(const NodeMap& cmap) {
[416]524        return operator=<NodeMap>(cmap);
[414]525      }
[416]526
[414]527      template <typename CMap>
528      NodeMap& operator=(const CMap& cmap) {
[512]529        Parent::operator=(cmap);
[416]530        return *this;
[414]531      }
532    };
533
[512]534    template <typename V>
535    class ArcMap
536      : public SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>,
537              LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> {
[414]538    public:
[512]539      typedef V Value;
540      typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>,
541        LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> Parent;
542
543      ArcMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor)
544        : Parent(adaptor) {}
545      ArcMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor, const V& value)
546        : Parent(adaptor, value) {}
[416]547
[414]548    private:
549      ArcMap& operator=(const ArcMap& cmap) {
[416]550        return operator=<ArcMap>(cmap);
[414]551      }
[416]552
[414]553      template <typename CMap>
554      ArcMap& operator=(const CMap& cmap) {
[512]555        Parent::operator=(cmap);
[416]556        return *this;
[414]557      }
558    };
559
560  };
561
[512]562  template <typename DGR, typename NF, typename AF>
563  class SubDigraphBase<DGR, NF, AF, false>
564    : public DigraphAdaptorBase<DGR> {
[414]565  public:
[512]566    typedef DGR Digraph;
567    typedef NF NodeFilterMap;
568    typedef AF ArcFilterMap;
[414]569
[416]570    typedef SubDigraphBase Adaptor;
[414]571    typedef DigraphAdaptorBase<Digraph> Parent;
572  protected:
[512]573    NF* _node_filter;
574    AF* _arc_filter;
[416]575    SubDigraphBase()
[414]576      : Parent(), _node_filter(0), _arc_filter(0) { }
577
[512]578    void initialize(DGR& digraph, NF& node_filter, AF& arc_filter) {
579      Parent::initialize(digraph);
[414]580      _node_filter = &node_filter;
[512]581      _arc_filter = &arc_filter;     
[414]582    }
583
584  public:
585
586    typedef typename Parent::Node Node;
587    typedef typename Parent::Arc Arc;
588
[416]589    void first(Node& i) const {
590      Parent::first(i);
591      while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
[414]592    }
593
[416]594    void first(Arc& i) const {
595      Parent::first(i);
596      while (i!=INVALID && !(*_arc_filter)[i]) Parent::next(i);
[414]597    }
598
[416]599    void firstIn(Arc& i, const Node& n) const {
600      Parent::firstIn(i, n);
601      while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextIn(i);
[414]602    }
603
[416]604    void firstOut(Arc& i, const Node& n) const {
605      Parent::firstOut(i, n);
606      while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextOut(i);
[414]607    }
608
[416]609    void next(Node& i) const {
610      Parent::next(i);
611      while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
[414]612    }
[416]613    void next(Arc& i) const {
614      Parent::next(i);
615      while (i!=INVALID && !(*_arc_filter)[i]) Parent::next(i);
[414]616    }
[416]617    void nextIn(Arc& i) const {
618      Parent::nextIn(i);
619      while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextIn(i);
[414]620    }
621
[416]622    void nextOut(Arc& i) const {
623      Parent::nextOut(i);
624      while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextOut(i);
[414]625    }
626
[452]627    void status(const Node& n, bool v) const { _node_filter->set(n, v); }
628    void status(const Arc& a, bool v) const { _arc_filter->set(a, v); }
629
630    bool status(const Node& n) const { return (*_node_filter)[n]; }
631    bool status(const Arc& a) const { return (*_arc_filter)[a]; }
[414]632
633    typedef False NodeNumTag;
[446]634    typedef False ArcNumTag;
635
[512]636    typedef FindArcTagIndicator<DGR> FindArcTag;
[416]637    Arc findArc(const Node& source, const Node& target,
[448]638                const Arc& prev = INVALID) const {
[414]639      if (!(*_node_filter)[source] || !(*_node_filter)[target]) {
640        return INVALID;
641      }
642      Arc arc = Parent::findArc(source, target, prev);
643      while (arc != INVALID && !(*_arc_filter)[arc]) {
644        arc = Parent::findArc(source, target, arc);
645      }
646      return arc;
647    }
648
[512]649    template <typename V>
650    class NodeMap
651      : public SubMapExtender<SubDigraphBase<DGR, NF, AF, false>,
652          LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> {
[414]653    public:
[512]654      typedef V Value;
655      typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, false>,
656        LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> Parent;
657
658      NodeMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor)
659        : Parent(adaptor) {}
660      NodeMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor, const V& value)
661        : Parent(adaptor, value) {}
[416]662
[414]663    private:
664      NodeMap& operator=(const NodeMap& cmap) {
[416]665        return operator=<NodeMap>(cmap);
[414]666      }
[416]667
[414]668      template <typename CMap>
669      NodeMap& operator=(const CMap& cmap) {
[512]670        Parent::operator=(cmap);
[416]671        return *this;
[414]672      }
673    };
674
[512]675    template <typename V>
676    class ArcMap
677      : public SubMapExtender<SubDigraphBase<DGR, NF, AF, false>,
678          LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> {
[414]679    public:
[512]680      typedef V Value;
681      typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, false>,
682          LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> Parent;
683
684      ArcMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor)
685        : Parent(adaptor) {}
686      ArcMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor, const V& value)
687        : Parent(adaptor, value) {}
[416]688
[414]689    private:
690      ArcMap& operator=(const ArcMap& cmap) {
[416]691        return operator=<ArcMap>(cmap);
[414]692      }
[416]693
[414]694      template <typename CMap>
695      ArcMap& operator=(const CMap& cmap) {
[512]696        Parent::operator=(cmap);
[416]697        return *this;
[414]698      }
699    };
700
701  };
702
703  /// \ingroup graph_adaptors
704  ///
[451]705  /// \brief Adaptor class for hiding nodes and arcs in a digraph
[416]706  ///
[451]707  /// SubDigraph can be used for hiding nodes and arcs in a digraph.
708  /// A \c bool node map and a \c bool arc map must be specified, which
709  /// define the filters for nodes and arcs.
710  /// Only the nodes and arcs with \c true filter value are
[453]711  /// shown in the subdigraph. The arcs that are incident to hidden
712  /// nodes are also filtered out.
713  /// This adaptor conforms to the \ref concepts::Digraph "Digraph" concept.
[416]714  ///
[451]715  /// The adapted digraph can also be modified through this adaptor
[453]716  /// by adding or removing nodes or arcs, unless the \c GR template
[451]717  /// parameter is set to be \c const.
718  ///
[512]719  /// \tparam DGR The type of the adapted digraph.
[451]720  /// It must conform to the \ref concepts::Digraph "Digraph" concept.
721  /// It can also be specified to be \c const.
[453]722  /// \tparam NF The type of the node filter map.
723  /// It must be a \c bool (or convertible) node map of the
724  /// adapted digraph. The default type is
[512]725  /// \ref concepts::Digraph::NodeMap "DGR::NodeMap<bool>".
[453]726  /// \tparam AF The type of the arc filter map.
727  /// It must be \c bool (or convertible) arc map of the
728  /// adapted digraph. The default type is
[512]729  /// \ref concepts::Digraph::ArcMap "DGR::ArcMap<bool>".
[451]730  ///
731  /// \note The \c Node and \c Arc types of this adaptor and the adapted
732  /// digraph are convertible to each other.
[416]733  ///
734  /// \see FilterNodes
735  /// \see FilterArcs
[451]736#ifdef DOXYGEN
[512]737  template<typename DGR, typename NF, typename AF>
[453]738  class SubDigraph {
[451]739#else
[512]740  template<typename DGR,
741           typename NF = typename DGR::template NodeMap<bool>,
742           typename AF = typename DGR::template ArcMap<bool> >
[453]743  class SubDigraph :
[512]744    public DigraphAdaptorExtender<SubDigraphBase<DGR, NF, AF, true> > {
[451]745#endif
[414]746  public:
[451]747    /// The type of the adapted digraph.
[512]748    typedef DGR Digraph;
[451]749    /// The type of the node filter map.
[453]750    typedef NF NodeFilterMap;
[451]751    /// The type of the arc filter map.
[453]752    typedef AF ArcFilterMap;
753
[512]754    typedef DigraphAdaptorExtender<SubDigraphBase<DGR, NF, AF, true> >
[453]755      Parent;
[414]756
[415]757    typedef typename Parent::Node Node;
758    typedef typename Parent::Arc Arc;
759
[414]760  protected:
[416]761    SubDigraph() { }
[414]762  public:
763
[415]764    /// \brief Constructor
765    ///
[451]766    /// Creates a subdigraph for the given digraph with the
767    /// given node and arc filter maps.
[512]768    SubDigraph(DGR& digraph, NF& node_filter, AF& arc_filter) {
769      Parent::initialize(digraph, node_filter, arc_filter);
[414]770    }
771
[452]772    /// \brief Sets the status of the given node
[415]773    ///
[452]774    /// This function sets the status of the given node.
[451]775    /// It is done by simply setting the assigned value of \c n
[452]776    /// to \c v in the node filter map.
777    void status(const Node& n, bool v) const { Parent::status(n, v); }
778
779    /// \brief Sets the status of the given arc
[415]780    ///
[452]781    /// This function sets the status of the given arc.
[451]782    /// It is done by simply setting the assigned value of \c a
[452]783    /// to \c v in the arc filter map.
784    void status(const Arc& a, bool v) const { Parent::status(a, v); }
785
786    /// \brief Returns the status of the given node
[415]787    ///
[452]788    /// This function returns the status of the given node.
789    /// It is \c true if the given node is enabled (i.e. not hidden).
790    bool status(const Node& n) const { return Parent::status(n); }
791
792    /// \brief Returns the status of the given arc
[415]793    ///
[452]794    /// This function returns the status of the given arc.
795    /// It is \c true if the given arc is enabled (i.e. not hidden).
796    bool status(const Arc& a) const { return Parent::status(a); }
797
798    /// \brief Disables the given node
[415]799    ///
[452]800    /// This function disables the given node in the subdigraph,
801    /// so the iteration jumps over it.
802    /// It is the same as \ref status() "status(n, false)".
803    void disable(const Node& n) const { Parent::status(n, false); }
804
805    /// \brief Disables the given arc
[415]806    ///
[452]807    /// This function disables the given arc in the subdigraph,
808    /// so the iteration jumps over it.
809    /// It is the same as \ref status() "status(a, false)".
810    void disable(const Arc& a) const { Parent::status(a, false); }
811
812    /// \brief Enables the given node
813    ///
814    /// This function enables the given node in the subdigraph.
815    /// It is the same as \ref status() "status(n, true)".
816    void enable(const Node& n) const { Parent::status(n, true); }
817
818    /// \brief Enables the given arc
819    ///
820    /// This function enables the given arc in the subdigraph.
821    /// It is the same as \ref status() "status(a, true)".
822    void enable(const Arc& a) const { Parent::status(a, true); }
[415]823
[414]824  };
825
[451]826  /// \brief Returns a read-only SubDigraph adaptor
[414]827  ///
[451]828  /// This function just returns a read-only \ref SubDigraph adaptor.
829  /// \ingroup graph_adaptors
830  /// \relates SubDigraph
[512]831  template<typename DGR, typename NF, typename AF>
832  SubDigraph<const DGR, NF, AF>
833  subDigraph(const DGR& digraph,
834             NF& node_filter, AF& arc_filter) {
835    return SubDigraph<const DGR, NF, AF>
836      (digraph, node_filter, arc_filter);
[414]837  }
838
[512]839  template<typename DGR, typename NF, typename AF>
840  SubDigraph<const DGR, const NF, AF>
841  subDigraph(const DGR& digraph,
842             const NF& node_filter, AF& arc_filter) {
843    return SubDigraph<const DGR, const NF, AF>
844      (digraph, node_filter, arc_filter);
[414]845  }
846
[512]847  template<typename DGR, typename NF, typename AF>
848  SubDigraph<const DGR, NF, const AF>
849  subDigraph(const DGR& digraph,
850             NF& node_filter, const AF& arc_filter) {
851    return SubDigraph<const DGR, NF, const AF>
852      (digraph, node_filter, arc_filter);
[414]853  }
854
[512]855  template<typename DGR, typename NF, typename AF>
856  SubDigraph<const DGR, const NF, const AF>
857  subDigraph(const DGR& digraph,
858             const NF& node_filter, const AF& arc_filter) {
859    return SubDigraph<const DGR, const NF, const AF>
860      (digraph, node_filter, arc_filter);
[414]861  }
862
863
[512]864  template <typename GR, typename NF, typename EF, bool ch = true>
865  class SubGraphBase : public GraphAdaptorBase<GR> {
[416]866  public:
[512]867    typedef GR Graph;
868    typedef NF NodeFilterMap;
869    typedef EF EdgeFilterMap;
[449]870
[416]871    typedef SubGraphBase Adaptor;
[512]872    typedef GraphAdaptorBase<GR> Parent;
[416]873  protected:
874
[512]875    NF* _node_filter;
876    EF* _edge_filter;
[416]877
878    SubGraphBase()
[512]879      : Parent(), _node_filter(0), _edge_filter(0) { }
880
881    void initialize(GR& graph, NF& node_filter, EF& edge_filter) {
882      Parent::initialize(graph);
883      _node_filter = &node_filter;
884      _edge_filter = &edge_filter;
[416]885    }
886
887  public:
888
889    typedef typename Parent::Node Node;
890    typedef typename Parent::Arc Arc;
891    typedef typename Parent::Edge Edge;
892
893    void first(Node& i) const {
894      Parent::first(i);
[512]895      while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
[416]896    }
897
898    void first(Arc& i) const {
899      Parent::first(i);
[512]900      while (i!=INVALID && (!(*_edge_filter)[i]
901                            || !(*_node_filter)[Parent::source(i)]
902                            || !(*_node_filter)[Parent::target(i)]))
[416]903        Parent::next(i);
904    }
905
906    void first(Edge& i) const {
907      Parent::first(i);
[512]908      while (i!=INVALID && (!(*_edge_filter)[i]
909                            || !(*_node_filter)[Parent::u(i)]
910                            || !(*_node_filter)[Parent::v(i)]))
[416]911        Parent::next(i);
912    }
913
914    void firstIn(Arc& i, const Node& n) const {
915      Parent::firstIn(i, n);
[512]916      while (i!=INVALID && (!(*_edge_filter)[i]
917                            || !(*_node_filter)[Parent::source(i)]))
[416]918        Parent::nextIn(i);
919    }
920
921    void firstOut(Arc& i, const Node& n) const {
922      Parent::firstOut(i, n);
[512]923      while (i!=INVALID && (!(*_edge_filter)[i]
924                            || !(*_node_filter)[Parent::target(i)]))
[416]925        Parent::nextOut(i);
926    }
927
928    void firstInc(Edge& i, bool& d, const Node& n) const {
929      Parent::firstInc(i, d, n);
[512]930      while (i!=INVALID && (!(*_edge_filter)[i]
931                            || !(*_node_filter)[Parent::u(i)]
932                            || !(*_node_filter)[Parent::v(i)]))
[416]933        Parent::nextInc(i, d);
934    }
935
936    void next(Node& i) const {
937      Parent::next(i);
[512]938      while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
[416]939    }
940
941    void next(Arc& i) const {
942      Parent::next(i);
[512]943      while (i!=INVALID && (!(*_edge_filter)[i]
944                            || !(*_node_filter)[Parent::source(i)]
945                            || !(*_node_filter)[Parent::target(i)]))
[416]946        Parent::next(i);
947    }
948
949    void next(Edge& i) const {
950      Parent::next(i);
[512]951      while (i!=INVALID && (!(*_edge_filter)[i]
952                            || !(*_node_filter)[Parent::u(i)]
953                            || !(*_node_filter)[Parent::v(i)]))
[416]954        Parent::next(i);
955    }
956
957    void nextIn(Arc& i) const {
958      Parent::nextIn(i);
[512]959      while (i!=INVALID && (!(*_edge_filter)[i]
960                            || !(*_node_filter)[Parent::source(i)]))
[416]961        Parent::nextIn(i);
962    }
963
964    void nextOut(Arc& i) const {
965      Parent::nextOut(i);
[512]966      while (i!=INVALID && (!(*_edge_filter)[i]
967                            || !(*_node_filter)[Parent::target(i)]))
[416]968        Parent::nextOut(i);
969    }
970
971    void nextInc(Edge& i, bool& d) const {
972      Parent::nextInc(i, d);
[512]973      while (i!=INVALID && (!(*_edge_filter)[i]
974                            || !(*_node_filter)[Parent::u(i)]
975                            || !(*_node_filter)[Parent::v(i)]))
[416]976        Parent::nextInc(i, d);
977    }
978
[512]979    void status(const Node& n, bool v) const { _node_filter->set(n, v); }
980    void status(const Edge& e, bool v) const { _edge_filter->set(e, v); }
981
982    bool status(const Node& n) const { return (*_node_filter)[n]; }
983    bool status(const Edge& e) const { return (*_edge_filter)[e]; }
[416]984
985    typedef False NodeNumTag;
[446]986    typedef False ArcNumTag;
[416]987    typedef False EdgeNumTag;
988
[446]989    typedef FindArcTagIndicator<Graph> FindArcTag;
[416]990    Arc findArc(const Node& u, const Node& v,
[448]991                const Arc& prev = INVALID) const {
[512]992      if (!(*_node_filter)[u] || !(*_node_filter)[v]) {
[416]993        return INVALID;
994      }
995      Arc arc = Parent::findArc(u, v, prev);
[512]996      while (arc != INVALID && !(*_edge_filter)[arc]) {
[416]997        arc = Parent::findArc(u, v, arc);
998      }
999      return arc;
1000    }
[446]1001
1002    typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
[416]1003    Edge findEdge(const Node& u, const Node& v,
[448]1004                  const Edge& prev = INVALID) const {
[512]1005      if (!(*_node_filter)[u] || !(*_node_filter)[v]) {
[416]1006        return INVALID;
1007      }
1008      Edge edge = Parent::findEdge(u, v, prev);
[512]1009      while (edge != INVALID && !(*_edge_filter)[edge]) {
[416]1010        edge = Parent::findEdge(u, v, edge);
1011      }
1012      return edge;
1013    }
1014
[512]1015    template <typename V>
1016    class NodeMap
1017      : public SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
1018          LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> {
[416]1019    public:
[512]1020      typedef V Value;
1021      typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
1022        LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> Parent;
1023
1024      NodeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor)
1025        : Parent(adaptor) {}
1026      NodeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value)
1027        : Parent(adaptor, value) {}
[416]1028
1029    private:
1030      NodeMap& operator=(const NodeMap& cmap) {
1031        return operator=<NodeMap>(cmap);
1032      }
1033
1034      template <typename CMap>
1035      NodeMap& operator=(const CMap& cmap) {
[512]1036        Parent::operator=(cmap);
[416]1037        return *this;
1038      }
1039    };
1040
[512]1041    template <typename V>
1042    class ArcMap
1043      : public SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
1044          LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> {
[416]1045    public:
[512]1046      typedef V Value;
1047      typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
1048        LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> Parent;
1049
1050      ArcMap(const SubGraphBase<GR, NF, EF, ch>& adaptor)
1051        : Parent(adaptor) {}
1052      ArcMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value)
1053        : Parent(adaptor, value) {}
[416]1054
1055    private:
1056      ArcMap& operator=(const ArcMap& cmap) {
1057        return operator=<ArcMap>(cmap);
1058      }
1059
1060      template <typename CMap>
1061      ArcMap& operator=(const CMap& cmap) {
[512]1062        Parent::operator=(cmap);
[416]1063        return *this;
1064      }
1065    };
1066
[512]1067    template <typename V>
1068    class EdgeMap
1069      : public SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
1070        LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> {
[416]1071    public:
[512]1072      typedef V Value;
1073      typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
1074        LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> Parent;
1075
1076      EdgeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor)
1077        : Parent(adaptor) {}
1078
1079      EdgeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value)
1080        : Parent(adaptor, value) {}
[416]1081
1082    private:
1083      EdgeMap& operator=(const EdgeMap& cmap) {
1084        return operator=<EdgeMap>(cmap);
1085      }
1086
1087      template <typename CMap>
1088      EdgeMap& operator=(const CMap& cmap) {
[512]1089        Parent::operator=(cmap);
[416]1090        return *this;
1091      }
1092    };
1093
1094  };
1095
[512]1096  template <typename GR, typename NF, typename EF>
1097  class SubGraphBase<GR, NF, EF, false>
1098    : public GraphAdaptorBase<GR> {
[416]1099  public:
[512]1100    typedef GR Graph;
1101    typedef NF NodeFilterMap;
1102    typedef EF EdgeFilterMap;
[449]1103
[416]1104    typedef SubGraphBase Adaptor;
[512]1105    typedef GraphAdaptorBase<GR> Parent;
[416]1106  protected:
[512]1107    NF* _node_filter;
1108    EF* _edge_filter;
1109    SubGraphBase()
1110          : Parent(), _node_filter(0), _edge_filter(0) { }
1111
1112    void initialize(GR& graph, NF& node_filter, EF& edge_filter) {
1113      Parent::initialize(graph);
1114      _node_filter = &node_filter;
1115      _edge_filter = &edge_filter;
[416]1116    }
1117
1118  public:
1119
1120    typedef typename Parent::Node Node;
1121    typedef typename Parent::Arc Arc;
1122    typedef typename Parent::Edge Edge;
1123
1124    void first(Node& i) const {
1125      Parent::first(i);
[512]1126      while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
[416]1127    }
1128
1129    void first(Arc& i) const {
1130      Parent::first(i);
[512]1131      while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i);
[416]1132    }
1133
1134    void first(Edge& i) const {
1135      Parent::first(i);
[512]1136      while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i);
[416]1137    }
1138
1139    void firstIn(Arc& i, const Node& n) const {
1140      Parent::firstIn(i, n);
[512]1141      while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextIn(i);
[416]1142    }
1143
1144    void firstOut(Arc& i, const Node& n) const {
1145      Parent::firstOut(i, n);
[512]1146      while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextOut(i);
[416]1147    }
1148
1149    void firstInc(Edge& i, bool& d, const Node& n) const {
1150      Parent::firstInc(i, d, n);
[512]1151      while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextInc(i, d);
[416]1152    }
1153
1154    void next(Node& i) const {
1155      Parent::next(i);
[512]1156      while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
[416]1157    }
1158    void next(Arc& i) const {
1159      Parent::next(i);
[512]1160      while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i);
[416]1161    }
1162    void next(Edge& i) const {
1163      Parent::next(i);
[512]1164      while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i);
[416]1165    }
1166    void nextIn(Arc& i) const {
1167      Parent::nextIn(i);
[512]1168      while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextIn(i);
[416]1169    }
1170
1171    void nextOut(Arc& i) const {
1172      Parent::nextOut(i);
[512]1173      while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextOut(i);
[416]1174    }
1175    void nextInc(Edge& i, bool& d) const {
1176      Parent::nextInc(i, d);
[512]1177      while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextInc(i, d);
[416]1178    }
1179
[512]1180    void status(const Node& n, bool v) const { _node_filter->set(n, v); }
1181    void status(const Edge& e, bool v) const { _edge_filter->set(e, v); }
1182
1183    bool status(const Node& n) const { return (*_node_filter)[n]; }
1184    bool status(const Edge& e) const { return (*_edge_filter)[e]; }
[416]1185
1186    typedef False NodeNumTag;
[446]1187    typedef False ArcNumTag;
[416]1188    typedef False EdgeNumTag;
1189
[446]1190    typedef FindArcTagIndicator<Graph> FindArcTag;
[416]1191    Arc findArc(const Node& u, const Node& v,
[448]1192                const Arc& prev = INVALID) const {
[416]1193      Arc arc = Parent::findArc(u, v, prev);
[512]1194      while (arc != INVALID && !(*_edge_filter)[arc]) {
[416]1195        arc = Parent::findArc(u, v, arc);
1196      }
1197      return arc;
1198    }
[446]1199
1200    typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
[416]1201    Edge findEdge(const Node& u, const Node& v,
[448]1202                  const Edge& prev = INVALID) const {
[416]1203      Edge edge = Parent::findEdge(u, v, prev);
[512]1204      while (edge != INVALID && !(*_edge_filter)[edge]) {
[416]1205        edge = Parent::findEdge(u, v, edge);
1206      }
1207      return edge;
1208    }
1209
[512]1210    template <typename V>
1211    class NodeMap
1212      : public SubMapExtender<SubGraphBase<GR, NF, EF, false>,
1213          LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> {
[416]1214    public:
[512]1215      typedef V Value;
1216      typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>,
1217        LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> Parent;
1218
1219      NodeMap(const SubGraphBase<GR, NF, EF, false>& adaptor)
1220        : Parent(adaptor) {}
1221      NodeMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value)
1222        : Parent(adaptor, value) {}
[416]1223
1224    private:
1225      NodeMap& operator=(const NodeMap& cmap) {
1226        return operator=<NodeMap>(cmap);
1227      }
1228
1229      template <typename CMap>
1230      NodeMap& operator=(const CMap& cmap) {
[512]1231        Parent::operator=(cmap);
[416]1232        return *this;
1233      }
1234    };
1235
[512]1236    template <typename V>
1237    class ArcMap
1238      : public SubMapExtender<SubGraphBase<GR, NF, EF, false>,
1239          LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> {
[416]1240    public:
[512]1241      typedef V Value;
1242      typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>,
1243        LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> Parent;
1244
1245      ArcMap(const SubGraphBase<GR, NF, EF, false>& adaptor)
1246        : Parent(adaptor) {}
1247      ArcMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value)
1248        : Parent(adaptor, value) {}
[416]1249
1250    private:
1251      ArcMap& operator=(const ArcMap& cmap) {
1252        return operator=<ArcMap>(cmap);
1253      }
1254
1255      template <typename CMap>
1256      ArcMap& operator=(const CMap& cmap) {
[512]1257        Parent::operator=(cmap);
[416]1258        return *this;
1259      }
1260    };
1261
[512]1262    template <typename V>
1263    class EdgeMap
1264      : public SubMapExtender<SubGraphBase<GR, NF, EF, false>,
1265        LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> {
[416]1266    public:
[512]1267      typedef V Value;
1268      typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>,
1269                  LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> Parent;
1270
1271      EdgeMap(const SubGraphBase<GR, NF, EF, false>& adaptor)
1272        : Parent(adaptor) {}
1273
1274      EdgeMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value)
1275        : Parent(adaptor, value) {}
[416]1276
1277    private:
1278      EdgeMap& operator=(const EdgeMap& cmap) {
1279        return operator=<EdgeMap>(cmap);
1280      }
1281
1282      template <typename CMap>
1283      EdgeMap& operator=(const CMap& cmap) {
[512]1284        Parent::operator=(cmap);
[416]1285        return *this;
1286      }
1287    };
1288
1289  };
1290
1291  /// \ingroup graph_adaptors
[414]1292  ///
[451]1293  /// \brief Adaptor class for hiding nodes and edges in an undirected
1294  /// graph.
[414]1295  ///
[451]1296  /// SubGraph can be used for hiding nodes and edges in a graph.
1297  /// A \c bool node map and a \c bool edge map must be specified, which
1298  /// define the filters for nodes and edges.
1299  /// Only the nodes and edges with \c true filter value are
[453]1300  /// shown in the subgraph. The edges that are incident to hidden
1301  /// nodes are also filtered out.
1302  /// This adaptor conforms to the \ref concepts::Graph "Graph" concept.
[416]1303  ///
[451]1304  /// The adapted graph can also be modified through this adaptor
[453]1305  /// by adding or removing nodes or edges, unless the \c GR template
[451]1306  /// parameter is set to be \c const.
1307  ///
[453]1308  /// \tparam GR The type of the adapted graph.
[451]1309  /// It must conform to the \ref concepts::Graph "Graph" concept.
1310  /// It can also be specified to be \c const.
[453]1311  /// \tparam NF The type of the node filter map.
1312  /// It must be a \c bool (or convertible) node map of the
1313  /// adapted graph. The default type is
1314  /// \ref concepts::Graph::NodeMap "GR::NodeMap<bool>".
1315  /// \tparam EF The type of the edge filter map.
1316  /// It must be a \c bool (or convertible) edge map of the
1317  /// adapted graph. The default type is
1318  /// \ref concepts::Graph::EdgeMap "GR::EdgeMap<bool>".
[451]1319  ///
1320  /// \note The \c Node, \c Edge and \c Arc types of this adaptor and the
1321  /// adapted graph are convertible to each other.
[416]1322  ///
1323  /// \see FilterNodes
1324  /// \see FilterEdges
[451]1325#ifdef DOXYGEN
[453]1326  template<typename GR, typename NF, typename EF>
1327  class SubGraph {
[451]1328#else
[453]1329  template<typename GR,
1330           typename NF = typename GR::template NodeMap<bool>,
1331           typename EF = typename GR::template EdgeMap<bool> >
1332  class SubGraph :
1333    public GraphAdaptorExtender<SubGraphBase<GR, NF, EF, true> > {
[451]1334#endif
[414]1335  public:
[451]1336    /// The type of the adapted graph.
[453]1337    typedef GR Graph;
[451]1338    /// The type of the node filter map.
[453]1339    typedef NF NodeFilterMap;
[451]1340    /// The type of the edge filter map.
[453]1341    typedef EF EdgeFilterMap;
1342
[512]1343    typedef GraphAdaptorExtender<SubGraphBase<GR, NF, EF, true> >
[453]1344      Parent;
[414]1345
[415]1346    typedef typename Parent::Node Node;
[416]1347    typedef typename Parent::Edge Edge;
[415]1348
[414]1349  protected:
[416]1350    SubGraph() { }
[414]1351  public:
1352
[415]1353    /// \brief Constructor
1354    ///
[451]1355    /// Creates a subgraph for the given graph with the given node
1356    /// and edge filter maps.
[512]1357    SubGraph(GR& graph, NF& node_filter, EF& edge_filter) {
1358      initialize(graph, node_filter, edge_filter);
[414]1359    }
1360
[452]1361    /// \brief Sets the status of the given node
[415]1362    ///
[452]1363    /// This function sets the status of the given node.
[451]1364    /// It is done by simply setting the assigned value of \c n
[452]1365    /// to \c v in the node filter map.
1366    void status(const Node& n, bool v) const { Parent::status(n, v); }
1367
1368    /// \brief Sets the status of the given edge
[416]1369    ///
[452]1370    /// This function sets the status of the given edge.
[451]1371    /// It is done by simply setting the assigned value of \c e
[452]1372    /// to \c v in the edge filter map.
1373    void status(const Edge& e, bool v) const { Parent::status(e, v); }
1374
1375    /// \brief Returns the status of the given node
[415]1376    ///
[452]1377    /// This function returns the status of the given node.
1378    /// It is \c true if the given node is enabled (i.e. not hidden).
1379    bool status(const Node& n) const { return Parent::status(n); }
1380
1381    /// \brief Returns the status of the given edge
[416]1382    ///
[452]1383    /// This function returns the status of the given edge.
1384    /// It is \c true if the given edge is enabled (i.e. not hidden).
1385    bool status(const Edge& e) const { return Parent::status(e); }
1386
1387    /// \brief Disables the given node
[415]1388    ///
[452]1389    /// This function disables the given node in the subdigraph,
1390    /// so the iteration jumps over it.
1391    /// It is the same as \ref status() "status(n, false)".
1392    void disable(const Node& n) const { Parent::status(n, false); }
1393
1394    /// \brief Disables the given edge
[415]1395    ///
[452]1396    /// This function disables the given edge in the subgraph,
1397    /// so the iteration jumps over it.
1398    /// It is the same as \ref status() "status(e, false)".
1399    void disable(const Edge& e) const { Parent::status(e, false); }
1400
1401    /// \brief Enables the given node
1402    ///
1403    /// This function enables the given node in the subdigraph.
1404    /// It is the same as \ref status() "status(n, true)".
1405    void enable(const Node& n) const { Parent::status(n, true); }
1406
1407    /// \brief Enables the given edge
1408    ///
1409    /// This function enables the given edge in the subgraph.
1410    /// It is the same as \ref status() "status(e, true)".
1411    void enable(const Edge& e) const { Parent::status(e, true); }
1412
[414]1413  };
1414
[451]1415  /// \brief Returns a read-only SubGraph adaptor
[414]1416  ///
[451]1417  /// This function just returns a read-only \ref SubGraph adaptor.
1418  /// \ingroup graph_adaptors
1419  /// \relates SubGraph
[453]1420  template<typename GR, typename NF, typename EF>
1421  SubGraph<const GR, NF, EF>
[512]1422  subGraph(const GR& graph, NF& node_filter, EF& edge_filter) {
[453]1423    return SubGraph<const GR, NF, EF>
[512]1424      (graph, node_filter, edge_filter);
[416]1425  }
1426
[453]1427  template<typename GR, typename NF, typename EF>
1428  SubGraph<const GR, const NF, EF>
[512]1429  subGraph(const GR& graph, const NF& node_filter, EF& edge_filter) {
[453]1430    return SubGraph<const GR, const NF, EF>
[512]1431      (graph, node_filter, edge_filter);
[416]1432  }
1433
[453]1434  template<typename GR, typename NF, typename EF>
1435  SubGraph<const GR, NF, const EF>
[512]1436  subGraph(const GR& graph, NF& node_filter, const EF& edge_filter) {
[453]1437    return SubGraph<const GR, NF, const EF>
[512]1438      (graph, node_filter, edge_filter);
[416]1439  }
1440
[453]1441  template<typename GR, typename NF, typename EF>
1442  SubGraph<const GR, const NF, const EF>
[512]1443  subGraph(const GR& graph, const NF& node_filter, const EF& edge_filter) {
[453]1444    return SubGraph<const GR, const NF, const EF>
[512]1445      (graph, node_filter, edge_filter);
[416]1446  }
1447
[451]1448
[416]1449  /// \ingroup graph_adaptors
1450  ///
[451]1451  /// \brief Adaptor class for hiding nodes in a digraph or a graph.
[416]1452  ///
[451]1453  /// FilterNodes adaptor can be used for hiding nodes in a digraph or a
1454  /// graph. A \c bool node map must be specified, which defines the filter
1455  /// for the nodes. Only the nodes with \c true filter value and the
1456  /// arcs/edges incident to nodes both with \c true filter value are shown
1457  /// in the subgraph. This adaptor conforms to the \ref concepts::Digraph
1458  /// "Digraph" concept or the \ref concepts::Graph "Graph" concept
[453]1459  /// depending on the \c GR template parameter.
[416]1460  ///
[451]1461  /// The adapted (di)graph can also be modified through this adaptor
[453]1462  /// by adding or removing nodes or arcs/edges, unless the \c GR template
[451]1463  /// parameter is set to be \c const.
1464  ///
[453]1465  /// \tparam GR The type of the adapted digraph or graph.
[451]1466  /// It must conform to the \ref concepts::Digraph "Digraph" concept
1467  /// or the \ref concepts::Graph "Graph" concept.
1468  /// It can also be specified to be \c const.
[453]1469  /// \tparam NF The type of the node filter map.
1470  /// It must be a \c bool (or convertible) node map of the
1471  /// adapted (di)graph. The default type is
1472  /// \ref concepts::Graph::NodeMap "GR::NodeMap<bool>".
[451]1473  ///
1474  /// \note The \c Node and <tt>Arc/Edge</tt> types of this adaptor and the
1475  /// adapted (di)graph are convertible to each other.
[416]1476#ifdef DOXYGEN
[453]1477  template<typename GR, typename NF>
1478  class FilterNodes {
[416]1479#else
[453]1480  template<typename GR,
1481           typename NF = typename GR::template NodeMap<bool>,
[416]1482           typename Enable = void>
[453]1483  class FilterNodes :
1484    public DigraphAdaptorExtender<
[512]1485      SubDigraphBase<GR, NF, ConstMap<typename GR::Arc, Const<bool, true> >,
1486                     true> > {
[416]1487#endif
1488  public:
1489
[453]1490    typedef GR Digraph;
1491    typedef NF NodeFilterMap;
1492
1493    typedef DigraphAdaptorExtender<
[512]1494      SubDigraphBase<GR, NF, ConstMap<typename GR::Arc, Const<bool, true> >,
1495                     true> > Parent;
[416]1496
1497    typedef typename Parent::Node Node;
1498
1499  protected:
[512]1500    ConstMap<typename Digraph::Arc, Const<bool, true> > const_true_map;
1501
1502    FilterNodes() : const_true_map() {}
[416]1503
1504  public:
1505
1506    /// \brief Constructor
1507    ///
[451]1508    /// Creates a subgraph for the given digraph or graph with the
[416]1509    /// given node filter map.
[512]1510    FilterNodes(GR& graph, NF& node_filter)
1511      : Parent(), const_true_map()
[453]1512    {
[512]1513      Parent::initialize(graph, node_filter, const_true_map);
[416]1514    }
1515
[452]1516    /// \brief Sets the status of the given node
[416]1517    ///
[452]1518    /// This function sets the status of the given node.
[451]1519    /// It is done by simply setting the assigned value of \c n
[452]1520    /// to \c v in the node filter map.
1521    void status(const Node& n, bool v) const { Parent::status(n, v); }
1522
1523    /// \brief Returns the status of the given node
[416]1524    ///
[452]1525    /// This function returns the status of the given node.
1526    /// It is \c true if the given node is enabled (i.e. not hidden).
1527    bool status(const Node& n) const { return Parent::status(n); }
1528
1529    /// \brief Disables the given node
[416]1530    ///
[452]1531    /// This function disables the given node, so the iteration
1532    /// jumps over it.
1533    /// It is the same as \ref status() "status(n, false)".
1534    void disable(const Node& n) const { Parent::status(n, false); }
1535
1536    /// \brief Enables the given node
1537    ///
1538    /// This function enables the given node.
1539    /// It is the same as \ref status() "status(n, true)".
1540    void enable(const Node& n) const { Parent::status(n, true); }
[416]1541
1542  };
1543
[453]1544  template<typename GR, typename NF>
1545  class FilterNodes<GR, NF,
1546                    typename enable_if<UndirectedTagIndicator<GR> >::type> :
1547    public GraphAdaptorExtender<
[512]1548      SubGraphBase<GR, NF, ConstMap<typename GR::Edge, Const<bool, true> >,
1549                   true> > {
[453]1550
[416]1551  public:
[453]1552    typedef GR Graph;
1553    typedef NF NodeFilterMap;
1554    typedef GraphAdaptorExtender<
[512]1555      SubGraphBase<GR, NF, ConstMap<typename GR::Edge, Const<bool, true> >,
1556                   true> > Parent;
[416]1557
1558    typedef typename Parent::Node Node;
1559  protected:
[512]1560    ConstMap<typename GR::Edge, Const<bool, true> > const_true_map;
1561
1562    FilterNodes() : const_true_map() {}
[416]1563
1564  public:
1565
[512]1566    FilterNodes(GR& graph, NodeFilterMap& node_filter) :
1567      Parent(), const_true_map() {
1568      Parent::initialize(graph, node_filter, const_true_map);
[416]1569    }
1570
[452]1571    void status(const Node& n, bool v) const { Parent::status(n, v); }
1572    bool status(const Node& n) const { return Parent::status(n); }
1573    void disable(const Node& n) const { Parent::status(n, false); }
1574    void enable(const Node& n) const { Parent::status(n, true); }
[416]1575
1576  };
1577
1578
[451]1579  /// \brief Returns a read-only FilterNodes adaptor
[416]1580  ///
[451]1581  /// This function just returns a read-only \ref FilterNodes adaptor.
1582  /// \ingroup graph_adaptors
1583  /// \relates FilterNodes
[453]1584  template<typename GR, typename NF>
1585  FilterNodes<const GR, NF>
[512]1586  filterNodes(const GR& graph, NF& node_filter) {
1587    return FilterNodes<const GR, NF>(graph, node_filter);
[414]1588  }
1589
[453]1590  template<typename GR, typename NF>
1591  FilterNodes<const GR, const NF>
[512]1592  filterNodes(const GR& graph, const NF& node_filter) {
1593    return FilterNodes<const GR, const NF>(graph, node_filter);
[414]1594  }
1595
[416]1596  /// \ingroup graph_adaptors
[414]1597  ///
[451]1598  /// \brief Adaptor class for hiding arcs in a digraph.
[414]1599  ///
[451]1600  /// FilterArcs adaptor can be used for hiding arcs in a digraph.
1601  /// A \c bool arc map must be specified, which defines the filter for
1602  /// the arcs. Only the arcs with \c true filter value are shown in the
1603  /// subdigraph. This adaptor conforms to the \ref concepts::Digraph
1604  /// "Digraph" concept.
[414]1605  ///
[451]1606  /// The adapted digraph can also be modified through this adaptor
[453]1607  /// by adding or removing nodes or arcs, unless the \c GR template
[451]1608  /// parameter is set to be \c const.
1609  ///
[512]1610  /// \tparam DGR The type of the adapted digraph.
[451]1611  /// It must conform to the \ref concepts::Digraph "Digraph" concept.
1612  /// It can also be specified to be \c const.
[453]1613  /// \tparam AF The type of the arc filter map.
1614  /// It must be a \c bool (or convertible) arc map of the
1615  /// adapted digraph. The default type is
[512]1616  /// \ref concepts::Digraph::ArcMap "DGR::ArcMap<bool>".
[451]1617  ///
1618  /// \note The \c Node and \c Arc types of this adaptor and the adapted
1619  /// digraph are convertible to each other.
1620#ifdef DOXYGEN
[512]1621  template<typename DGR,
[453]1622           typename AF>
1623  class FilterArcs {
[451]1624#else
[512]1625  template<typename DGR,
1626           typename AF = typename DGR::template ArcMap<bool> >
[453]1627  class FilterArcs :
1628    public DigraphAdaptorExtender<
[512]1629      SubDigraphBase<DGR, ConstMap<typename DGR::Node, Const<bool, true> >,
1630                     AF, false> > {
[451]1631#endif
[414]1632  public:
[453]1633    /// The type of the adapted digraph.
[512]1634    typedef DGR Digraph;
[453]1635    /// The type of the arc filter map.
1636    typedef AF ArcFilterMap;
1637
1638    typedef DigraphAdaptorExtender<
[512]1639      SubDigraphBase<DGR, ConstMap<typename DGR::Node, Const<bool, true> >,
1640                     AF, false> > Parent;
[415]1641
1642    typedef typename Parent::Arc Arc;
1643
[414]1644  protected:
[512]1645    ConstMap<typename DGR::Node, Const<bool, true> > const_true_map;
1646
1647    FilterArcs() : const_true_map() {}
[414]1648
1649  public:
1650
[415]1651    /// \brief Constructor
1652    ///
[451]1653    /// Creates a subdigraph for the given digraph with the given arc
1654    /// filter map.
[512]1655    FilterArcs(DGR& digraph, ArcFilterMap& arc_filter)
1656      : Parent(), const_true_map() {
1657      Parent::initialize(digraph, const_true_map, arc_filter);
[414]1658    }
1659
[452]1660    /// \brief Sets the status of the given arc
[415]1661    ///
[452]1662    /// This function sets the status of the given arc.
[451]1663    /// It is done by simply setting the assigned value of \c a
[452]1664    /// to \c v in the arc filter map.
1665    void status(const Arc& a, bool v) const { Parent::status(a, v); }
1666
1667    /// \brief Returns the status of the given arc
[415]1668    ///
[452]1669    /// This function returns the status of the given arc.
1670    /// It is \c true if the given arc is enabled (i.e. not hidden).
1671    bool status(const Arc& a) const { return Parent::status(a); }
1672
1673    /// \brief Disables the given arc
[415]1674    ///
[452]1675    /// This function disables the given arc in the subdigraph,
1676    /// so the iteration jumps over it.
1677    /// It is the same as \ref status() "status(a, false)".
1678    void disable(const Arc& a) const { Parent::status(a, false); }
1679
1680    /// \brief Enables the given arc
1681    ///
1682    /// This function enables the given arc in the subdigraph.
1683    /// It is the same as \ref status() "status(a, true)".
1684    void enable(const Arc& a) const { Parent::status(a, true); }
[415]1685
[414]1686  };
1687
[451]1688  /// \brief Returns a read-only FilterArcs adaptor
[414]1689  ///
[451]1690  /// This function just returns a read-only \ref FilterArcs adaptor.
1691  /// \ingroup graph_adaptors
1692  /// \relates FilterArcs
[512]1693  template<typename DGR, typename AF>
1694  FilterArcs<const DGR, AF>
1695  filterArcs(const DGR& digraph, AF& arc_filter) {
1696    return FilterArcs<const DGR, AF>(digraph, arc_filter);
[414]1697  }
1698
[512]1699  template<typename DGR, typename AF>
1700  FilterArcs<const DGR, const AF>
1701  filterArcs(const DGR& digraph, const AF& arc_filter) {
1702    return FilterArcs<const DGR, const AF>(digraph, arc_filter);
[414]1703  }
1704
[416]1705  /// \ingroup graph_adaptors
1706  ///
[451]1707  /// \brief Adaptor class for hiding edges in a graph.
[416]1708  ///
[451]1709  /// FilterEdges adaptor can be used for hiding edges in a graph.
1710  /// A \c bool edge map must be specified, which defines the filter for
1711  /// the edges. Only the edges with \c true filter value are shown in the
1712  /// subgraph. This adaptor conforms to the \ref concepts::Graph
1713  /// "Graph" concept.
[416]1714  ///
[451]1715  /// The adapted graph can also be modified through this adaptor
[453]1716  /// by adding or removing nodes or edges, unless the \c GR template
[451]1717  /// parameter is set to be \c const.
1718  ///
[453]1719  /// \tparam GR The type of the adapted graph.
[451]1720  /// It must conform to the \ref concepts::Graph "Graph" concept.
1721  /// It can also be specified to be \c const.
[453]1722  /// \tparam EF The type of the edge filter map.
1723  /// It must be a \c bool (or convertible) edge map of the
1724  /// adapted graph. The default type is
1725  /// \ref concepts::Graph::EdgeMap "GR::EdgeMap<bool>".
[451]1726  ///
1727  /// \note The \c Node, \c Edge and \c Arc types of this adaptor and the
1728  /// adapted graph are convertible to each other.
1729#ifdef DOXYGEN
[453]1730  template<typename GR,
1731           typename EF>
1732  class FilterEdges {
[451]1733#else
[453]1734  template<typename GR,
1735           typename EF = typename GR::template EdgeMap<bool> >
1736  class FilterEdges :
1737    public GraphAdaptorExtender<
[512]1738      SubGraphBase<GR, ConstMap<typename GR::Node, Const<bool, true> >,
1739                   EF, false> > {
[451]1740#endif
[416]1741  public:
[453]1742    /// The type of the adapted graph.
1743    typedef GR Graph;
1744    /// The type of the edge filter map.
1745    typedef EF EdgeFilterMap;
1746
1747    typedef GraphAdaptorExtender<
[512]1748      SubGraphBase<GR, ConstMap<typename GR::Node, Const<bool, true > >,
1749                   EF, false> > Parent;
[453]1750
[416]1751    typedef typename Parent::Edge Edge;
[453]1752
[416]1753  protected:
[512]1754    ConstMap<typename GR::Node, Const<bool, true> > const_true_map;
[416]1755
1756    FilterEdges() : const_true_map(true) {
1757      Parent::setNodeFilterMap(const_true_map);
1758    }
1759
1760  public:
1761
1762    /// \brief Constructor
1763    ///
[451]1764    /// Creates a subgraph for the given graph with the given edge
1765    /// filter map.
[512]1766    FilterEdges(GR& graph, EF& edge_filter)
1767      : Parent(), const_true_map() {
1768      Parent::initialize(graph, const_true_map, edge_filter);
[416]1769    }
1770
[452]1771    /// \brief Sets the status of the given edge
[416]1772    ///
[452]1773    /// This function sets the status of the given edge.
[451]1774    /// It is done by simply setting the assigned value of \c e
[452]1775    /// to \c v in the edge filter map.
1776    void status(const Edge& e, bool v) const { Parent::status(e, v); }
1777
1778    /// \brief Returns the status of the given edge
[416]1779    ///
[452]1780    /// This function returns the status of the given edge.
1781    /// It is \c true if the given edge is enabled (i.e. not hidden).
1782    bool status(const Edge& e) const { return Parent::status(e); }
1783
1784    /// \brief Disables the given edge
[416]1785    ///
[452]1786    /// This function disables the given edge in the subgraph,
1787    /// so the iteration jumps over it.
1788    /// It is the same as \ref status() "status(e, false)".
1789    void disable(const Edge& e) const { Parent::status(e, false); }
1790
1791    /// \brief Enables the given edge
1792    ///
1793    /// This function enables the given edge in the subgraph.
1794    /// It is the same as \ref status() "status(e, true)".
1795    void enable(const Edge& e) const { Parent::status(e, true); }
[416]1796
1797  };
1798
[451]1799  /// \brief Returns a read-only FilterEdges adaptor
[416]1800  ///
[451]1801  /// This function just returns a read-only \ref FilterEdges adaptor.
1802  /// \ingroup graph_adaptors
1803  /// \relates FilterEdges
[453]1804  template<typename GR, typename EF>
1805  FilterEdges<const GR, EF>
[512]1806  filterEdges(const GR& graph, EF& edge_filter) {
1807    return FilterEdges<const GR, EF>(graph, edge_filter);
[416]1808  }
1809
[453]1810  template<typename GR, typename EF>
1811  FilterEdges<const GR, const EF>
[512]1812  filterEdges(const GR& graph, const EF& edge_filter) {
1813    return FilterEdges<const GR, const EF>(graph, edge_filter);
[416]1814  }
1815
[451]1816
[512]1817  template <typename DGR>
[416]1818  class UndirectorBase {
[414]1819  public:
[512]1820    typedef DGR Digraph;
[416]1821    typedef UndirectorBase Adaptor;
[414]1822
1823    typedef True UndirectedTag;
1824
1825    typedef typename Digraph::Arc Edge;
1826    typedef typename Digraph::Node Node;
1827
1828    class Arc : public Edge {
[416]1829      friend class UndirectorBase;
[414]1830    protected:
1831      bool _forward;
1832
1833      Arc(const Edge& edge, bool forward) :
1834        Edge(edge), _forward(forward) {}
1835
1836    public:
1837      Arc() {}
1838
1839      Arc(Invalid) : Edge(INVALID), _forward(true) {}
1840
1841      bool operator==(const Arc &other) const {
[416]1842        return _forward == other._forward &&
1843          static_cast<const Edge&>(*this) == static_cast<const Edge&>(other);
[414]1844      }
1845      bool operator!=(const Arc &other) const {
[416]1846        return _forward != other._forward ||
1847          static_cast<const Edge&>(*this) != static_cast<const Edge&>(other);
[414]1848      }
1849      bool operator<(const Arc &other) const {
[416]1850        return _forward < other._forward ||
1851          (_forward == other._forward &&
1852           static_cast<const Edge&>(*this) < static_cast<const Edge&>(other));
[414]1853      }
1854    };
1855
1856    void first(Node& n) const {
1857      _digraph->first(n);
1858    }
1859
1860    void next(Node& n) const {
1861      _digraph->next(n);
1862    }
1863
1864    void first(Arc& a) const {
1865      _digraph->first(a);
1866      a._forward = true;
1867    }
1868
1869    void next(Arc& a) const {
1870      if (a._forward) {
[416]1871        a._forward = false;
[414]1872      } else {
[416]1873        _digraph->next(a);
1874        a._forward = true;
[414]1875      }
1876    }
1877
1878    void first(Edge& e) const {
1879      _digraph->first(e);
1880    }
1881
1882    void next(Edge& e) const {
1883      _digraph->next(e);
1884    }
1885
1886    void firstOut(Arc& a, const Node& n) const {
1887      _digraph->firstIn(a, n);
1888      if( static_cast<const Edge&>(a) != INVALID ) {
[416]1889        a._forward = false;
[414]1890      } else {
[416]1891        _digraph->firstOut(a, n);
1892        a._forward = true;
[414]1893      }
1894    }
1895    void nextOut(Arc &a) const {
1896      if (!a._forward) {
[416]1897        Node n = _digraph->target(a);
1898        _digraph->nextIn(a);
1899        if (static_cast<const Edge&>(a) == INVALID ) {
1900          _digraph->firstOut(a, n);
1901          a._forward = true;
1902        }
[414]1903      }
1904      else {
[416]1905        _digraph->nextOut(a);
[414]1906      }
1907    }
1908
1909    void firstIn(Arc &a, const Node &n) const {
1910      _digraph->firstOut(a, n);
1911      if (static_cast<const Edge&>(a) != INVALID ) {
[416]1912        a._forward = false;
[414]1913      } else {
[416]1914        _digraph->firstIn(a, n);
1915        a._forward = true;
[414]1916      }
1917    }
1918    void nextIn(Arc &a) const {
1919      if (!a._forward) {
[416]1920        Node n = _digraph->source(a);
1921        _digraph->nextOut(a);
1922        if( static_cast<const Edge&>(a) == INVALID ) {
1923          _digraph->firstIn(a, n);
1924          a._forward = true;
1925        }
[414]1926      }
1927      else {
[416]1928        _digraph->nextIn(a);
[414]1929      }
1930    }
1931
1932    void firstInc(Edge &e, bool &d, const Node &n) const {
1933      d = true;
1934      _digraph->firstOut(e, n);
1935      if (e != INVALID) return;
1936      d = false;
1937      _digraph->firstIn(e, n);
1938    }
1939
1940    void nextInc(Edge &e, bool &d) const {
1941      if (d) {
[416]1942        Node s = _digraph->source(e);
1943        _digraph->nextOut(e);
1944        if (e != INVALID) return;
1945        d = false;
1946        _digraph->firstIn(e, s);
[414]1947      } else {
[416]1948        _digraph->nextIn(e);
[414]1949      }
1950    }
1951
1952    Node u(const Edge& e) const {
1953      return _digraph->source(e);
1954    }
1955
1956    Node v(const Edge& e) const {
1957      return _digraph->target(e);
1958    }
1959
1960    Node source(const Arc &a) const {
1961      return a._forward ? _digraph->source(a) : _digraph->target(a);
1962    }
1963
1964    Node target(const Arc &a) const {
1965      return a._forward ? _digraph->target(a) : _digraph->source(a);
1966    }
1967
1968    static Arc direct(const Edge &e, bool d) {
1969      return Arc(e, d);
1970    }
1971    Arc direct(const Edge &e, const Node& n) const {
1972      return Arc(e, _digraph->source(e) == n);
1973    }
1974
1975    static bool direction(const Arc &a) { return a._forward; }
1976
1977    Node nodeFromId(int ix) const { return _digraph->nodeFromId(ix); }
1978    Arc arcFromId(int ix) const {
1979      return direct(_digraph->arcFromId(ix >> 1), bool(ix & 1));
1980    }
1981    Edge edgeFromId(int ix) const { return _digraph->arcFromId(ix); }
1982
1983    int id(const Node &n) const { return _digraph->id(n); }
1984    int id(const Arc &a) const {
1985      return  (_digraph->id(a) << 1) | (a._forward ? 1 : 0);
1986    }
1987    int id(const Edge &e) const { return _digraph->id(e); }
1988
1989    int maxNodeId() const { return _digraph->maxNodeId(); }
1990    int maxArcId() const { return (_digraph->maxArcId() << 1) | 1; }
1991    int maxEdgeId() const { return _digraph->maxArcId(); }
1992
1993    Node addNode() { return _digraph->addNode(); }
[416]1994    Edge addEdge(const Node& u, const Node& v) {
1995      return _digraph->addArc(u, v);
[414]1996    }
1997
1998    void erase(const Node& i) { _digraph->erase(i); }
1999    void erase(const Edge& i) { _digraph->erase(i); }
[416]2000
[414]2001    void clear() { _digraph->clear(); }
2002
2003    typedef NodeNumTagIndicator<Digraph> NodeNumTag;
[449]2004    int nodeNum() const { return _digraph->nodeNum(); }
[446]2005
2006    typedef ArcNumTagIndicator<Digraph> ArcNumTag;
[414]2007    int arcNum() const { return 2 * _digraph->arcNum(); }
[446]2008
2009    typedef ArcNumTag EdgeNumTag;
[414]2010    int edgeNum() const { return _digraph->arcNum(); }
2011
[446]2012    typedef FindArcTagIndicator<Digraph> FindArcTag;
[414]2013    Arc findArc(Node s, Node t, Arc p = INVALID) const {
2014      if (p == INVALID) {
[416]2015        Edge arc = _digraph->findArc(s, t);
2016        if (arc != INVALID) return direct(arc, true);
2017        arc = _digraph->findArc(t, s);
2018        if (arc != INVALID) return direct(arc, false);
[414]2019      } else if (direction(p)) {
[416]2020        Edge arc = _digraph->findArc(s, t, p);
2021        if (arc != INVALID) return direct(arc, true);
2022        arc = _digraph->findArc(t, s);
2023        if (arc != INVALID) return direct(arc, false);
[414]2024      } else {
[416]2025        Edge arc = _digraph->findArc(t, s, p);
2026        if (arc != INVALID) return direct(arc, false);
[414]2027      }
2028      return INVALID;
2029    }
2030
[446]2031    typedef FindArcTag FindEdgeTag;
[414]2032    Edge findEdge(Node s, Node t, Edge p = INVALID) const {
2033      if (s != t) {
2034        if (p == INVALID) {
2035          Edge arc = _digraph->findArc(s, t);
2036          if (arc != INVALID) return arc;
2037          arc = _digraph->findArc(t, s);
2038          if (arc != INVALID) return arc;
[449]2039        } else if (_digraph->source(p) == s) {
[414]2040          Edge arc = _digraph->findArc(s, t, p);
2041          if (arc != INVALID) return arc;
2042          arc = _digraph->findArc(t, s);
[416]2043          if (arc != INVALID) return arc;
[414]2044        } else {
2045          Edge arc = _digraph->findArc(t, s, p);
[416]2046          if (arc != INVALID) return arc;
[414]2047        }
2048      } else {
2049        return _digraph->findArc(s, t, p);
2050      }
2051      return INVALID;
2052    }
2053
2054  private:
[416]2055
[512]2056    template <typename V>
[414]2057    class ArcMapBase {
2058    private:
[416]2059
[512]2060      typedef typename DGR::template ArcMap<V> MapImpl;
[416]2061
[414]2062    public:
2063
2064      typedef typename MapTraits<MapImpl>::ReferenceMapTag ReferenceMapTag;
2065
[512]2066      typedef V Value;
[414]2067      typedef Arc Key;
[449]2068      typedef typename MapTraits<MapImpl>::ConstReturnValue ConstReturnValue;
2069      typedef typename MapTraits<MapImpl>::ReturnValue ReturnValue;
2070      typedef typename MapTraits<MapImpl>::ConstReturnValue ConstReference;
2071      typedef typename MapTraits<MapImpl>::ReturnValue Reference;
[416]2072
[512]2073      ArcMapBase(const UndirectorBase<DGR>& adaptor) :
[416]2074        _forward(*adaptor._digraph), _backward(*adaptor._digraph) {}
2075
[512]2076      ArcMapBase(const UndirectorBase<DGR>& adaptor, const V& value)
2077        : _forward(*adaptor._digraph, value),
2078          _backward(*adaptor._digraph, value) {}
2079
2080      void set(const Arc& a, const V& value) {
[416]2081        if (direction(a)) {
[512]2082          _forward.set(a, value);
[416]2083        } else {
[512]2084          _backward.set(a, value);
[414]2085        }
2086      }
2087
[449]2088      ConstReturnValue operator[](const Arc& a) const {
[416]2089        if (direction(a)) {
2090          return _forward[a];
2091        } else {
2092          return _backward[a];
[414]2093        }
2094      }
2095
[449]2096      ReturnValue operator[](const Arc& a) {
[416]2097        if (direction(a)) {
2098          return _forward[a];
2099        } else {
2100          return _backward[a];
2101        }
2102      }
2103
[414]2104    protected:
2105
[416]2106      MapImpl _forward, _backward;
[414]2107
2108    };
2109
2110  public:
2111
[512]2112    template <typename V>
2113    class NodeMap : public DGR::template NodeMap<V> {
[414]2114    public:
2115
[512]2116      typedef V Value;
2117      typedef typename DGR::template NodeMap<Value> Parent;
2118
2119      explicit NodeMap(const UndirectorBase<DGR>& adaptor)
[416]2120        : Parent(*adaptor._digraph) {}
[414]2121
[512]2122      NodeMap(const UndirectorBase<DGR>& adaptor, const V& value)
[416]2123        : Parent(*adaptor._digraph, value) { }
[414]2124
2125    private:
2126      NodeMap& operator=(const NodeMap& cmap) {
2127        return operator=<NodeMap>(cmap);
2128      }
2129
2130      template <typename CMap>
2131      NodeMap& operator=(const CMap& cmap) {
2132        Parent::operator=(cmap);
2133        return *this;
2134      }
[416]2135
[414]2136    };
2137
[512]2138    template <typename V>
[416]2139    class ArcMap
[512]2140      : public SubMapExtender<UndirectorBase<DGR>, ArcMapBase<V> >
[414]2141    {
2142    public:
[512]2143      typedef V Value;
2144      typedef SubMapExtender<Adaptor, ArcMapBase<V> > Parent;
2145
2146      explicit ArcMap(const UndirectorBase<DGR>& adaptor)
[416]2147        : Parent(adaptor) {}
2148
[512]2149      ArcMap(const UndirectorBase<DGR>& adaptor, const V& value)
[416]2150        : Parent(adaptor, value) {}
2151
[414]2152    private:
2153      ArcMap& operator=(const ArcMap& cmap) {
[416]2154        return operator=<ArcMap>(cmap);
[414]2155      }
[416]2156
[414]2157      template <typename CMap>
2158      ArcMap& operator=(const CMap& cmap) {
2159        Parent::operator=(cmap);
[416]2160        return *this;
[414]2161      }
2162    };
[416]2163
[512]2164    template <typename V>
2165    class EdgeMap : public Digraph::template ArcMap<V> {
[414]2166    public:
[416]2167
[512]2168      typedef V Value;
2169      typedef typename Digraph::template ArcMap<V> Parent;
2170
2171      explicit EdgeMap(const UndirectorBase<DGR>& adaptor)
[416]2172        : Parent(*adaptor._digraph) {}
[414]2173
[512]2174      EdgeMap(const UndirectorBase<DGR>& adaptor, const V& value)
[416]2175        : Parent(*adaptor._digraph, value) {}
[414]2176
2177    private:
2178      EdgeMap& operator=(const EdgeMap& cmap) {
2179        return operator=<EdgeMap>(cmap);
2180      }
2181
2182      template <typename CMap>
2183      EdgeMap& operator=(const CMap& cmap) {
2184        Parent::operator=(cmap);
2185        return *this;
2186      }
2187
2188    };
2189
[512]2190    typedef typename ItemSetTraits<DGR, Node>::ItemNotifier NodeNotifier;
[416]2191    NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); }
[414]2192
[512]2193    typedef typename ItemSetTraits<DGR, Edge>::ItemNotifier EdgeNotifier;
[449]2194    EdgeNotifier& notifier(Edge) const { return _digraph->notifier(Edge()); }
[579]2195   
2196    typedef EdgeNotifier ArcNotifier;
2197    ArcNotifier& notifier(Arc) const { return _digraph->notifier(Edge()); }
[449]2198
[414]2199  protected:
2200
[416]2201    UndirectorBase() : _digraph(0) {}
[414]2202
[512]2203    DGR* _digraph;
2204
2205    void initialize(DGR& digraph) {
[414]2206      _digraph = &digraph;
2207    }
[416]2208
[414]2209  };
2210
[416]2211  /// \ingroup graph_adaptors
[414]2212  ///
[451]2213  /// \brief Adaptor class for viewing a digraph as an undirected graph.
[414]2214  ///
[451]2215  /// Undirector adaptor can be used for viewing a digraph as an undirected
2216  /// graph. All arcs of the underlying digraph are showed in the
2217  /// adaptor as an edge (and also as a pair of arcs, of course).
2218  /// This adaptor conforms to the \ref concepts::Graph "Graph" concept.
[414]2219  ///
[451]2220  /// The adapted digraph can also be modified through this adaptor
[453]2221  /// by adding or removing nodes or edges, unless the \c GR template
[451]2222  /// parameter is set to be \c const.
2223  ///
[512]2224  /// \tparam DGR The type of the adapted digraph.
[451]2225  /// It must conform to the \ref concepts::Digraph "Digraph" concept.
2226  /// It can also be specified to be \c const.
2227  ///
2228  /// \note The \c Node type of this adaptor and the adapted digraph are
2229  /// convertible to each other, moreover the \c Edge type of the adaptor
2230  /// and the \c Arc type of the adapted digraph are also convertible to
2231  /// each other.
2232  /// (Thus the \c Arc type of the adaptor is convertible to the \c Arc type
2233  /// of the adapted digraph.)
[512]2234  template<typename DGR>
[453]2235#ifdef DOXYGEN
2236  class Undirector {
2237#else
2238  class Undirector :
[512]2239    public GraphAdaptorExtender<UndirectorBase<DGR> > {
[453]2240#endif
[414]2241  public:
[453]2242    /// The type of the adapted digraph.
[512]2243    typedef DGR Digraph;
2244    typedef GraphAdaptorExtender<UndirectorBase<DGR> > Parent;
[414]2245  protected:
[416]2246    Undirector() { }
[414]2247  public:
2248
2249    /// \brief Constructor
2250    ///
[451]2251    /// Creates an undirected graph from the given digraph.
[512]2252    Undirector(DGR& digraph) {
2253      initialize(digraph);
[414]2254    }
2255
[451]2256    /// \brief Arc map combined from two original arc maps
[414]2257    ///
[451]2258    /// This map adaptor class adapts two arc maps of the underlying
2259    /// digraph to get an arc map of the undirected graph.
[559]2260    /// Its value type is inherited from the first arc map type (\c FW).
2261    /// \tparam FW The type of the "foward" arc map.
2262    /// \tparam BK The type of the "backward" arc map.
2263    template <typename FW, typename BK>
[414]2264    class CombinedArcMap {
2265    public:
[416]2266
[451]2267      /// The key type of the map
2268      typedef typename Parent::Arc Key;
2269      /// The value type of the map
[559]2270      typedef typename FW::Value Value;
2271
2272      typedef typename MapTraits<FW>::ReferenceMapTag ReferenceMapTag;
2273
2274      typedef typename MapTraits<FW>::ReturnValue ReturnValue;
2275      typedef typename MapTraits<FW>::ConstReturnValue ConstReturnValue;
2276      typedef typename MapTraits<FW>::ReturnValue Reference;
2277      typedef typename MapTraits<FW>::ConstReturnValue ConstReference;
[449]2278
[416]2279      /// Constructor
[559]2280      CombinedArcMap(FW& forward, BK& backward)
[414]2281        : _forward(&forward), _backward(&backward) {}
[416]2282
[451]2283      /// Sets the value associated with the given key.
[416]2284      void set(const Key& e, const Value& a) {
2285        if (Parent::direction(e)) {
2286          _forward->set(e, a);
2287        } else {
2288          _backward->set(e, a);
2289        }
[414]2290      }
2291
[451]2292      /// Returns the value associated with the given key.
[449]2293      ConstReturnValue operator[](const Key& e) const {
[416]2294        if (Parent::direction(e)) {
2295          return (*_forward)[e];
2296        } else {
2297          return (*_backward)[e];
[414]2298        }
2299      }
2300
[451]2301      /// Returns a reference to the value associated with the given key.
[449]2302      ReturnValue operator[](const Key& e) {
[416]2303        if (Parent::direction(e)) {
2304          return (*_forward)[e];
2305        } else {
2306          return (*_backward)[e];
[414]2307        }
2308      }
2309
[416]2310    protected:
2311
[559]2312      FW* _forward;
2313      BK* _backward;
[416]2314
2315    };
2316
[451]2317    /// \brief Returns a combined arc map
[416]2318    ///
[451]2319    /// This function just returns a combined arc map.
[559]2320    template <typename FW, typename BK>
2321    static CombinedArcMap<FW, BK>
2322    combinedArcMap(FW& forward, BK& backward) {
2323      return CombinedArcMap<FW, BK>(forward, backward);
[416]2324    }
2325
[559]2326    template <typename FW, typename BK>
2327    static CombinedArcMap<const FW, BK>
2328    combinedArcMap(const FW& forward, BK& backward) {
2329      return CombinedArcMap<const FW, BK>(forward, backward);
[416]2330    }
2331
[559]2332    template <typename FW, typename BK>
2333    static CombinedArcMap<FW, const BK>
2334    combinedArcMap(FW& forward, const BK& backward) {
2335      return CombinedArcMap<FW, const BK>(forward, backward);
[416]2336    }
2337
[559]2338    template <typename FW, typename BK>
2339    static CombinedArcMap<const FW, const BK>
2340    combinedArcMap(const FW& forward, const BK& backward) {
2341      return CombinedArcMap<const FW, const BK>(forward, backward);
[416]2342    }
2343
2344  };
2345
[451]2346  /// \brief Returns a read-only Undirector adaptor
[416]2347  ///
[451]2348  /// This function just returns a read-only \ref Undirector adaptor.
2349  /// \ingroup graph_adaptors
2350  /// \relates Undirector
[512]2351  template<typename DGR>
2352  Undirector<const DGR> undirector(const DGR& digraph) {
2353    return Undirector<const DGR>(digraph);
[416]2354  }
2355
[451]2356
[512]2357  template <typename GR, typename DM>
[416]2358  class OrienterBase {
2359  public:
2360
[512]2361    typedef GR Graph;
2362    typedef DM DirectionMap;
2363
2364    typedef typename GR::Node Node;
2365    typedef typename GR::Edge Arc;
[416]2366
2367    void reverseArc(const Arc& arc) {
2368      _direction->set(arc, !(*_direction)[arc]);
2369    }
2370
2371    void first(Node& i) const { _graph->first(i); }
2372    void first(Arc& i) const { _graph->first(i); }
2373    void firstIn(Arc& i, const Node& n) const {
[447]2374      bool d = true;
[416]2375      _graph->firstInc(i, d, n);
2376      while (i != INVALID && d == (*_direction)[i]) _graph->nextInc(i, d);
2377    }
2378    void firstOut(Arc& i, const Node& n ) const {
[447]2379      bool d = true;
[416]2380      _graph->firstInc(i, d, n);
2381      while (i != INVALID && d != (*_direction)[i]) _graph->nextInc(i, d);
2382    }
2383
2384    void next(Node& i) const { _graph->next(i); }
2385    void next(Arc& i) const { _graph->next(i); }
2386    void nextIn(Arc& i) const {
2387      bool d = !(*_direction)[i];
2388      _graph->nextInc(i, d);
2389      while (i != INVALID && d == (*_direction)[i]) _graph->nextInc(i, d);
2390    }
2391    void nextOut(Arc& i) const {
2392      bool d = (*_direction)[i];
2393      _graph->nextInc(i, d);
2394      while (i != INVALID && d != (*_direction)[i]) _graph->nextInc(i, d);
2395    }
2396
2397    Node source(const Arc& e) const {
2398      return (*_direction)[e] ? _graph->u(e) : _graph->v(e);
2399    }
2400    Node target(const Arc& e) const {
2401      return (*_direction)[e] ? _graph->v(e) : _graph->u(e);
2402    }
2403
2404    typedef NodeNumTagIndicator<Graph> NodeNumTag;
2405    int nodeNum() const { return _graph->nodeNum(); }
2406
[446]2407    typedef EdgeNumTagIndicator<Graph> ArcNumTag;
[416]2408    int arcNum() const { return _graph->edgeNum(); }
2409
[446]2410    typedef FindEdgeTagIndicator<Graph> FindArcTag;
[416]2411    Arc findArc(const Node& u, const Node& v,
[448]2412                const Arc& prev = INVALID) const {
[449]2413      Arc arc = _graph->findEdge(u, v, prev);
2414      while (arc != INVALID && source(arc) != u) {
[416]2415        arc = _graph->findEdge(u, v, arc);
[414]2416      }
[416]2417      return arc;
2418    }
2419
2420    Node addNode() {
2421      return Node(_graph->addNode());
2422    }
2423
2424    Arc addArc(const Node& u, const Node& v) {
[449]2425      Arc arc = _graph->addEdge(u, v);
2426      _direction->set(arc, _graph->u(arc) == u);
[416]2427      return arc;
2428    }
2429
2430    void erase(const Node& i) { _graph->erase(i); }
2431    void erase(const Arc& i) { _graph->erase(i); }
2432
2433    void clear() { _graph->clear(); }
2434
2435    int id(const Node& v) const { return _graph->id(v); }
2436    int id(const Arc& e) const { return _graph->id(e); }
2437
2438    Node nodeFromId(int idx) const { return _graph->nodeFromId(idx); }
2439    Arc arcFromId(int idx) const { return _graph->edgeFromId(idx); }
2440
2441    int maxNodeId() const { return _graph->maxNodeId(); }
2442    int maxArcId() const { return _graph->maxEdgeId(); }
2443
[512]2444    typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier;
[416]2445    NodeNotifier& notifier(Node) const { return _graph->notifier(Node()); }
2446
[512]2447    typedef typename ItemSetTraits<GR, Arc>::ItemNotifier ArcNotifier;
[416]2448    ArcNotifier& notifier(Arc) const { return _graph->notifier(Arc()); }
2449
[512]2450    template <typename V>
2451    class NodeMap : public GR::template NodeMap<V> {
[416]2452    public:
2453
[512]2454      typedef typename GR::template NodeMap<V> Parent;
2455
2456      explicit NodeMap(const OrienterBase<GR, DM>& adapter)
[416]2457        : Parent(*adapter._graph) {}
2458
[512]2459      NodeMap(const OrienterBase<GR, DM>& adapter, const V& value)
[416]2460        : Parent(*adapter._graph, value) {}
2461
2462    private:
2463      NodeMap& operator=(const NodeMap& cmap) {
2464        return operator=<NodeMap>(cmap);
2465      }
2466
2467      template <typename CMap>
2468      NodeMap& operator=(const CMap& cmap) {
2469        Parent::operator=(cmap);
2470        return *this;
2471      }
[414]2472
2473    };
2474
[512]2475    template <typename V>
2476    class ArcMap : public GR::template EdgeMap<V> {
[416]2477    public:
2478
[512]2479      typedef typename Graph::template EdgeMap<V> Parent;
2480
2481      explicit ArcMap(const OrienterBase<GR, DM>& adapter)
[416]2482        : Parent(*adapter._graph) { }
2483
[512]2484      ArcMap(const OrienterBase<GR, DM>& adapter, const V& value)
[416]2485        : Parent(*adapter._graph, value) { }
2486
2487    private:
2488      ArcMap& operator=(const ArcMap& cmap) {
2489        return operator=<ArcMap>(cmap);
2490      }
2491
2492      template <typename CMap>
2493      ArcMap& operator=(const CMap& cmap) {
2494        Parent::operator=(cmap);
2495        return *this;
2496      }
2497    };
2498
2499
2500
2501  protected:
2502    Graph* _graph;
[512]2503    DM* _direction;
2504
2505    void initialize(GR& graph, DM& direction) {
2506      _graph = &graph;
[416]2507      _direction = &direction;
2508    }
2509
[414]2510  };
2511
[416]2512  /// \ingroup graph_adaptors
[414]2513  ///
[451]2514  /// \brief Adaptor class for orienting the edges of a graph to get a digraph
[416]2515  ///
[451]2516  /// Orienter adaptor can be used for orienting the edges of a graph to
2517  /// get a digraph. A \c bool edge map of the underlying graph must be
2518  /// specified, which define the direction of the arcs in the adaptor.
2519  /// The arcs can be easily reversed by the \c reverseArc() member function
2520  /// of the adaptor.
2521  /// This class conforms to the \ref concepts::Digraph "Digraph" concept.
[416]2522  ///
[451]2523  /// The adapted graph can also be modified through this adaptor
[453]2524  /// by adding or removing nodes or arcs, unless the \c GR template
[451]2525  /// parameter is set to be \c const.
[416]2526  ///
[453]2527  /// \tparam GR The type of the adapted graph.
[451]2528  /// It must conform to the \ref concepts::Graph "Graph" concept.
2529  /// It can also be specified to be \c const.
[453]2530  /// \tparam DM The type of the direction map.
2531  /// It must be a \c bool (or convertible) edge map of the
2532  /// adapted graph. The default type is
2533  /// \ref concepts::Graph::EdgeMap "GR::EdgeMap<bool>".
[451]2534  ///
2535  /// \note The \c Node type of this adaptor and the adapted graph are
2536  /// convertible to each other, moreover the \c Arc type of the adaptor
2537  /// and the \c Edge type of the adapted graph are also convertible to
2538  /// each other.
2539#ifdef DOXYGEN
[453]2540  template<typename GR,
2541           typename DM>
2542  class Orienter {
[451]2543#else
[453]2544  template<typename GR,
2545           typename DM = typename GR::template EdgeMap<bool> >
2546  class Orienter :
2547    public DigraphAdaptorExtender<OrienterBase<GR, DM> > {
[451]2548#endif
[416]2549  public:
[451]2550
2551    /// The type of the adapted graph.
[453]2552    typedef GR Graph;
[451]2553    /// The type of the direction edge map.
[453]2554    typedef DM DirectionMap;
2555
2556    typedef DigraphAdaptorExtender<OrienterBase<GR, DM> > Parent;
[416]2557    typedef typename Parent::Arc Arc;
2558  protected:
2559    Orienter() { }
2560  public:
2561
[451]2562    /// \brief Constructor
[416]2563    ///
[451]2564    /// Constructor of the adaptor.
[512]2565    Orienter(GR& graph, DM& direction) {
2566      Parent::initialize(graph, direction);
[416]2567    }
2568
[451]2569    /// \brief Reverses the given arc
[416]2570    ///
[451]2571    /// This function reverses the given arc.
2572    /// It is done by simply negate the assigned value of \c a
2573    /// in the direction map.
[416]2574    void reverseArc(const Arc& a) {
2575      Parent::reverseArc(a);
2576    }
2577  };
2578
[451]2579  /// \brief Returns a read-only Orienter adaptor
[416]2580  ///
[451]2581  /// This function just returns a read-only \ref Orienter adaptor.
2582  /// \ingroup graph_adaptors
2583  /// \relates Orienter
[453]2584  template<typename GR, typename DM>
2585  Orienter<const GR, DM>
[512]2586  orienter(const GR& graph, DM& direction) {
2587    return Orienter<const GR, DM>(graph, direction);
[414]2588  }
2589
[453]2590  template<typename GR, typename DM>
2591  Orienter<const GR, const DM>
[512]2592  orienter(const GR& graph, const DM& direction) {
2593    return Orienter<const GR, const DM>(graph, direction);
[416]2594  }
2595
2596  namespace _adaptor_bits {
2597
[512]2598    template <typename DGR, typename CM, typename FM, typename TL>
[416]2599    class ResForwardFilter {
2600    public:
2601
[512]2602      typedef typename DGR::Arc Key;
[416]2603      typedef bool Value;
2604
2605    private:
2606
[512]2607      const CM* _capacity;
2608      const FM* _flow;
2609      TL _tolerance;
2610
[416]2611    public:
2612
[512]2613      ResForwardFilter(const CM& capacity, const FM& flow,
2614                       const TL& tolerance = TL())
[416]2615        : _capacity(&capacity), _flow(&flow), _tolerance(tolerance) { }
2616
[512]2617      bool operator[](const typename DGR::Arc& a) const {
[416]2618        return _tolerance.positive((*_capacity)[a] - (*_flow)[a]);
2619      }
2620    };
2621
[512]2622    template<typename DGR,typename CM, typename FM, typename TL>
[416]2623    class ResBackwardFilter {
2624    public:
2625
[512]2626      typedef typename DGR::Arc Key;
[416]2627      typedef bool Value;
2628
2629    private:
2630
[512]2631      const CM* _capacity;
2632      const FM* _flow;
2633      TL _tolerance;
[416]2634
2635    public:
2636
[512]2637      ResBackwardFilter(const CM& capacity, const FM& flow,
2638                        const TL& tolerance = TL())
[416]2639        : _capacity(&capacity), _flow(&flow), _tolerance(tolerance) { }
2640
[512]2641      bool operator[](const typename DGR::Arc& a) const {
[416]2642        return _tolerance.positive((*_flow)[a]);
2643      }
2644    };
2645
2646  }
2647
2648  /// \ingroup graph_adaptors
2649  ///
[451]2650  /// \brief Adaptor class for composing the residual digraph for directed
[416]2651  /// flow and circulation problems.
2652  ///
[464]2653  /// ResidualDigraph can be used for composing the \e residual digraph
2654  /// for directed flow and circulation problems. Let \f$ G=(V, A) \f$
2655  /// be a directed graph and let \f$ F \f$ be a number type.
2656  /// Let \f$ flow, cap: A\to F \f$ be functions on the arcs.
[451]2657  /// This adaptor implements a digraph structure with node set \f$ V \f$
2658  /// and arc set \f$ A_{forward}\cup A_{backward} \f$,
2659  /// where \f$ A_{forward}=\{uv : uv\in A, flow(uv)<cap(uv)\} \f$ and
2660  /// \f$ A_{backward}=\{vu : uv\in A, flow(uv)>0\} \f$, i.e. the so
2661  /// called residual digraph.
2662  /// When the union \f$ A_{forward}\cup A_{backward} \f$ is taken,
2663  /// multiplicities are counted, i.e. the adaptor has exactly
2664  /// \f$ |A_{forward}| + |A_{backward}|\f$ arcs (it may have parallel
2665  /// arcs).
2666  /// This class conforms to the \ref concepts::Digraph "Digraph" concept.
[416]2667  ///
[512]2668  /// \tparam DGR The type of the adapted digraph.
[451]2669  /// It must conform to the \ref concepts::Digraph "Digraph" concept.
2670  /// It is implicitly \c const.
[453]2671  /// \tparam CM The type of the capacity map.
2672  /// It must be an arc map of some numerical type, which defines
[451]2673  /// the capacities in the flow problem. It is implicitly \c const.
[453]2674  /// The default type is
2675  /// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
2676  /// \tparam FM The type of the flow map.
2677  /// It must be an arc map of some numerical type, which defines
2678  /// the flow values in the flow problem. The default type is \c CM.
2679  /// \tparam TL The tolerance type for handling inexact computation.
[451]2680  /// The default tolerance type depends on the value type of the
2681  /// capacity map.
[416]2682  ///
[451]2683  /// \note This adaptor is implemented using Undirector and FilterArcs
2684  /// adaptors.
2685  ///
2686  /// \note The \c Node type of this adaptor and the adapted digraph are
2687  /// convertible to each other, moreover the \c Arc type of the adaptor
2688  /// is convertible to the \c Arc type of the adapted digraph.
2689#ifdef DOXYGEN
[512]2690  template<typename DGR, typename CM, typename FM, typename TL>
[464]2691  class ResidualDigraph
[451]2692#else
[512]2693  template<typename DGR,
2694           typename CM = typename DGR::template ArcMap<int>,
[453]2695           typename FM = CM,
2696           typename TL = Tolerance<typename CM::Value> >
[512]2697  class ResidualDigraph
2698    : public SubDigraph<
2699        Undirector<const DGR>,
2700        ConstMap<typename DGR::Node, Const<bool, true> >,
2701        typename Undirector<const DGR>::template CombinedArcMap<
2702          _adaptor_bits::ResForwardFilter<const DGR, CM, FM, TL>,
2703          _adaptor_bits::ResBackwardFilter<const DGR, CM, FM, TL> > >
[451]2704#endif
[416]2705  {
[414]2706  public:
2707
[451]2708    /// The type of the underlying digraph.
[512]2709    typedef DGR Digraph;
[451]2710    /// The type of the capacity map.
[453]2711    typedef CM CapacityMap;
[451]2712    /// The type of the flow map.
[453]2713    typedef FM FlowMap;
2714    /// The tolerance type.
2715    typedef TL Tolerance;
[414]2716
2717    typedef typename CapacityMap::Value Value;
[464]2718    typedef ResidualDigraph Adaptor;
[414]2719
2720  protected:
2721
[416]2722    typedef Undirector<const Digraph> Undirected;
2723
[512]2724    typedef ConstMap<typename DGR::Node, Const<bool, true> > NodeFilter;
2725
2726    typedef _adaptor_bits::ResForwardFilter<const DGR, CM,
2727                                            FM, TL> ForwardFilter;
2728
2729    typedef _adaptor_bits::ResBackwardFilter<const DGR, CM,
2730                                             FM, TL> BackwardFilter;
[416]2731
2732    typedef typename Undirected::
[453]2733      template CombinedArcMap<ForwardFilter, BackwardFilter> ArcFilter;
[414]2734
[512]2735    typedef SubDigraph<Undirected, NodeFilter, ArcFilter> Parent;
[414]2736
2737    const CapacityMap* _capacity;
2738    FlowMap* _flow;
2739
[416]2740    Undirected _graph;
[512]2741    NodeFilter _node_filter;
[414]2742    ForwardFilter _forward_filter;
2743    BackwardFilter _backward_filter;
2744    ArcFilter _arc_filter;
2745
2746  public:
2747
[451]2748    /// \brief Constructor
[414]2749    ///
[451]2750    /// Constructor of the residual digraph adaptor. The parameters are the
2751    /// digraph, the capacity map, the flow map, and a tolerance object.
[512]2752    ResidualDigraph(const DGR& digraph, const CM& capacity,
2753                    FM& flow, const TL& tolerance = Tolerance())
2754      : Parent(), _capacity(&capacity), _flow(&flow),
2755        _graph(digraph), _node_filter(),
[416]2756        _forward_filter(capacity, flow, tolerance),
[414]2757        _backward_filter(capacity, flow, tolerance),
2758        _arc_filter(_forward_filter, _backward_filter)
2759    {
[512]2760      Parent::initialize(_graph, _node_filter, _arc_filter);
[414]2761    }
2762
2763    typedef typename Parent::Arc Arc;
2764
[451]2765    /// \brief Returns the residual capacity of the given arc.
[414]2766    ///
[451]2767    /// Returns the residual capacity of the given arc.
[416]2768    Value residualCapacity(const Arc& a) const {
2769      if (Undirected::direction(a)) {
2770        return (*_capacity)[a] - (*_flow)[a];
[414]2771      } else {
[416]2772        return (*_flow)[a];
[414]2773      }
[416]2774    }
2775
[452]2776    /// \brief Augments on the given arc in the residual digraph.
[414]2777    ///
[452]2778    /// Augments on the given arc in the residual digraph. It increases
[451]2779    /// or decreases the flow value on the original arc according to the
2780    /// direction of the residual arc.
[416]2781    void augment(const Arc& a, const Value& v) const {
2782      if (Undirected::direction(a)) {
2783        _flow->set(a, (*_flow)[a] + v);
2784      } else {
2785        _flow->set(a, (*_flow)[a] - v);
[414]2786      }
2787    }
2788
[451]2789    /// \brief Returns \c true if the given residual arc is a forward arc.
[414]2790    ///
[451]2791    /// Returns \c true if the given residual arc has the same orientation
2792    /// as the original arc, i.e. it is a so called forward arc.
[416]2793    static bool forward(const Arc& a) {
2794      return Undirected::direction(a);
[414]2795    }
2796
[451]2797    /// \brief Returns \c true if the given residual arc is a backward arc.
[414]2798    ///
[451]2799    /// Returns \c true if the given residual arc has the opposite orientation
2800    /// than the original arc, i.e. it is a so called backward arc.
[416]2801    static bool backward(const Arc& a) {
2802      return !Undirected::direction(a);
[414]2803    }
2804
[451]2805    /// \brief Returns the forward oriented residual arc.
[414]2806    ///
[451]2807    /// Returns the forward oriented residual arc related to the given
2808    /// arc of the underlying digraph.
[416]2809    static Arc forward(const typename Digraph::Arc& a) {
2810      return Undirected::direct(a, true);
[414]2811    }
2812
[451]2813    /// \brief Returns the backward oriented residual arc.
[414]2814    ///
[451]2815    /// Returns the backward oriented residual arc related to the given
2816    /// arc of the underlying digraph.
[416]2817    static Arc backward(const typename Digraph::Arc& a) {
2818      return Undirected::direct(a, false);
[414]2819    }
2820
2821    /// \brief Residual capacity map.
2822    ///
[451]2823    /// This map adaptor class can be used for obtaining the residual
2824    /// capacities as an arc map of the residual digraph.
2825    /// Its value type is inherited from the capacity map.
[416]2826    class ResidualCapacity {
[414]2827    protected:
2828      const Adaptor* _adaptor;
2829    public:
[451]2830      /// The key type of the map
[414]2831      typedef Arc Key;
[451]2832      /// The value type of the map
[453]2833      typedef typename CapacityMap::Value Value;
[414]2834
[416]2835      /// Constructor
[512]2836      ResidualCapacity(const ResidualDigraph<DGR, CM, FM, TL>& adaptor)
2837        : _adaptor(&adaptor) {}
[416]2838
[451]2839      /// Returns the value associated with the given residual arc
[416]2840      Value operator[](const Arc& a) const {
2841        return _adaptor->residualCapacity(a);
[414]2842      }
[416]2843
[414]2844    };
2845
[450]2846    /// \brief Returns a residual capacity map
2847    ///
2848    /// This function just returns a residual capacity map.
2849    ResidualCapacity residualCapacity() const {
2850      return ResidualCapacity(*this);
2851    }
2852
[414]2853  };
2854
[450]2855  /// \brief Returns a (read-only) Residual adaptor
2856  ///
[512]2857  /// This function just returns a (read-only) \ref ResidualDigraph adaptor.
[450]2858  /// \ingroup graph_adaptors
[512]2859  /// \relates ResidualDigraph
2860    template<typename DGR, typename CM, typename FM>
2861  ResidualDigraph<DGR, CM, FM>
2862  residualDigraph(const DGR& digraph, const CM& capacity_map, FM& flow_map) {
2863    return ResidualDigraph<DGR, CM, FM> (digraph, capacity_map, flow_map);
[450]2864  }
2865
2866
[512]2867  template <typename DGR>
[416]2868  class SplitNodesBase {
[414]2869  public:
2870
[512]2871    typedef DGR Digraph;
2872    typedef DigraphAdaptorBase<const DGR> Parent;
[416]2873    typedef SplitNodesBase Adaptor;
[414]2874
[512]2875    typedef typename DGR::Node DigraphNode;
2876    typedef typename DGR::Arc DigraphArc;
[414]2877
2878    class Node;
2879    class Arc;
2880
2881  private:
2882
2883    template <typename T> class NodeMapBase;
2884    template <typename T> class ArcMapBase;
2885
2886  public:
[416]2887
[414]2888    class Node : public DigraphNode {
[416]2889      friend class SplitNodesBase;
[414]2890      template <typename T> friend class NodeMapBase;
2891    private:
2892
2893      bool _in;
2894      Node(DigraphNode node, bool in)
[416]2895        : DigraphNode(node), _in(in) {}
2896
[414]2897    public:
2898
2899      Node() {}
2900      Node(Invalid) : DigraphNode(INVALID), _in(true) {}
2901
2902      bool operator==(const Node& node) const {
[416]2903        return DigraphNode::operator==(node) && _in == node._in;
[414]2904      }
[416]2905
[414]2906      bool operator!=(const Node& node) const {
[416]2907        return !(*this == node);
[414]2908      }
[416]2909
[414]2910      bool operator<(const Node& node) const {
[416]2911        return DigraphNode::operator<(node) ||
2912          (DigraphNode::operator==(node) && _in < node._in);
[414]2913      }
2914    };
2915
2916    class Arc {
[416]2917      friend class SplitNodesBase;
[414]2918      template <typename T> friend class ArcMapBase;
2919    private:
2920      typedef BiVariant<DigraphArc, DigraphNode> ArcImpl;
2921
2922      explicit Arc(const DigraphArc& arc) : _item(arc) {}
2923      explicit Arc(const DigraphNode& node) : _item(node) {}
[416]2924
[414]2925      ArcImpl _item;
2926
2927    public:
2928      Arc() {}
2929      Arc(Invalid) : _item(DigraphArc(INVALID)) {}
2930
2931      bool operator==(const Arc& arc) const {
2932        if (_item.firstState()) {
2933          if (arc._item.firstState()) {
2934            return _item.first() == arc._item.first();
2935          }
2936        } else {
2937          if (arc._item.secondState()) {
2938            return _item.second() == arc._item.second();
2939          }
2940        }
2941        return false;
2942      }
[416]2943
[414]2944      bool operator!=(const Arc& arc) const {
[416]2945        return !(*this == arc);
[414]2946      }
[416]2947
[414]2948      bool operator<(const Arc& arc) const {
2949        if (_item.firstState()) {
2950          if (arc._item.firstState()) {
2951            return _item.first() < arc._item.first();
2952          }
2953          return false;
2954        } else {
2955          if (arc._item.secondState()) {
2956            return _item.second() < arc._item.second();
2957          }
2958          return true;
2959        }
2960      }
2961
2962      operator DigraphArc() const { return _item.first(); }
2963      operator DigraphNode() const { return _item.second(); }
2964
2965    };
2966
2967    void first(Node& n) const {
2968      _digraph->first(n);
2969      n._in = true;
2970    }
2971
2972    void next(Node& n) const {
2973      if (n._in) {
[416]2974        n._in = false;
[414]2975      } else {
[416]2976        n._in = true;
2977        _digraph->next(n);
[414]2978      }
2979    }
2980
2981    void first(Arc& e) const {
2982      e._item.setSecond();
2983      _digraph->first(e._item.second());
2984      if (e._item.second() == INVALID) {
2985        e._item.setFirst();
[416]2986        _digraph->first(e._item.first());
[414]2987      }
2988    }
2989
2990    void next(Arc& e) const {
2991      if (e._item.secondState()) {
[416]2992        _digraph->next(e._item.second());
[414]2993        if (e._item.second() == INVALID) {
2994          e._item.setFirst();
2995          _digraph->first(e._item.first());
2996        }
2997      } else {
[416]2998        _digraph->next(e._item.first());
2999      }
[414]3000    }
3001
3002    void firstOut(Arc& e, const Node& n) const {
3003      if (n._in) {
3004        e._item.setSecond(n);
3005      } else {
3006        e._item.setFirst();
[416]3007        _digraph->firstOut(e._item.first(), n);
[414]3008      }
3009    }
3010
3011    void nextOut(Arc& e) const {
3012      if (!e._item.firstState()) {
[416]3013        e._item.setFirst(INVALID);
[414]3014      } else {
[416]3015        _digraph->nextOut(e._item.first());
3016      }
[414]3017    }
3018
3019    void firstIn(Arc& e, const Node& n) const {
3020      if (!n._in) {
[416]3021        e._item.setSecond(n);
[414]3022      } else {
3023        e._item.setFirst();
[416]3024        _digraph->firstIn(e._item.first(), n);
[414]3025      }
3026    }
3027
3028    void nextIn(Arc& e) const {
3029      if (!e._item.firstState()) {
[416]3030        e._item.setFirst(INVALID);
[414]3031      } else {
[416]3032        _digraph->nextIn(e._item.first());
[414]3033      }
3034    }
3035
3036    Node source(const Arc& e) const {
3037      if (e._item.firstState()) {
[416]3038        return Node(_digraph->source(e._item.first()), false);
[414]3039      } else {
[416]3040        return Node(e._item.second(), true);
[414]3041      }
3042    }
3043
3044    Node target(const Arc& e) const {
3045      if (e._item.firstState()) {
[416]3046        return Node(_digraph->target(e._item.first()), true);
[414]3047      } else {
[416]3048        return Node(e._item.second(), false);
[414]3049      }
3050    }
3051
3052    int id(const Node& n) const {
3053      return (_digraph->id(n) << 1) | (n._in ? 0 : 1);
3054    }
3055    Node nodeFromId(int ix) const {
3056      return Node(_digraph->nodeFromId(ix >> 1), (ix & 1) == 0);
3057    }
3058    int maxNodeId() const {
3059      return 2 * _digraph->maxNodeId() + 1;
3060    }
3061
3062    int id(const Arc& e) const {
3063      if (e._item.firstState()) {
3064        return _digraph->id(e._item.first()) << 1;
3065      } else {
3066        return (_digraph->id(e._item.second()) << 1) | 1;
3067      }
3068    }
3069    Arc arcFromId(int ix) const {
3070      if ((ix & 1) == 0) {
3071        return Arc(_digraph->arcFromId(ix >> 1));
3072      } else {
3073        return Arc(_digraph->nodeFromId(ix >> 1));
3074      }
3075    }
3076    int maxArcId() const {
[416]3077      return std::max(_digraph->maxNodeId() << 1,
[414]3078                      (_digraph->maxArcId() << 1) | 1);
3079    }
3080
3081    static bool inNode(const Node& n) {
3082      return n._in;
3083    }
3084
3085    static bool outNode(const Node& n) {
3086      return !n._in;
3087    }
3088
3089    static bool origArc(const Arc& e) {
3090      return e._item.firstState();
3091    }
3092
3093    static bool bindArc(const Arc& e) {
3094      return e._item.secondState();
3095    }
3096
3097    static Node inNode(const DigraphNode& n) {
3098      return Node(n, true);
3099    }
3100
3101    static Node outNode(const DigraphNode& n) {
3102      return Node(n, false);
3103    }
3104
3105    static Arc arc(const DigraphNode& n) {
3106      return Arc(n);
3107    }
3108
3109    static Arc arc(const DigraphArc& e) {
3110      return Arc(e);
3111    }
3112
3113    typedef True NodeNumTag;
3114    int nodeNum() const {
3115      return  2 * countNodes(*_digraph);
3116    }
3117
[446]3118    typedef True ArcNumTag;
[414]3119    int arcNum() const {
3120      return countArcs(*_digraph) + countNodes(*_digraph);
3121    }
3122
[446]3123    typedef True FindArcTag;
[416]3124    Arc findArc(const Node& u, const Node& v,
3125                const Arc& prev = INVALID) const {
[449]3126      if (inNode(u) && outNode(v)) {
3127        if (static_cast<const DigraphNode&>(u) ==
3128            static_cast<const DigraphNode&>(v) && prev == INVALID) {
3129          return Arc(u);
[414]3130        }
[449]3131      }
3132      else if (outNode(u) && inNode(v)) {
3133        return Arc(::lemon::findArc(*_digraph, u, v, prev));
[414]3134      }
3135      return INVALID;
3136    }
3137
3138  private:
[416]3139
[512]3140    template <typename V>
[416]3141    class NodeMapBase
[512]3142      : public MapTraits<typename Parent::template NodeMap<V> > {
3143      typedef typename Parent::template NodeMap<V> NodeImpl;
[414]3144    public:
3145      typedef Node Key;
[512]3146      typedef V Value;
[449]3147      typedef typename MapTraits<NodeImpl>::ReferenceMapTag ReferenceMapTag;
3148      typedef typename MapTraits<NodeImpl>::ReturnValue ReturnValue;
3149      typedef typename MapTraits<NodeImpl>::ConstReturnValue ConstReturnValue;
3150      typedef typename MapTraits<NodeImpl>::ReturnValue Reference;
3151      typedef typename MapTraits<NodeImpl>::ConstReturnValue ConstReference;
[416]3152
[512]3153      NodeMapBase(const SplitNodesBase<DGR>& adaptor)
[416]3154        : _in_map(*adaptor._digraph), _out_map(*adaptor._digraph) {}
[512]3155      NodeMapBase(const SplitNodesBase<DGR>& adaptor, const V& value)
[416]3156        : _in_map(*adaptor._digraph, value),
3157          _out_map(*adaptor._digraph, value) {}
[414]3158
[512]3159      void set(const Node& key, const V& val) {
3160        if (SplitNodesBase<DGR>::inNode(key)) { _in_map.set(key, val); }
[416]3161        else {_out_map.set(key, val); }
[414]3162      }
[416]3163
[449]3164      ReturnValue operator[](const Node& key) {
[512]3165        if (SplitNodesBase<DGR>::inNode(key)) { return _in_map[key]; }
[416]3166        else { return _out_map[key]; }
[414]3167      }
3168
[449]3169      ConstReturnValue operator[](const Node& key) const {
[416]3170        if (Adaptor::inNode(key)) { return _in_map[key]; }
3171        else { return _out_map[key]; }
[414]3172      }
3173
3174    private:
3175      NodeImpl _in_map, _out_map;
3176    };
3177
[512]3178    template <typename V>
[416]3179    class ArcMapBase
[512]3180      : public MapTraits<typename Parent::template ArcMap<V> > {
3181      typedef typename Parent::template ArcMap<V> ArcImpl;
3182      typedef typename Parent::template NodeMap<V> NodeImpl;
[414]3183    public:
3184      typedef Arc Key;
[512]3185      typedef V Value;
[449]3186      typedef typename MapTraits<ArcImpl>::ReferenceMapTag ReferenceMapTag;
3187      typedef typename MapTraits<ArcImpl>::ReturnValue ReturnValue;
3188      typedef typename MapTraits<ArcImpl>::ConstReturnValue ConstReturnValue;
3189      typedef typename MapTraits<ArcImpl>::ReturnValue Reference;
3190      typedef typename MapTraits<ArcImpl>::ConstReturnValue ConstReference;
[414]3191
[512]3192      ArcMapBase(const SplitNodesBase<DGR>& adaptor)
[416]3193        : _arc_map(*adaptor._digraph), _node_map(*adaptor._digraph) {}
[512]3194      ArcMapBase(const SplitNodesBase<DGR>& adaptor, const V& value)
[416]3195        : _arc_map(*adaptor._digraph, value),
3196          _node_map(*adaptor._digraph, value) {}
[414]3197
[512]3198      void set(const Arc& key, const V& val) {
3199        if (SplitNodesBase<DGR>::origArc(key)) {
[516]3200          _arc_map.set(static_cast<const DigraphArc&>(key), val);
[414]3201        } else {
[516]3202          _node_map.set(static_cast<const DigraphNode&>(key), val);
[414]3203        }
3204      }
[416]3205
[449]3206      ReturnValue operator[](const Arc& key) {
[512]3207        if (SplitNodesBase<DGR>::origArc(key)) {
[516]3208          return _arc_map[static_cast<const DigraphArc&>(key)];
[414]3209        } else {
[516]3210          return _node_map[static_cast<const DigraphNode&>(key)];
[414]3211        }
3212      }
3213
[449]3214      ConstReturnValue operator[](const Arc& key) const {
[512]3215        if (SplitNodesBase<DGR>::origArc(key)) {
[516]3216          return _arc_map[static_cast<const DigraphArc&>(key)];
[414]3217        } else {
[516]3218          return _node_map[static_cast<const DigraphNode&>(key)];
[414]3219        }
3220      }
3221
3222    private:
3223      ArcImpl _arc_map;
3224      NodeImpl _node_map;
3225    };
3226
3227  public:
3228
[512]3229    template <typename V>
[416]3230    class NodeMap
[512]3231      : public SubMapExtender<SplitNodesBase<DGR>, NodeMapBase<V> >
[414]3232    {
3233    public:
[512]3234      typedef V Value;
3235      typedef SubMapExtender<SplitNodesBase<DGR>, NodeMapBase<Value> > Parent;
3236
3237      NodeMap(const SplitNodesBase<DGR>& adaptor)
[416]3238        : Parent(adaptor) {}
3239
[512]3240      NodeMap(const SplitNodesBase<DGR>& adaptor, const V& value)
[416]3241        : Parent(adaptor, value) {}
3242
[414]3243    private:
3244      NodeMap& operator=(const NodeMap& cmap) {
[416]3245        return operator=<NodeMap>(cmap);
[414]3246      }
[416]3247
[414]3248      template <typename CMap>
3249      NodeMap& operator=(const CMap& cmap) {
3250        Parent::operator=(cmap);
[416]3251        return *this;
[414]3252      }
3253    };
3254
[512]3255    template <typename V>
[416]3256    class ArcMap
[512]3257      : public SubMapExtender<SplitNodesBase<DGR>, ArcMapBase<V> >
[414]3258    {
3259    public:
[512]3260      typedef V Value;
3261      typedef SubMapExtender<SplitNodesBase<DGR>, ArcMapBase<Value> > Parent;
3262
3263      ArcMap(const SplitNodesBase<DGR>& adaptor)
[416]3264        : Parent(adaptor) {}
3265
[512]3266      ArcMap(const SplitNodesBase<DGR>& adaptor, const V& value)
[416]3267        : Parent(adaptor, value) {}
3268
[414]3269    private:
3270      ArcMap& operator=(const ArcMap& cmap) {
[416]3271        return operator=<ArcMap>(cmap);
[414]3272      }
[416]3273
[414]3274      template <typename CMap>
3275      ArcMap& operator=(const CMap& cmap) {
3276        Parent::operator=(cmap);
[416]3277        return *this;
[414]3278      }
3279    };
3280
3281  protected:
3282
[416]3283    SplitNodesBase() : _digraph(0) {}
[414]3284
[512]3285    DGR* _digraph;
3286
3287    void initialize(Digraph& digraph) {
[414]3288      _digraph = &digraph;
3289    }
[416]3290
[414]3291  };
3292
3293  /// \ingroup graph_adaptors
3294  ///
[451]3295  /// \brief Adaptor class for splitting the nodes of a digraph.
[416]3296  ///
[451]3297  /// SplitNodes adaptor can be used for splitting each node into an
3298  /// \e in-node and an \e out-node in a digraph. Formaly, the adaptor
3299  /// replaces each node \f$ u \f$ in the digraph with two nodes,
3300  /// namely node \f$ u_{in} \f$ and node \f$ u_{out} \f$.
3301  /// If there is a \f$ (v, u) \f$ arc in the original digraph, then the
3302  /// new target of the arc will be \f$ u_{in} \f$ and similarly the
3303  /// source of each original \f$ (u, v) \f$ arc will be \f$ u_{out} \f$.
3304  /// The adaptor adds an additional \e bind \e arc from \f$ u_{in} \f$
3305  /// to \f$ u_{out} \f$ for each node \f$ u \f$ of the original digraph.
[414]3306  ///
[451]3307  /// The aim of this class is running an algorithm with respect to node
3308  /// costs or capacities if the algorithm considers only arc costs or
3309  /// capacities directly.
3310  /// In this case you can use \c SplitNodes adaptor, and set the node
3311  /// costs/capacities of the original digraph to the \e bind \e arcs
3312  /// in the adaptor.
[414]3313  ///
[512]3314  /// \tparam DGR The type of the adapted digraph.
[451]3315  /// It must conform to the \ref concepts::Digraph "Digraph" concept.
3316  /// It is implicitly \c const.
3317  ///
3318  /// \note The \c Node type of this adaptor is converible to the \c Node
3319  /// type of the adapted digraph.
[512]3320  template <typename DGR>
[453]3321#ifdef DOXYGEN
3322  class SplitNodes {
3323#else
[416]3324  class SplitNodes
[512]3325    : public DigraphAdaptorExtender<SplitNodesBase<const DGR> > {
[453]3326#endif
[414]3327  public:
[512]3328    typedef DGR Digraph;
3329    typedef DigraphAdaptorExtender<SplitNodesBase<const DGR> > Parent;
3330
3331    typedef typename DGR::Node DigraphNode;
3332    typedef typename DGR::Arc DigraphArc;
[415]3333
[414]3334    typedef typename Parent::Node Node;
3335    typedef typename Parent::Arc Arc;
3336
[451]3337    /// \brief Constructor
[414]3338    ///
3339    /// Constructor of the adaptor.
[512]3340    SplitNodes(const DGR& g) {
3341      Parent::initialize(g);
[414]3342    }
3343
[451]3344    /// \brief Returns \c true if the given node is an in-node.
[415]3345    ///
[451]3346    /// Returns \c true if the given node is an in-node.
[415]3347    static bool inNode(const Node& n) {
3348      return Parent::inNode(n);
3349    }
3350
[451]3351    /// \brief Returns \c true if the given node is an out-node.
[415]3352    ///
[451]3353    /// Returns \c true if the given node is an out-node.
[415]3354    static bool outNode(const Node& n) {
3355      return Parent::outNode(n);
3356    }
3357
[451]3358    /// \brief Returns \c true if the given arc is an original arc.
[415]3359    ///
[451]3360    /// Returns \c true if the given arc is one of the arcs in the
3361    /// original digraph.
[415]3362    static bool origArc(const Arc& a) {
3363      return Parent::origArc(a);
3364    }
3365
[451]3366    /// \brief Returns \c true if the given arc is a bind arc.
[415]3367    ///
[451]3368    /// Returns \c true if the given arc is a bind arc, i.e. it connects
3369    /// an in-node and an out-node.
[415]3370    static bool bindArc(const Arc& a) {
3371      return Parent::bindArc(a);
3372    }
3373
[451]3374    /// \brief Returns the in-node created from the given original node.
[415]3375    ///
[451]3376    /// Returns the in-node created from the given original node.
[415]3377    static Node inNode(const DigraphNode& n) {
3378      return Parent::inNode(n);
3379    }
3380
[451]3381    /// \brief Returns the out-node created from the given original node.
[415]3382    ///
[451]3383    /// Returns the out-node created from the given original node.
[415]3384    static Node outNode(const DigraphNode& n) {
3385      return Parent::outNode(n);
3386    }
3387
[451]3388    /// \brief Returns the bind arc that corresponds to the given
3389    /// original node.
[416]3390    ///
[451]3391    /// Returns the bind arc in the adaptor that corresponds to the given
3392    /// original node, i.e. the arc connecting the in-node and out-node
3393    /// of \c n.
[415]3394    static Arc arc(const DigraphNode& n) {
3395      return Parent::arc(n);
3396    }
3397
[451]3398    /// \brief Returns the arc that corresponds to the given original arc.
[416]3399    ///
[451]3400    /// Returns the arc in the adaptor that corresponds to the given
3401    /// original arc.
[415]3402    static Arc arc(const DigraphArc& a) {
3403      return Parent::arc(a);
3404    }
3405
[451]3406    /// \brief Node map combined from two original node maps
[414]3407    ///
[451]3408    /// This map adaptor class adapts two node maps of the original digraph
3409    /// to get a node map of the split digraph.
[559]3410    /// Its value type is inherited from the first node map type (\c IN).
3411    /// \tparam IN The type of the node map for the in-nodes.
3412    /// \tparam OUT The type of the node map for the out-nodes.
3413    template <typename IN, typename OUT>
[414]3414    class CombinedNodeMap {
3415    public:
3416
[451]3417      /// The key type of the map
[414]3418      typedef Node Key;
[451]3419      /// The value type of the map
[559]3420      typedef typename IN::Value Value;
3421
3422      typedef typename MapTraits<IN>::ReferenceMapTag ReferenceMapTag;
3423      typedef typename MapTraits<IN>::ReturnValue ReturnValue;
3424      typedef typename MapTraits<IN>::ConstReturnValue ConstReturnValue;
3425      typedef typename MapTraits<IN>::ReturnValue Reference;
3426      typedef typename MapTraits<IN>::ConstReturnValue ConstReference;
[449]3427
[451]3428      /// Constructor
[559]3429      CombinedNodeMap(IN& in_map, OUT& out_map)
[416]3430        : _in_map(in_map), _out_map(out_map) {}
[414]3431
[451]3432      /// Returns the value associated with the given key.
3433      Value operator[](const Key& key) const {
[512]3434        if (SplitNodesBase<const DGR>::inNode(key)) {
[451]3435          return _in_map[key];
3436        } else {
3437          return _out_map[key];
3438        }
3439      }
3440
3441      /// Returns a reference to the value associated with the given key.
[414]3442      Value& operator[](const Key& key) {
[512]3443        if (SplitNodesBase<const DGR>::inNode(key)) {
[416]3444          return _in_map[key];
3445        } else {
3446          return _out_map[key];
3447        }
[414]3448      }
3449
[451]3450      /// Sets the value associated with the given key.
[414]3451      void set(const Key& key, const Value& value) {
[512]3452        if (SplitNodesBase<const DGR>::inNode(key)) {
[416]3453          _in_map.set(key, value);
3454        } else {
3455          _out_map.set(key, value);
3456        }
[414]3457      }
[416]3458
[414]3459    private:
[416]3460
[559]3461      IN& _in_map;
3462      OUT& _out_map;
[416]3463
[414]3464    };
3465
3466
[451]3467    /// \brief Returns a combined node map
[416]3468    ///
[451]3469    /// This function just returns a combined node map.
[559]3470    template <typename IN, typename OUT>
3471    static CombinedNodeMap<IN, OUT>
3472    combinedNodeMap(IN& in_map, OUT& out_map) {
3473      return CombinedNodeMap<IN, OUT>(in_map, out_map);
[414]3474    }
3475
[559]3476    template <typename IN, typename OUT>
3477    static CombinedNodeMap<const IN, OUT>
3478    combinedNodeMap(const IN& in_map, OUT& out_map) {
3479      return CombinedNodeMap<const IN, OUT>(in_map, out_map);
[414]3480    }
3481
[559]3482    template <typename IN, typename OUT>
3483    static CombinedNodeMap<IN, const OUT>
3484    combinedNodeMap(IN& in_map, const OUT& out_map) {
3485      return CombinedNodeMap<IN, const OUT>(in_map, out_map);
[414]3486    }
3487
[559]3488    template <typename IN, typename OUT>
3489    static CombinedNodeMap<const IN, const OUT>
3490    combinedNodeMap(const IN& in_map, const OUT& out_map) {
3491      return CombinedNodeMap<const IN, const OUT>(in_map, out_map);
[414]3492    }
3493
[451]3494    /// \brief Arc map combined from an arc map and a node map of the
3495    /// original digraph.
[414]3496    ///
[451]3497    /// This map adaptor class adapts an arc map and a node map of the
3498    /// original digraph to get an arc map of the split digraph.
[559]3499    /// Its value type is inherited from the original arc map type (\c AM).
3500    /// \tparam AM The type of the arc map.
3501    /// \tparam NM the type of the node map.
3502    template <typename AM, typename NM>
[414]3503    class CombinedArcMap {
3504    public:
[416]3505
[451]3506      /// The key type of the map
[414]3507      typedef Arc Key;
[451]3508      /// The value type of the map
[559]3509      typedef typename AM::Value Value;
3510
3511      typedef typename MapTraits<AM>::ReferenceMapTag ReferenceMapTag;
3512      typedef typename MapTraits<AM>::ReturnValue ReturnValue;
3513      typedef typename MapTraits<AM>::ConstReturnValue ConstReturnValue;
3514      typedef typename MapTraits<AM>::ReturnValue Reference;
3515      typedef typename MapTraits<AM>::ConstReturnValue ConstReference;
[449]3516
[451]3517      /// Constructor
[559]3518      CombinedArcMap(AM& arc_map, NM& node_map)
[416]3519        : _arc_map(arc_map), _node_map(node_map) {}
[414]3520
[451]3521      /// Returns the value associated with the given key.
3522      Value operator[](const Key& arc) const {
[512]3523        if (SplitNodesBase<const DGR>::origArc(arc)) {
[451]3524          return _arc_map[arc];
3525        } else {
3526          return _node_map[arc];
3527        }
3528      }
3529
3530      /// Returns a reference to the value associated with the given key.
3531      Value& operator[](const Key& arc) {
[512]3532        if (SplitNodesBase<const DGR>::origArc(arc)) {
[451]3533          return _arc_map[arc];
3534        } else {
3535          return _node_map[arc];
3536        }
3537      }
3538
3539      /// Sets the value associated with the given key.
[414]3540      void set(const Arc& arc, const Value& val) {
[512]3541        if (SplitNodesBase<const DGR>::origArc(arc)) {
[416]3542          _arc_map.set(arc, val);
3543        } else {
3544          _node_map.set(arc, val);
3545        }
[414]3546      }
3547
3548    private:
[559]3549
3550      AM& _arc_map;
3551      NM& _node_map;
3552
[414]3553    };
[416]3554
[451]3555    /// \brief Returns a combined arc map
[416]3556    ///
[451]3557    /// This function just returns a combined arc map.
[453]3558    template <typename ArcMap, typename NodeMap>
3559    static CombinedArcMap<ArcMap, NodeMap>
3560    combinedArcMap(ArcMap& arc_map, NodeMap& node_map) {
3561      return CombinedArcMap<ArcMap, NodeMap>(arc_map, node_map);
[414]3562    }
3563
[453]3564    template <typename ArcMap, typename NodeMap>
3565    static CombinedArcMap<const ArcMap, NodeMap>
3566    combinedArcMap(const ArcMap& arc_map, NodeMap& node_map) {
3567      return CombinedArcMap<const ArcMap, NodeMap>(arc_map, node_map);
[414]3568    }
3569
[453]3570    template <typename ArcMap, typename NodeMap>
3571    static CombinedArcMap<ArcMap, const NodeMap>
3572    combinedArcMap(ArcMap& arc_map, const NodeMap& node_map) {
3573      return CombinedArcMap<ArcMap, const NodeMap>(arc_map, node_map);
[414]3574    }
3575
[453]3576    template <typename ArcMap, typename NodeMap>
3577    static CombinedArcMap<const ArcMap, const NodeMap>
3578    combinedArcMap(const ArcMap& arc_map, const NodeMap& node_map) {
3579      return CombinedArcMap<const ArcMap, const NodeMap>(arc_map, node_map);
[414]3580    }
3581
3582  };
3583
[451]3584  /// \brief Returns a (read-only) SplitNodes adaptor
[414]3585  ///
[451]3586  /// This function just returns a (read-only) \ref SplitNodes adaptor.
3587  /// \ingroup graph_adaptors
3588  /// \relates SplitNodes
[512]3589  template<typename DGR>
3590  SplitNodes<DGR>
3591  splitNodes(const DGR& digraph) {
3592    return SplitNodes<DGR>(digraph);
[414]3593  }
3594
[512]3595#undef LEMON_SCOPE_FIX
3596
[414]3597} //namespace lemon
3598
[416]3599#endif //LEMON_ADAPTORS_H
Note: See TracBrowser for help on using the repository browser.