COIN-OR::LEMON - Graph Library

source: lemon-1.2/lemon/adaptors.h @ 642:111698359429

Last change on this file since 642:111698359429 was 617:4137ef9aacc6, checked in by Peter Kovacs <kpeter@…>, 15 years ago

Fix and uniform the usage of Graph and Parent typedefs (#268)

  • Rename Graph typedefs to GraphType? in the implementation of graph maps and MapExtender? to prevent conflicts (especially using VS). They are not public.
  • Make Parent typedefs private in all classes.
  • Replace Digraph with Graph in some places (fix faulty renamings of the script).
  • Use Graph and Digraph typedefs (more) consequently.
File size: 109.7 KB
Line 
1/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 *
3 * This file is a part of LEMON, a generic C++ optimization library.
4 *
5 * Copyright (C) 2003-2009
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 *
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
12 *
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
15 * purpose.
16 *
17 */
18
19#ifndef LEMON_ADAPTORS_H
20#define LEMON_ADAPTORS_H
21
22/// \ingroup graph_adaptors
23/// \file
24/// \brief Adaptor classes for digraphs and graphs
25///
26/// This file contains several useful adaptors for digraphs and graphs.
27
28#include <lemon/core.h>
29#include <lemon/maps.h>
30#include <lemon/bits/variant.h>
31
32#include <lemon/bits/graph_adaptor_extender.h>
33#include <lemon/bits/map_extender.h>
34#include <lemon/tolerance.h>
35
36#include <algorithm>
37
38namespace lemon {
39
40#ifdef _MSC_VER
41#define LEMON_SCOPE_FIX(OUTER, NESTED) OUTER::NESTED
42#else
43#define LEMON_SCOPE_FIX(OUTER, NESTED) typename OUTER::template NESTED
44#endif
45
46  template<typename DGR>
47  class DigraphAdaptorBase {
48  public:
49    typedef DGR Digraph;
50    typedef DigraphAdaptorBase Adaptor;
51
52  protected:
53    DGR* _digraph;
54    DigraphAdaptorBase() : _digraph(0) { }
55    void initialize(DGR& digraph) { _digraph = &digraph; }
56
57  public:
58    DigraphAdaptorBase(DGR& digraph) : _digraph(&digraph) { }
59
60    typedef typename DGR::Node Node;
61    typedef typename DGR::Arc Arc;
62
63    void first(Node& i) const { _digraph->first(i); }
64    void first(Arc& i) const { _digraph->first(i); }
65    void firstIn(Arc& i, const Node& n) const { _digraph->firstIn(i, n); }
66    void firstOut(Arc& i, const Node& n ) const { _digraph->firstOut(i, n); }
67
68    void next(Node& i) const { _digraph->next(i); }
69    void next(Arc& i) const { _digraph->next(i); }
70    void nextIn(Arc& i) const { _digraph->nextIn(i); }
71    void nextOut(Arc& i) const { _digraph->nextOut(i); }
72
73    Node source(const Arc& a) const { return _digraph->source(a); }
74    Node target(const Arc& a) const { return _digraph->target(a); }
75
76    typedef NodeNumTagIndicator<DGR> NodeNumTag;
77    int nodeNum() const { return _digraph->nodeNum(); }
78
79    typedef ArcNumTagIndicator<DGR> ArcNumTag;
80    int arcNum() const { return _digraph->arcNum(); }
81
82    typedef FindArcTagIndicator<DGR> FindArcTag;
83    Arc findArc(const Node& u, const Node& v, const Arc& prev = INVALID) const {
84      return _digraph->findArc(u, v, prev);
85    }
86
87    Node addNode() { return _digraph->addNode(); }
88    Arc addArc(const Node& u, const Node& v) { return _digraph->addArc(u, v); }
89
90    void erase(const Node& n) { _digraph->erase(n); }
91    void erase(const Arc& a) { _digraph->erase(a); }
92
93    void clear() { _digraph->clear(); }
94
95    int id(const Node& n) const { return _digraph->id(n); }
96    int id(const Arc& a) const { return _digraph->id(a); }
97
98    Node nodeFromId(int ix) const { return _digraph->nodeFromId(ix); }
99    Arc arcFromId(int ix) const { return _digraph->arcFromId(ix); }
100
101    int maxNodeId() const { return _digraph->maxNodeId(); }
102    int maxArcId() const { return _digraph->maxArcId(); }
103
104    typedef typename ItemSetTraits<DGR, Node>::ItemNotifier NodeNotifier;
105    NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); }
106
107    typedef typename ItemSetTraits<DGR, Arc>::ItemNotifier ArcNotifier;
108    ArcNotifier& notifier(Arc) const { return _digraph->notifier(Arc()); }
109
110    template <typename V>
111    class NodeMap : public DGR::template NodeMap<V> {
112      typedef typename DGR::template NodeMap<V> Parent;
113
114    public:
115      explicit NodeMap(const Adaptor& adaptor)
116        : Parent(*adaptor._digraph) {}
117      NodeMap(const Adaptor& adaptor, const V& value)
118        : Parent(*adaptor._digraph, value) { }
119
120    private:
121      NodeMap& operator=(const NodeMap& cmap) {
122        return operator=<NodeMap>(cmap);
123      }
124
125      template <typename CMap>
126      NodeMap& operator=(const CMap& cmap) {
127        Parent::operator=(cmap);
128        return *this;
129      }
130
131    };
132
133    template <typename V>
134    class ArcMap : public DGR::template ArcMap<V> {
135      typedef typename DGR::template ArcMap<V> Parent;
136
137    public:
138      explicit ArcMap(const DigraphAdaptorBase<DGR>& adaptor)
139        : Parent(*adaptor._digraph) {}
140      ArcMap(const DigraphAdaptorBase<DGR>& adaptor, const V& value)
141        : Parent(*adaptor._digraph, value) {}
142
143    private:
144      ArcMap& operator=(const ArcMap& cmap) {
145        return operator=<ArcMap>(cmap);
146      }
147
148      template <typename CMap>
149      ArcMap& operator=(const CMap& cmap) {
150        Parent::operator=(cmap);
151        return *this;
152      }
153
154    };
155
156  };
157
158  template<typename GR>
159  class GraphAdaptorBase {
160  public:
161    typedef GR Graph;
162
163  protected:
164    GR* _graph;
165
166    GraphAdaptorBase() : _graph(0) {}
167
168    void initialize(GR& graph) { _graph = &graph; }
169
170  public:
171    GraphAdaptorBase(GR& graph) : _graph(&graph) {}
172
173    typedef typename GR::Node Node;
174    typedef typename GR::Arc Arc;
175    typedef typename GR::Edge Edge;
176
177    void first(Node& i) const { _graph->first(i); }
178    void first(Arc& i) const { _graph->first(i); }
179    void first(Edge& i) const { _graph->first(i); }
180    void firstIn(Arc& i, const Node& n) const { _graph->firstIn(i, n); }
181    void firstOut(Arc& i, const Node& n ) const { _graph->firstOut(i, n); }
182    void firstInc(Edge &i, bool &d, const Node &n) const {
183      _graph->firstInc(i, d, n);
184    }
185
186    void next(Node& i) const { _graph->next(i); }
187    void next(Arc& i) const { _graph->next(i); }
188    void next(Edge& i) const { _graph->next(i); }
189    void nextIn(Arc& i) const { _graph->nextIn(i); }
190    void nextOut(Arc& i) const { _graph->nextOut(i); }
191    void nextInc(Edge &i, bool &d) const { _graph->nextInc(i, d); }
192
193    Node u(const Edge& e) const { return _graph->u(e); }
194    Node v(const Edge& e) const { return _graph->v(e); }
195
196    Node source(const Arc& a) const { return _graph->source(a); }
197    Node target(const Arc& a) const { return _graph->target(a); }
198
199    typedef NodeNumTagIndicator<Graph> NodeNumTag;
200    int nodeNum() const { return _graph->nodeNum(); }
201
202    typedef ArcNumTagIndicator<Graph> ArcNumTag;
203    int arcNum() const { return _graph->arcNum(); }
204
205    typedef EdgeNumTagIndicator<Graph> EdgeNumTag;
206    int edgeNum() const { return _graph->edgeNum(); }
207
208    typedef FindArcTagIndicator<Graph> FindArcTag;
209    Arc findArc(const Node& u, const Node& v,
210                const Arc& prev = INVALID) const {
211      return _graph->findArc(u, v, prev);
212    }
213
214    typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
215    Edge findEdge(const Node& u, const Node& v,
216                  const Edge& prev = INVALID) const {
217      return _graph->findEdge(u, v, prev);
218    }
219
220    Node addNode() { return _graph->addNode(); }
221    Edge addEdge(const Node& u, const Node& v) { return _graph->addEdge(u, v); }
222
223    void erase(const Node& i) { _graph->erase(i); }
224    void erase(const Edge& i) { _graph->erase(i); }
225
226    void clear() { _graph->clear(); }
227
228    bool direction(const Arc& a) const { return _graph->direction(a); }
229    Arc direct(const Edge& e, bool d) const { return _graph->direct(e, d); }
230
231    int id(const Node& v) const { return _graph->id(v); }
232    int id(const Arc& a) const { return _graph->id(a); }
233    int id(const Edge& e) const { return _graph->id(e); }
234
235    Node nodeFromId(int ix) const { return _graph->nodeFromId(ix); }
236    Arc arcFromId(int ix) const { return _graph->arcFromId(ix); }
237    Edge edgeFromId(int ix) const { return _graph->edgeFromId(ix); }
238
239    int maxNodeId() const { return _graph->maxNodeId(); }
240    int maxArcId() const { return _graph->maxArcId(); }
241    int maxEdgeId() const { return _graph->maxEdgeId(); }
242
243    typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier;
244    NodeNotifier& notifier(Node) const { return _graph->notifier(Node()); }
245
246    typedef typename ItemSetTraits<GR, Arc>::ItemNotifier ArcNotifier;
247    ArcNotifier& notifier(Arc) const { return _graph->notifier(Arc()); }
248
249    typedef typename ItemSetTraits<GR, Edge>::ItemNotifier EdgeNotifier;
250    EdgeNotifier& notifier(Edge) const { return _graph->notifier(Edge()); }
251
252    template <typename V>
253    class NodeMap : public GR::template NodeMap<V> {
254      typedef typename GR::template NodeMap<V> Parent;
255
256    public:
257      explicit NodeMap(const GraphAdaptorBase<GR>& adapter)
258        : Parent(*adapter._graph) {}
259      NodeMap(const GraphAdaptorBase<GR>& adapter, const V& value)
260        : Parent(*adapter._graph, value) {}
261
262    private:
263      NodeMap& operator=(const NodeMap& cmap) {
264        return operator=<NodeMap>(cmap);
265      }
266
267      template <typename CMap>
268      NodeMap& operator=(const CMap& cmap) {
269        Parent::operator=(cmap);
270        return *this;
271      }
272
273    };
274
275    template <typename V>
276    class ArcMap : public GR::template ArcMap<V> {
277      typedef typename GR::template ArcMap<V> Parent;
278
279    public:
280      explicit ArcMap(const GraphAdaptorBase<GR>& adapter)
281        : Parent(*adapter._graph) {}
282      ArcMap(const GraphAdaptorBase<GR>& adapter, const V& value)
283        : Parent(*adapter._graph, value) {}
284
285    private:
286      ArcMap& operator=(const ArcMap& cmap) {
287        return operator=<ArcMap>(cmap);
288      }
289
290      template <typename CMap>
291      ArcMap& operator=(const CMap& cmap) {
292        Parent::operator=(cmap);
293        return *this;
294      }
295    };
296
297    template <typename V>
298    class EdgeMap : public GR::template EdgeMap<V> {
299      typedef typename GR::template EdgeMap<V> Parent;
300
301    public:
302      explicit EdgeMap(const GraphAdaptorBase<GR>& adapter)
303        : Parent(*adapter._graph) {}
304      EdgeMap(const GraphAdaptorBase<GR>& adapter, const V& value)
305        : Parent(*adapter._graph, value) {}
306
307    private:
308      EdgeMap& operator=(const EdgeMap& cmap) {
309        return operator=<EdgeMap>(cmap);
310      }
311
312      template <typename CMap>
313      EdgeMap& operator=(const CMap& cmap) {
314        Parent::operator=(cmap);
315        return *this;
316      }
317    };
318
319  };
320
321  template <typename DGR>
322  class ReverseDigraphBase : public DigraphAdaptorBase<DGR> {
323    typedef DigraphAdaptorBase<DGR> Parent;
324  public:
325    typedef DGR Digraph;
326  protected:
327    ReverseDigraphBase() : Parent() { }
328  public:
329    typedef typename Parent::Node Node;
330    typedef typename Parent::Arc Arc;
331
332    void firstIn(Arc& a, const Node& n) const { Parent::firstOut(a, n); }
333    void firstOut(Arc& a, const Node& n ) const { Parent::firstIn(a, n); }
334
335    void nextIn(Arc& a) const { Parent::nextOut(a); }
336    void nextOut(Arc& a) const { Parent::nextIn(a); }
337
338    Node source(const Arc& a) const { return Parent::target(a); }
339    Node target(const Arc& a) const { return Parent::source(a); }
340
341    Arc addArc(const Node& u, const Node& v) { return Parent::addArc(v, u); }
342
343    typedef FindArcTagIndicator<DGR> FindArcTag;
344    Arc findArc(const Node& u, const Node& v,
345                const Arc& prev = INVALID) const {
346      return Parent::findArc(v, u, prev);
347    }
348
349  };
350
351  /// \ingroup graph_adaptors
352  ///
353  /// \brief Adaptor class for reversing the orientation of the arcs in
354  /// a digraph.
355  ///
356  /// ReverseDigraph can be used for reversing the arcs in a digraph.
357  /// It conforms to the \ref concepts::Digraph "Digraph" concept.
358  ///
359  /// The adapted digraph can also be modified through this adaptor
360  /// by adding or removing nodes or arcs, unless the \c GR template
361  /// parameter is set to be \c const.
362  ///
363  /// \tparam DGR The type of the adapted digraph.
364  /// It must conform to the \ref concepts::Digraph "Digraph" concept.
365  /// It can also be specified to be \c const.
366  ///
367  /// \note The \c Node and \c Arc types of this adaptor and the adapted
368  /// digraph are convertible to each other.
369  template<typename DGR>
370#ifdef DOXYGEN
371  class ReverseDigraph {
372#else
373  class ReverseDigraph :
374    public DigraphAdaptorExtender<ReverseDigraphBase<DGR> > {
375#endif
376    typedef DigraphAdaptorExtender<ReverseDigraphBase<DGR> > Parent;
377  public:
378    /// The type of the adapted digraph.
379    typedef DGR Digraph;
380  protected:
381    ReverseDigraph() { }
382  public:
383
384    /// \brief Constructor
385    ///
386    /// Creates a reverse digraph adaptor for the given digraph.
387    explicit ReverseDigraph(DGR& digraph) {
388      Parent::initialize(digraph);
389    }
390  };
391
392  /// \brief Returns a read-only ReverseDigraph adaptor
393  ///
394  /// This function just returns a read-only \ref ReverseDigraph adaptor.
395  /// \ingroup graph_adaptors
396  /// \relates ReverseDigraph
397  template<typename DGR>
398  ReverseDigraph<const DGR> reverseDigraph(const DGR& digraph) {
399    return ReverseDigraph<const DGR>(digraph);
400  }
401
402
403  template <typename DGR, typename NF, typename AF, bool ch = true>
404  class SubDigraphBase : public DigraphAdaptorBase<DGR> {
405    typedef DigraphAdaptorBase<DGR> Parent;
406  public:
407    typedef DGR Digraph;
408    typedef NF NodeFilterMap;
409    typedef AF ArcFilterMap;
410
411    typedef SubDigraphBase Adaptor;
412  protected:
413    NF* _node_filter;
414    AF* _arc_filter;
415    SubDigraphBase()
416      : Parent(), _node_filter(0), _arc_filter(0) { }
417
418    void initialize(DGR& digraph, NF& node_filter, AF& arc_filter) {
419      Parent::initialize(digraph);
420      _node_filter = &node_filter;
421      _arc_filter = &arc_filter;     
422    }
423
424  public:
425
426    typedef typename Parent::Node Node;
427    typedef typename Parent::Arc Arc;
428
429    void first(Node& i) const {
430      Parent::first(i);
431      while (i != INVALID && !(*_node_filter)[i]) Parent::next(i);
432    }
433
434    void first(Arc& i) const {
435      Parent::first(i);
436      while (i != INVALID && (!(*_arc_filter)[i]
437                              || !(*_node_filter)[Parent::source(i)]
438                              || !(*_node_filter)[Parent::target(i)]))
439        Parent::next(i);
440    }
441
442    void firstIn(Arc& i, const Node& n) const {
443      Parent::firstIn(i, n);
444      while (i != INVALID && (!(*_arc_filter)[i]
445                              || !(*_node_filter)[Parent::source(i)]))
446        Parent::nextIn(i);
447    }
448
449    void firstOut(Arc& i, const Node& n) const {
450      Parent::firstOut(i, n);
451      while (i != INVALID && (!(*_arc_filter)[i]
452                              || !(*_node_filter)[Parent::target(i)]))
453        Parent::nextOut(i);
454    }
455
456    void next(Node& i) const {
457      Parent::next(i);
458      while (i != INVALID && !(*_node_filter)[i]) Parent::next(i);
459    }
460
461    void next(Arc& i) const {
462      Parent::next(i);
463      while (i != INVALID && (!(*_arc_filter)[i]
464                              || !(*_node_filter)[Parent::source(i)]
465                              || !(*_node_filter)[Parent::target(i)]))
466        Parent::next(i);
467    }
468
469    void nextIn(Arc& i) const {
470      Parent::nextIn(i);
471      while (i != INVALID && (!(*_arc_filter)[i]
472                              || !(*_node_filter)[Parent::source(i)]))
473        Parent::nextIn(i);
474    }
475
476    void nextOut(Arc& i) const {
477      Parent::nextOut(i);
478      while (i != INVALID && (!(*_arc_filter)[i]
479                              || !(*_node_filter)[Parent::target(i)]))
480        Parent::nextOut(i);
481    }
482
483    void status(const Node& n, bool v) const { _node_filter->set(n, v); }
484    void status(const Arc& a, bool v) const { _arc_filter->set(a, v); }
485
486    bool status(const Node& n) const { return (*_node_filter)[n]; }
487    bool status(const Arc& a) const { return (*_arc_filter)[a]; }
488
489    typedef False NodeNumTag;
490    typedef False ArcNumTag;
491
492    typedef FindArcTagIndicator<DGR> FindArcTag;
493    Arc findArc(const Node& source, const Node& target,
494                const Arc& prev = INVALID) const {
495      if (!(*_node_filter)[source] || !(*_node_filter)[target]) {
496        return INVALID;
497      }
498      Arc arc = Parent::findArc(source, target, prev);
499      while (arc != INVALID && !(*_arc_filter)[arc]) {
500        arc = Parent::findArc(source, target, arc);
501      }
502      return arc;
503    }
504
505  public:
506
507    template <typename V>
508    class NodeMap
509      : public SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>,
510              LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> {
511      typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>,
512        LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> Parent;
513
514    public:
515      typedef V Value;
516
517      NodeMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor)
518        : Parent(adaptor) {}
519      NodeMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor, const V& value)
520        : Parent(adaptor, value) {}
521
522    private:
523      NodeMap& operator=(const NodeMap& cmap) {
524        return operator=<NodeMap>(cmap);
525      }
526
527      template <typename CMap>
528      NodeMap& operator=(const CMap& cmap) {
529        Parent::operator=(cmap);
530        return *this;
531      }
532    };
533
534    template <typename V>
535    class ArcMap
536      : public SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>,
537              LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> {
538      typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>,
539        LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> Parent;
540
541    public:
542      typedef V Value;
543
544      ArcMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor)
545        : Parent(adaptor) {}
546      ArcMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor, const V& value)
547        : Parent(adaptor, value) {}
548
549    private:
550      ArcMap& operator=(const ArcMap& cmap) {
551        return operator=<ArcMap>(cmap);
552      }
553
554      template <typename CMap>
555      ArcMap& operator=(const CMap& cmap) {
556        Parent::operator=(cmap);
557        return *this;
558      }
559    };
560
561  };
562
563  template <typename DGR, typename NF, typename AF>
564  class SubDigraphBase<DGR, NF, AF, false>
565    : public DigraphAdaptorBase<DGR> {
566    typedef DigraphAdaptorBase<DGR> Parent;
567  public:
568    typedef DGR Digraph;
569    typedef NF NodeFilterMap;
570    typedef AF ArcFilterMap;
571
572    typedef SubDigraphBase Adaptor;
573  protected:
574    NF* _node_filter;
575    AF* _arc_filter;
576    SubDigraphBase()
577      : Parent(), _node_filter(0), _arc_filter(0) { }
578
579    void initialize(DGR& digraph, NF& node_filter, AF& arc_filter) {
580      Parent::initialize(digraph);
581      _node_filter = &node_filter;
582      _arc_filter = &arc_filter;     
583    }
584
585  public:
586
587    typedef typename Parent::Node Node;
588    typedef typename Parent::Arc Arc;
589
590    void first(Node& i) const {
591      Parent::first(i);
592      while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
593    }
594
595    void first(Arc& i) const {
596      Parent::first(i);
597      while (i!=INVALID && !(*_arc_filter)[i]) Parent::next(i);
598    }
599
600    void firstIn(Arc& i, const Node& n) const {
601      Parent::firstIn(i, n);
602      while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextIn(i);
603    }
604
605    void firstOut(Arc& i, const Node& n) const {
606      Parent::firstOut(i, n);
607      while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextOut(i);
608    }
609
610    void next(Node& i) const {
611      Parent::next(i);
612      while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
613    }
614    void next(Arc& i) const {
615      Parent::next(i);
616      while (i!=INVALID && !(*_arc_filter)[i]) Parent::next(i);
617    }
618    void nextIn(Arc& i) const {
619      Parent::nextIn(i);
620      while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextIn(i);
621    }
622
623    void nextOut(Arc& i) const {
624      Parent::nextOut(i);
625      while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextOut(i);
626    }
627
628    void status(const Node& n, bool v) const { _node_filter->set(n, v); }
629    void status(const Arc& a, bool v) const { _arc_filter->set(a, v); }
630
631    bool status(const Node& n) const { return (*_node_filter)[n]; }
632    bool status(const Arc& a) const { return (*_arc_filter)[a]; }
633
634    typedef False NodeNumTag;
635    typedef False ArcNumTag;
636
637    typedef FindArcTagIndicator<DGR> FindArcTag;
638    Arc findArc(const Node& source, const Node& target,
639                const Arc& prev = INVALID) const {
640      if (!(*_node_filter)[source] || !(*_node_filter)[target]) {
641        return INVALID;
642      }
643      Arc arc = Parent::findArc(source, target, prev);
644      while (arc != INVALID && !(*_arc_filter)[arc]) {
645        arc = Parent::findArc(source, target, arc);
646      }
647      return arc;
648    }
649
650    template <typename V>
651    class NodeMap
652      : public SubMapExtender<SubDigraphBase<DGR, NF, AF, false>,
653          LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> {
654      typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, false>,
655        LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> Parent;
656
657    public:
658      typedef V Value;
659
660      NodeMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor)
661        : Parent(adaptor) {}
662      NodeMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor, const V& value)
663        : Parent(adaptor, value) {}
664
665    private:
666      NodeMap& operator=(const NodeMap& cmap) {
667        return operator=<NodeMap>(cmap);
668      }
669
670      template <typename CMap>
671      NodeMap& operator=(const CMap& cmap) {
672        Parent::operator=(cmap);
673        return *this;
674      }
675    };
676
677    template <typename V>
678    class ArcMap
679      : public SubMapExtender<SubDigraphBase<DGR, NF, AF, false>,
680          LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> {
681      typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, false>,
682        LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> Parent;
683
684    public:
685      typedef V Value;
686
687      ArcMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor)
688        : Parent(adaptor) {}
689      ArcMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor, const V& value)
690        : Parent(adaptor, value) {}
691
692    private:
693      ArcMap& operator=(const ArcMap& cmap) {
694        return operator=<ArcMap>(cmap);
695      }
696
697      template <typename CMap>
698      ArcMap& operator=(const CMap& cmap) {
699        Parent::operator=(cmap);
700        return *this;
701      }
702    };
703
704  };
705
706  /// \ingroup graph_adaptors
707  ///
708  /// \brief Adaptor class for hiding nodes and arcs in a digraph
709  ///
710  /// SubDigraph can be used for hiding nodes and arcs in a digraph.
711  /// A \c bool node map and a \c bool arc map must be specified, which
712  /// define the filters for nodes and arcs.
713  /// Only the nodes and arcs with \c true filter value are
714  /// shown in the subdigraph. The arcs that are incident to hidden
715  /// nodes are also filtered out.
716  /// This adaptor conforms to the \ref concepts::Digraph "Digraph" concept.
717  ///
718  /// The adapted digraph can also be modified through this adaptor
719  /// by adding or removing nodes or arcs, unless the \c GR template
720  /// parameter is set to be \c const.
721  ///
722  /// \tparam DGR The type of the adapted digraph.
723  /// It must conform to the \ref concepts::Digraph "Digraph" concept.
724  /// It can also be specified to be \c const.
725  /// \tparam NF The type of the node filter map.
726  /// It must be a \c bool (or convertible) node map of the
727  /// adapted digraph. The default type is
728  /// \ref concepts::Digraph::NodeMap "DGR::NodeMap<bool>".
729  /// \tparam AF The type of the arc filter map.
730  /// It must be \c bool (or convertible) arc map of the
731  /// adapted digraph. The default type is
732  /// \ref concepts::Digraph::ArcMap "DGR::ArcMap<bool>".
733  ///
734  /// \note The \c Node and \c Arc types of this adaptor and the adapted
735  /// digraph are convertible to each other.
736  ///
737  /// \see FilterNodes
738  /// \see FilterArcs
739#ifdef DOXYGEN
740  template<typename DGR, typename NF, typename AF>
741  class SubDigraph {
742#else
743  template<typename DGR,
744           typename NF = typename DGR::template NodeMap<bool>,
745           typename AF = typename DGR::template ArcMap<bool> >
746  class SubDigraph :
747    public DigraphAdaptorExtender<SubDigraphBase<DGR, NF, AF, true> > {
748#endif
749  public:
750    /// The type of the adapted digraph.
751    typedef DGR Digraph;
752    /// The type of the node filter map.
753    typedef NF NodeFilterMap;
754    /// The type of the arc filter map.
755    typedef AF ArcFilterMap;
756
757    typedef DigraphAdaptorExtender<SubDigraphBase<DGR, NF, AF, true> >
758      Parent;
759
760    typedef typename Parent::Node Node;
761    typedef typename Parent::Arc Arc;
762
763  protected:
764    SubDigraph() { }
765  public:
766
767    /// \brief Constructor
768    ///
769    /// Creates a subdigraph for the given digraph with the
770    /// given node and arc filter maps.
771    SubDigraph(DGR& digraph, NF& node_filter, AF& arc_filter) {
772      Parent::initialize(digraph, node_filter, arc_filter);
773    }
774
775    /// \brief Sets the status of the given node
776    ///
777    /// This function sets the status of the given node.
778    /// It is done by simply setting the assigned value of \c n
779    /// to \c v in the node filter map.
780    void status(const Node& n, bool v) const { Parent::status(n, v); }
781
782    /// \brief Sets the status of the given arc
783    ///
784    /// This function sets the status of the given arc.
785    /// It is done by simply setting the assigned value of \c a
786    /// to \c v in the arc filter map.
787    void status(const Arc& a, bool v) const { Parent::status(a, v); }
788
789    /// \brief Returns the status of the given node
790    ///
791    /// This function returns the status of the given node.
792    /// It is \c true if the given node is enabled (i.e. not hidden).
793    bool status(const Node& n) const { return Parent::status(n); }
794
795    /// \brief Returns the status of the given arc
796    ///
797    /// This function returns the status of the given arc.
798    /// It is \c true if the given arc is enabled (i.e. not hidden).
799    bool status(const Arc& a) const { return Parent::status(a); }
800
801    /// \brief Disables the given node
802    ///
803    /// This function disables the given node in the subdigraph,
804    /// so the iteration jumps over it.
805    /// It is the same as \ref status() "status(n, false)".
806    void disable(const Node& n) const { Parent::status(n, false); }
807
808    /// \brief Disables the given arc
809    ///
810    /// This function disables the given arc in the subdigraph,
811    /// so the iteration jumps over it.
812    /// It is the same as \ref status() "status(a, false)".
813    void disable(const Arc& a) const { Parent::status(a, false); }
814
815    /// \brief Enables the given node
816    ///
817    /// This function enables the given node in the subdigraph.
818    /// It is the same as \ref status() "status(n, true)".
819    void enable(const Node& n) const { Parent::status(n, true); }
820
821    /// \brief Enables the given arc
822    ///
823    /// This function enables the given arc in the subdigraph.
824    /// It is the same as \ref status() "status(a, true)".
825    void enable(const Arc& a) const { Parent::status(a, true); }
826
827  };
828
829  /// \brief Returns a read-only SubDigraph adaptor
830  ///
831  /// This function just returns a read-only \ref SubDigraph adaptor.
832  /// \ingroup graph_adaptors
833  /// \relates SubDigraph
834  template<typename DGR, typename NF, typename AF>
835  SubDigraph<const DGR, NF, AF>
836  subDigraph(const DGR& digraph,
837             NF& node_filter, AF& arc_filter) {
838    return SubDigraph<const DGR, NF, AF>
839      (digraph, node_filter, arc_filter);
840  }
841
842  template<typename DGR, typename NF, typename AF>
843  SubDigraph<const DGR, const NF, AF>
844  subDigraph(const DGR& digraph,
845             const NF& node_filter, AF& arc_filter) {
846    return SubDigraph<const DGR, const NF, AF>
847      (digraph, node_filter, arc_filter);
848  }
849
850  template<typename DGR, typename NF, typename AF>
851  SubDigraph<const DGR, NF, const AF>
852  subDigraph(const DGR& digraph,
853             NF& node_filter, const AF& arc_filter) {
854    return SubDigraph<const DGR, NF, const AF>
855      (digraph, node_filter, arc_filter);
856  }
857
858  template<typename DGR, typename NF, typename AF>
859  SubDigraph<const DGR, const NF, const AF>
860  subDigraph(const DGR& digraph,
861             const NF& node_filter, const AF& arc_filter) {
862    return SubDigraph<const DGR, const NF, const AF>
863      (digraph, node_filter, arc_filter);
864  }
865
866
867  template <typename GR, typename NF, typename EF, bool ch = true>
868  class SubGraphBase : public GraphAdaptorBase<GR> {
869    typedef GraphAdaptorBase<GR> Parent;
870  public:
871    typedef GR Graph;
872    typedef NF NodeFilterMap;
873    typedef EF EdgeFilterMap;
874
875    typedef SubGraphBase Adaptor;
876  protected:
877
878    NF* _node_filter;
879    EF* _edge_filter;
880
881    SubGraphBase()
882      : Parent(), _node_filter(0), _edge_filter(0) { }
883
884    void initialize(GR& graph, NF& node_filter, EF& edge_filter) {
885      Parent::initialize(graph);
886      _node_filter = &node_filter;
887      _edge_filter = &edge_filter;
888    }
889
890  public:
891
892    typedef typename Parent::Node Node;
893    typedef typename Parent::Arc Arc;
894    typedef typename Parent::Edge Edge;
895
896    void first(Node& i) const {
897      Parent::first(i);
898      while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
899    }
900
901    void first(Arc& i) const {
902      Parent::first(i);
903      while (i!=INVALID && (!(*_edge_filter)[i]
904                            || !(*_node_filter)[Parent::source(i)]
905                            || !(*_node_filter)[Parent::target(i)]))
906        Parent::next(i);
907    }
908
909    void first(Edge& i) const {
910      Parent::first(i);
911      while (i!=INVALID && (!(*_edge_filter)[i]
912                            || !(*_node_filter)[Parent::u(i)]
913                            || !(*_node_filter)[Parent::v(i)]))
914        Parent::next(i);
915    }
916
917    void firstIn(Arc& i, const Node& n) const {
918      Parent::firstIn(i, n);
919      while (i!=INVALID && (!(*_edge_filter)[i]
920                            || !(*_node_filter)[Parent::source(i)]))
921        Parent::nextIn(i);
922    }
923
924    void firstOut(Arc& i, const Node& n) const {
925      Parent::firstOut(i, n);
926      while (i!=INVALID && (!(*_edge_filter)[i]
927                            || !(*_node_filter)[Parent::target(i)]))
928        Parent::nextOut(i);
929    }
930
931    void firstInc(Edge& i, bool& d, const Node& n) const {
932      Parent::firstInc(i, d, n);
933      while (i!=INVALID && (!(*_edge_filter)[i]
934                            || !(*_node_filter)[Parent::u(i)]
935                            || !(*_node_filter)[Parent::v(i)]))
936        Parent::nextInc(i, d);
937    }
938
939    void next(Node& i) const {
940      Parent::next(i);
941      while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
942    }
943
944    void next(Arc& i) const {
945      Parent::next(i);
946      while (i!=INVALID && (!(*_edge_filter)[i]
947                            || !(*_node_filter)[Parent::source(i)]
948                            || !(*_node_filter)[Parent::target(i)]))
949        Parent::next(i);
950    }
951
952    void next(Edge& i) const {
953      Parent::next(i);
954      while (i!=INVALID && (!(*_edge_filter)[i]
955                            || !(*_node_filter)[Parent::u(i)]
956                            || !(*_node_filter)[Parent::v(i)]))
957        Parent::next(i);
958    }
959
960    void nextIn(Arc& i) const {
961      Parent::nextIn(i);
962      while (i!=INVALID && (!(*_edge_filter)[i]
963                            || !(*_node_filter)[Parent::source(i)]))
964        Parent::nextIn(i);
965    }
966
967    void nextOut(Arc& i) const {
968      Parent::nextOut(i);
969      while (i!=INVALID && (!(*_edge_filter)[i]
970                            || !(*_node_filter)[Parent::target(i)]))
971        Parent::nextOut(i);
972    }
973
974    void nextInc(Edge& i, bool& d) const {
975      Parent::nextInc(i, d);
976      while (i!=INVALID && (!(*_edge_filter)[i]
977                            || !(*_node_filter)[Parent::u(i)]
978                            || !(*_node_filter)[Parent::v(i)]))
979        Parent::nextInc(i, d);
980    }
981
982    void status(const Node& n, bool v) const { _node_filter->set(n, v); }
983    void status(const Edge& e, bool v) const { _edge_filter->set(e, v); }
984
985    bool status(const Node& n) const { return (*_node_filter)[n]; }
986    bool status(const Edge& e) const { return (*_edge_filter)[e]; }
987
988    typedef False NodeNumTag;
989    typedef False ArcNumTag;
990    typedef False EdgeNumTag;
991
992    typedef FindArcTagIndicator<Graph> FindArcTag;
993    Arc findArc(const Node& u, const Node& v,
994                const Arc& prev = INVALID) const {
995      if (!(*_node_filter)[u] || !(*_node_filter)[v]) {
996        return INVALID;
997      }
998      Arc arc = Parent::findArc(u, v, prev);
999      while (arc != INVALID && !(*_edge_filter)[arc]) {
1000        arc = Parent::findArc(u, v, arc);
1001      }
1002      return arc;
1003    }
1004
1005    typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
1006    Edge findEdge(const Node& u, const Node& v,
1007                  const Edge& prev = INVALID) const {
1008      if (!(*_node_filter)[u] || !(*_node_filter)[v]) {
1009        return INVALID;
1010      }
1011      Edge edge = Parent::findEdge(u, v, prev);
1012      while (edge != INVALID && !(*_edge_filter)[edge]) {
1013        edge = Parent::findEdge(u, v, edge);
1014      }
1015      return edge;
1016    }
1017
1018    template <typename V>
1019    class NodeMap
1020      : public SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
1021          LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> {
1022      typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
1023        LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> Parent;
1024
1025    public:
1026      typedef V Value;
1027
1028      NodeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor)
1029        : Parent(adaptor) {}
1030      NodeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value)
1031        : Parent(adaptor, value) {}
1032
1033    private:
1034      NodeMap& operator=(const NodeMap& cmap) {
1035        return operator=<NodeMap>(cmap);
1036      }
1037
1038      template <typename CMap>
1039      NodeMap& operator=(const CMap& cmap) {
1040        Parent::operator=(cmap);
1041        return *this;
1042      }
1043    };
1044
1045    template <typename V>
1046    class ArcMap
1047      : public SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
1048          LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> {
1049      typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
1050        LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> Parent;
1051
1052    public:
1053      typedef V Value;
1054
1055      ArcMap(const SubGraphBase<GR, NF, EF, ch>& adaptor)
1056        : Parent(adaptor) {}
1057      ArcMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value)
1058        : Parent(adaptor, value) {}
1059
1060    private:
1061      ArcMap& operator=(const ArcMap& cmap) {
1062        return operator=<ArcMap>(cmap);
1063      }
1064
1065      template <typename CMap>
1066      ArcMap& operator=(const CMap& cmap) {
1067        Parent::operator=(cmap);
1068        return *this;
1069      }
1070    };
1071
1072    template <typename V>
1073    class EdgeMap
1074      : public SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
1075        LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> {
1076      typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
1077        LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> Parent;
1078
1079    public:
1080      typedef V Value;
1081
1082      EdgeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor)
1083        : Parent(adaptor) {}
1084
1085      EdgeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value)
1086        : Parent(adaptor, value) {}
1087
1088    private:
1089      EdgeMap& operator=(const EdgeMap& cmap) {
1090        return operator=<EdgeMap>(cmap);
1091      }
1092
1093      template <typename CMap>
1094      EdgeMap& operator=(const CMap& cmap) {
1095        Parent::operator=(cmap);
1096        return *this;
1097      }
1098    };
1099
1100  };
1101
1102  template <typename GR, typename NF, typename EF>
1103  class SubGraphBase<GR, NF, EF, false>
1104    : public GraphAdaptorBase<GR> {
1105    typedef GraphAdaptorBase<GR> Parent;
1106  public:
1107    typedef GR Graph;
1108    typedef NF NodeFilterMap;
1109    typedef EF EdgeFilterMap;
1110
1111    typedef SubGraphBase Adaptor;
1112  protected:
1113    NF* _node_filter;
1114    EF* _edge_filter;
1115    SubGraphBase()
1116          : Parent(), _node_filter(0), _edge_filter(0) { }
1117
1118    void initialize(GR& graph, NF& node_filter, EF& edge_filter) {
1119      Parent::initialize(graph);
1120      _node_filter = &node_filter;
1121      _edge_filter = &edge_filter;
1122    }
1123
1124  public:
1125
1126    typedef typename Parent::Node Node;
1127    typedef typename Parent::Arc Arc;
1128    typedef typename Parent::Edge Edge;
1129
1130    void first(Node& i) const {
1131      Parent::first(i);
1132      while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
1133    }
1134
1135    void first(Arc& i) const {
1136      Parent::first(i);
1137      while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i);
1138    }
1139
1140    void first(Edge& i) const {
1141      Parent::first(i);
1142      while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i);
1143    }
1144
1145    void firstIn(Arc& i, const Node& n) const {
1146      Parent::firstIn(i, n);
1147      while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextIn(i);
1148    }
1149
1150    void firstOut(Arc& i, const Node& n) const {
1151      Parent::firstOut(i, n);
1152      while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextOut(i);
1153    }
1154
1155    void firstInc(Edge& i, bool& d, const Node& n) const {
1156      Parent::firstInc(i, d, n);
1157      while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextInc(i, d);
1158    }
1159
1160    void next(Node& i) const {
1161      Parent::next(i);
1162      while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
1163    }
1164    void next(Arc& i) const {
1165      Parent::next(i);
1166      while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i);
1167    }
1168    void next(Edge& i) const {
1169      Parent::next(i);
1170      while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i);
1171    }
1172    void nextIn(Arc& i) const {
1173      Parent::nextIn(i);
1174      while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextIn(i);
1175    }
1176
1177    void nextOut(Arc& i) const {
1178      Parent::nextOut(i);
1179      while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextOut(i);
1180    }
1181    void nextInc(Edge& i, bool& d) const {
1182      Parent::nextInc(i, d);
1183      while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextInc(i, d);
1184    }
1185
1186    void status(const Node& n, bool v) const { _node_filter->set(n, v); }
1187    void status(const Edge& e, bool v) const { _edge_filter->set(e, v); }
1188
1189    bool status(const Node& n) const { return (*_node_filter)[n]; }
1190    bool status(const Edge& e) const { return (*_edge_filter)[e]; }
1191
1192    typedef False NodeNumTag;
1193    typedef False ArcNumTag;
1194    typedef False EdgeNumTag;
1195
1196    typedef FindArcTagIndicator<Graph> FindArcTag;
1197    Arc findArc(const Node& u, const Node& v,
1198                const Arc& prev = INVALID) const {
1199      Arc arc = Parent::findArc(u, v, prev);
1200      while (arc != INVALID && !(*_edge_filter)[arc]) {
1201        arc = Parent::findArc(u, v, arc);
1202      }
1203      return arc;
1204    }
1205
1206    typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
1207    Edge findEdge(const Node& u, const Node& v,
1208                  const Edge& prev = INVALID) const {
1209      Edge edge = Parent::findEdge(u, v, prev);
1210      while (edge != INVALID && !(*_edge_filter)[edge]) {
1211        edge = Parent::findEdge(u, v, edge);
1212      }
1213      return edge;
1214    }
1215
1216    template <typename V>
1217    class NodeMap
1218      : public SubMapExtender<SubGraphBase<GR, NF, EF, false>,
1219          LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> {
1220      typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>,
1221        LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> Parent;
1222
1223    public:
1224      typedef V Value;
1225
1226      NodeMap(const SubGraphBase<GR, NF, EF, false>& adaptor)
1227        : Parent(adaptor) {}
1228      NodeMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value)
1229        : Parent(adaptor, value) {}
1230
1231    private:
1232      NodeMap& operator=(const NodeMap& cmap) {
1233        return operator=<NodeMap>(cmap);
1234      }
1235
1236      template <typename CMap>
1237      NodeMap& operator=(const CMap& cmap) {
1238        Parent::operator=(cmap);
1239        return *this;
1240      }
1241    };
1242
1243    template <typename V>
1244    class ArcMap
1245      : public SubMapExtender<SubGraphBase<GR, NF, EF, false>,
1246          LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> {
1247      typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>,
1248        LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> Parent;
1249
1250    public:
1251      typedef V Value;
1252
1253      ArcMap(const SubGraphBase<GR, NF, EF, false>& adaptor)
1254        : Parent(adaptor) {}
1255      ArcMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value)
1256        : Parent(adaptor, value) {}
1257
1258    private:
1259      ArcMap& operator=(const ArcMap& cmap) {
1260        return operator=<ArcMap>(cmap);
1261      }
1262
1263      template <typename CMap>
1264      ArcMap& operator=(const CMap& cmap) {
1265        Parent::operator=(cmap);
1266        return *this;
1267      }
1268    };
1269
1270    template <typename V>
1271    class EdgeMap
1272      : public SubMapExtender<SubGraphBase<GR, NF, EF, false>,
1273        LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> {
1274      typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>,
1275        LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> Parent;
1276
1277    public:
1278      typedef V Value;
1279
1280      EdgeMap(const SubGraphBase<GR, NF, EF, false>& adaptor)
1281        : Parent(adaptor) {}
1282
1283      EdgeMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value)
1284        : Parent(adaptor, value) {}
1285
1286    private:
1287      EdgeMap& operator=(const EdgeMap& cmap) {
1288        return operator=<EdgeMap>(cmap);
1289      }
1290
1291      template <typename CMap>
1292      EdgeMap& operator=(const CMap& cmap) {
1293        Parent::operator=(cmap);
1294        return *this;
1295      }
1296    };
1297
1298  };
1299
1300  /// \ingroup graph_adaptors
1301  ///
1302  /// \brief Adaptor class for hiding nodes and edges in an undirected
1303  /// graph.
1304  ///
1305  /// SubGraph can be used for hiding nodes and edges in a graph.
1306  /// A \c bool node map and a \c bool edge map must be specified, which
1307  /// define the filters for nodes and edges.
1308  /// Only the nodes and edges with \c true filter value are
1309  /// shown in the subgraph. The edges that are incident to hidden
1310  /// nodes are also filtered out.
1311  /// This adaptor conforms to the \ref concepts::Graph "Graph" concept.
1312  ///
1313  /// The adapted graph can also be modified through this adaptor
1314  /// by adding or removing nodes or edges, unless the \c GR template
1315  /// parameter is set to be \c const.
1316  ///
1317  /// \tparam GR The type of the adapted graph.
1318  /// It must conform to the \ref concepts::Graph "Graph" concept.
1319  /// It can also be specified to be \c const.
1320  /// \tparam NF The type of the node filter map.
1321  /// It must be a \c bool (or convertible) node map of the
1322  /// adapted graph. The default type is
1323  /// \ref concepts::Graph::NodeMap "GR::NodeMap<bool>".
1324  /// \tparam EF The type of the edge filter map.
1325  /// It must be a \c bool (or convertible) edge map of the
1326  /// adapted graph. The default type is
1327  /// \ref concepts::Graph::EdgeMap "GR::EdgeMap<bool>".
1328  ///
1329  /// \note The \c Node, \c Edge and \c Arc types of this adaptor and the
1330  /// adapted graph are convertible to each other.
1331  ///
1332  /// \see FilterNodes
1333  /// \see FilterEdges
1334#ifdef DOXYGEN
1335  template<typename GR, typename NF, typename EF>
1336  class SubGraph {
1337#else
1338  template<typename GR,
1339           typename NF = typename GR::template NodeMap<bool>,
1340           typename EF = typename GR::template EdgeMap<bool> >
1341  class SubGraph :
1342    public GraphAdaptorExtender<SubGraphBase<GR, NF, EF, true> > {
1343#endif
1344  public:
1345    /// The type of the adapted graph.
1346    typedef GR Graph;
1347    /// The type of the node filter map.
1348    typedef NF NodeFilterMap;
1349    /// The type of the edge filter map.
1350    typedef EF EdgeFilterMap;
1351
1352    typedef GraphAdaptorExtender<SubGraphBase<GR, NF, EF, true> >
1353      Parent;
1354
1355    typedef typename Parent::Node Node;
1356    typedef typename Parent::Edge Edge;
1357
1358  protected:
1359    SubGraph() { }
1360  public:
1361
1362    /// \brief Constructor
1363    ///
1364    /// Creates a subgraph for the given graph with the given node
1365    /// and edge filter maps.
1366    SubGraph(GR& graph, NF& node_filter, EF& edge_filter) {
1367      initialize(graph, node_filter, edge_filter);
1368    }
1369
1370    /// \brief Sets the status of the given node
1371    ///
1372    /// This function sets the status of the given node.
1373    /// It is done by simply setting the assigned value of \c n
1374    /// to \c v in the node filter map.
1375    void status(const Node& n, bool v) const { Parent::status(n, v); }
1376
1377    /// \brief Sets the status of the given edge
1378    ///
1379    /// This function sets the status of the given edge.
1380    /// It is done by simply setting the assigned value of \c e
1381    /// to \c v in the edge filter map.
1382    void status(const Edge& e, bool v) const { Parent::status(e, v); }
1383
1384    /// \brief Returns the status of the given node
1385    ///
1386    /// This function returns the status of the given node.
1387    /// It is \c true if the given node is enabled (i.e. not hidden).
1388    bool status(const Node& n) const { return Parent::status(n); }
1389
1390    /// \brief Returns the status of the given edge
1391    ///
1392    /// This function returns the status of the given edge.
1393    /// It is \c true if the given edge is enabled (i.e. not hidden).
1394    bool status(const Edge& e) const { return Parent::status(e); }
1395
1396    /// \brief Disables the given node
1397    ///
1398    /// This function disables the given node in the subdigraph,
1399    /// so the iteration jumps over it.
1400    /// It is the same as \ref status() "status(n, false)".
1401    void disable(const Node& n) const { Parent::status(n, false); }
1402
1403    /// \brief Disables the given edge
1404    ///
1405    /// This function disables the given edge in the subgraph,
1406    /// so the iteration jumps over it.
1407    /// It is the same as \ref status() "status(e, false)".
1408    void disable(const Edge& e) const { Parent::status(e, false); }
1409
1410    /// \brief Enables the given node
1411    ///
1412    /// This function enables the given node in the subdigraph.
1413    /// It is the same as \ref status() "status(n, true)".
1414    void enable(const Node& n) const { Parent::status(n, true); }
1415
1416    /// \brief Enables the given edge
1417    ///
1418    /// This function enables the given edge in the subgraph.
1419    /// It is the same as \ref status() "status(e, true)".
1420    void enable(const Edge& e) const { Parent::status(e, true); }
1421
1422  };
1423
1424  /// \brief Returns a read-only SubGraph adaptor
1425  ///
1426  /// This function just returns a read-only \ref SubGraph adaptor.
1427  /// \ingroup graph_adaptors
1428  /// \relates SubGraph
1429  template<typename GR, typename NF, typename EF>
1430  SubGraph<const GR, NF, EF>
1431  subGraph(const GR& graph, NF& node_filter, EF& edge_filter) {
1432    return SubGraph<const GR, NF, EF>
1433      (graph, node_filter, edge_filter);
1434  }
1435
1436  template<typename GR, typename NF, typename EF>
1437  SubGraph<const GR, const NF, EF>
1438  subGraph(const GR& graph, const NF& node_filter, EF& edge_filter) {
1439    return SubGraph<const GR, const NF, EF>
1440      (graph, node_filter, edge_filter);
1441  }
1442
1443  template<typename GR, typename NF, typename EF>
1444  SubGraph<const GR, NF, const EF>
1445  subGraph(const GR& graph, NF& node_filter, const EF& edge_filter) {
1446    return SubGraph<const GR, NF, const EF>
1447      (graph, node_filter, edge_filter);
1448  }
1449
1450  template<typename GR, typename NF, typename EF>
1451  SubGraph<const GR, const NF, const EF>
1452  subGraph(const GR& graph, const NF& node_filter, const EF& edge_filter) {
1453    return SubGraph<const GR, const NF, const EF>
1454      (graph, node_filter, edge_filter);
1455  }
1456
1457
1458  /// \ingroup graph_adaptors
1459  ///
1460  /// \brief Adaptor class for hiding nodes in a digraph or a graph.
1461  ///
1462  /// FilterNodes adaptor can be used for hiding nodes in a digraph or a
1463  /// graph. A \c bool node map must be specified, which defines the filter
1464  /// for the nodes. Only the nodes with \c true filter value and the
1465  /// arcs/edges incident to nodes both with \c true filter value are shown
1466  /// in the subgraph. This adaptor conforms to the \ref concepts::Digraph
1467  /// "Digraph" concept or the \ref concepts::Graph "Graph" concept
1468  /// depending on the \c GR template parameter.
1469  ///
1470  /// The adapted (di)graph can also be modified through this adaptor
1471  /// by adding or removing nodes or arcs/edges, unless the \c GR template
1472  /// parameter is set to be \c const.
1473  ///
1474  /// \tparam GR The type of the adapted digraph or graph.
1475  /// It must conform to the \ref concepts::Digraph "Digraph" concept
1476  /// or the \ref concepts::Graph "Graph" concept.
1477  /// It can also be specified to be \c const.
1478  /// \tparam NF The type of the node filter map.
1479  /// It must be a \c bool (or convertible) node map of the
1480  /// adapted (di)graph. The default type is
1481  /// \ref concepts::Graph::NodeMap "GR::NodeMap<bool>".
1482  ///
1483  /// \note The \c Node and <tt>Arc/Edge</tt> types of this adaptor and the
1484  /// adapted (di)graph are convertible to each other.
1485#ifdef DOXYGEN
1486  template<typename GR, typename NF>
1487  class FilterNodes {
1488#else
1489  template<typename GR,
1490           typename NF = typename GR::template NodeMap<bool>,
1491           typename Enable = void>
1492  class FilterNodes :
1493    public DigraphAdaptorExtender<
1494      SubDigraphBase<GR, NF, ConstMap<typename GR::Arc, Const<bool, true> >,
1495                     true> > {
1496#endif
1497    typedef DigraphAdaptorExtender<
1498      SubDigraphBase<GR, NF, ConstMap<typename GR::Arc, Const<bool, true> >,
1499                     true> > Parent;
1500
1501  public:
1502
1503    typedef GR Digraph;
1504    typedef NF NodeFilterMap;
1505
1506    typedef typename Parent::Node Node;
1507
1508  protected:
1509    ConstMap<typename Digraph::Arc, Const<bool, true> > const_true_map;
1510
1511    FilterNodes() : const_true_map() {}
1512
1513  public:
1514
1515    /// \brief Constructor
1516    ///
1517    /// Creates a subgraph for the given digraph or graph with the
1518    /// given node filter map.
1519    FilterNodes(GR& graph, NF& node_filter)
1520      : Parent(), const_true_map()
1521    {
1522      Parent::initialize(graph, node_filter, const_true_map);
1523    }
1524
1525    /// \brief Sets the status of the given node
1526    ///
1527    /// This function sets the status of the given node.
1528    /// It is done by simply setting the assigned value of \c n
1529    /// to \c v in the node filter map.
1530    void status(const Node& n, bool v) const { Parent::status(n, v); }
1531
1532    /// \brief Returns the status of the given node
1533    ///
1534    /// This function returns the status of the given node.
1535    /// It is \c true if the given node is enabled (i.e. not hidden).
1536    bool status(const Node& n) const { return Parent::status(n); }
1537
1538    /// \brief Disables the given node
1539    ///
1540    /// This function disables the given node, so the iteration
1541    /// jumps over it.
1542    /// It is the same as \ref status() "status(n, false)".
1543    void disable(const Node& n) const { Parent::status(n, false); }
1544
1545    /// \brief Enables the given node
1546    ///
1547    /// This function enables the given node.
1548    /// It is the same as \ref status() "status(n, true)".
1549    void enable(const Node& n) const { Parent::status(n, true); }
1550
1551  };
1552
1553  template<typename GR, typename NF>
1554  class FilterNodes<GR, NF,
1555                    typename enable_if<UndirectedTagIndicator<GR> >::type> :
1556    public GraphAdaptorExtender<
1557      SubGraphBase<GR, NF, ConstMap<typename GR::Edge, Const<bool, true> >,
1558                   true> > {
1559
1560    typedef GraphAdaptorExtender<
1561      SubGraphBase<GR, NF, ConstMap<typename GR::Edge, Const<bool, true> >,
1562                   true> > Parent;
1563
1564  public:
1565
1566    typedef GR Graph;
1567    typedef NF NodeFilterMap;
1568
1569    typedef typename Parent::Node Node;
1570
1571  protected:
1572    ConstMap<typename GR::Edge, Const<bool, true> > const_true_map;
1573
1574    FilterNodes() : const_true_map() {}
1575
1576  public:
1577
1578    FilterNodes(GR& graph, NodeFilterMap& node_filter) :
1579      Parent(), const_true_map() {
1580      Parent::initialize(graph, node_filter, const_true_map);
1581    }
1582
1583    void status(const Node& n, bool v) const { Parent::status(n, v); }
1584    bool status(const Node& n) const { return Parent::status(n); }
1585    void disable(const Node& n) const { Parent::status(n, false); }
1586    void enable(const Node& n) const { Parent::status(n, true); }
1587
1588  };
1589
1590
1591  /// \brief Returns a read-only FilterNodes adaptor
1592  ///
1593  /// This function just returns a read-only \ref FilterNodes adaptor.
1594  /// \ingroup graph_adaptors
1595  /// \relates FilterNodes
1596  template<typename GR, typename NF>
1597  FilterNodes<const GR, NF>
1598  filterNodes(const GR& graph, NF& node_filter) {
1599    return FilterNodes<const GR, NF>(graph, node_filter);
1600  }
1601
1602  template<typename GR, typename NF>
1603  FilterNodes<const GR, const NF>
1604  filterNodes(const GR& graph, const NF& node_filter) {
1605    return FilterNodes<const GR, const NF>(graph, node_filter);
1606  }
1607
1608  /// \ingroup graph_adaptors
1609  ///
1610  /// \brief Adaptor class for hiding arcs in a digraph.
1611  ///
1612  /// FilterArcs adaptor can be used for hiding arcs in a digraph.
1613  /// A \c bool arc map must be specified, which defines the filter for
1614  /// the arcs. Only the arcs with \c true filter value are shown in the
1615  /// subdigraph. This adaptor conforms to the \ref concepts::Digraph
1616  /// "Digraph" concept.
1617  ///
1618  /// The adapted digraph can also be modified through this adaptor
1619  /// by adding or removing nodes or arcs, unless the \c GR template
1620  /// parameter is set to be \c const.
1621  ///
1622  /// \tparam DGR The type of the adapted digraph.
1623  /// It must conform to the \ref concepts::Digraph "Digraph" concept.
1624  /// It can also be specified to be \c const.
1625  /// \tparam AF The type of the arc filter map.
1626  /// It must be a \c bool (or convertible) arc map of the
1627  /// adapted digraph. The default type is
1628  /// \ref concepts::Digraph::ArcMap "DGR::ArcMap<bool>".
1629  ///
1630  /// \note The \c Node and \c Arc types of this adaptor and the adapted
1631  /// digraph are convertible to each other.
1632#ifdef DOXYGEN
1633  template<typename DGR,
1634           typename AF>
1635  class FilterArcs {
1636#else
1637  template<typename DGR,
1638           typename AF = typename DGR::template ArcMap<bool> >
1639  class FilterArcs :
1640    public DigraphAdaptorExtender<
1641      SubDigraphBase<DGR, ConstMap<typename DGR::Node, Const<bool, true> >,
1642                     AF, false> > {
1643#endif
1644    typedef DigraphAdaptorExtender<
1645      SubDigraphBase<DGR, ConstMap<typename DGR::Node, Const<bool, true> >,
1646                     AF, false> > Parent;
1647
1648  public:
1649
1650    /// The type of the adapted digraph.
1651    typedef DGR Digraph;
1652    /// The type of the arc filter map.
1653    typedef AF ArcFilterMap;
1654
1655    typedef typename Parent::Arc Arc;
1656
1657  protected:
1658    ConstMap<typename DGR::Node, Const<bool, true> > const_true_map;
1659
1660    FilterArcs() : const_true_map() {}
1661
1662  public:
1663
1664    /// \brief Constructor
1665    ///
1666    /// Creates a subdigraph for the given digraph with the given arc
1667    /// filter map.
1668    FilterArcs(DGR& digraph, ArcFilterMap& arc_filter)
1669      : Parent(), const_true_map() {
1670      Parent::initialize(digraph, const_true_map, arc_filter);
1671    }
1672
1673    /// \brief Sets the status of the given arc
1674    ///
1675    /// This function sets the status of the given arc.
1676    /// It is done by simply setting the assigned value of \c a
1677    /// to \c v in the arc filter map.
1678    void status(const Arc& a, bool v) const { Parent::status(a, v); }
1679
1680    /// \brief Returns the status of the given arc
1681    ///
1682    /// This function returns the status of the given arc.
1683    /// It is \c true if the given arc is enabled (i.e. not hidden).
1684    bool status(const Arc& a) const { return Parent::status(a); }
1685
1686    /// \brief Disables the given arc
1687    ///
1688    /// This function disables the given arc in the subdigraph,
1689    /// so the iteration jumps over it.
1690    /// It is the same as \ref status() "status(a, false)".
1691    void disable(const Arc& a) const { Parent::status(a, false); }
1692
1693    /// \brief Enables the given arc
1694    ///
1695    /// This function enables the given arc in the subdigraph.
1696    /// It is the same as \ref status() "status(a, true)".
1697    void enable(const Arc& a) const { Parent::status(a, true); }
1698
1699  };
1700
1701  /// \brief Returns a read-only FilterArcs adaptor
1702  ///
1703  /// This function just returns a read-only \ref FilterArcs adaptor.
1704  /// \ingroup graph_adaptors
1705  /// \relates FilterArcs
1706  template<typename DGR, typename AF>
1707  FilterArcs<const DGR, AF>
1708  filterArcs(const DGR& digraph, AF& arc_filter) {
1709    return FilterArcs<const DGR, AF>(digraph, arc_filter);
1710  }
1711
1712  template<typename DGR, typename AF>
1713  FilterArcs<const DGR, const AF>
1714  filterArcs(const DGR& digraph, const AF& arc_filter) {
1715    return FilterArcs<const DGR, const AF>(digraph, arc_filter);
1716  }
1717
1718  /// \ingroup graph_adaptors
1719  ///
1720  /// \brief Adaptor class for hiding edges in a graph.
1721  ///
1722  /// FilterEdges adaptor can be used for hiding edges in a graph.
1723  /// A \c bool edge map must be specified, which defines the filter for
1724  /// the edges. Only the edges with \c true filter value are shown in the
1725  /// subgraph. This adaptor conforms to the \ref concepts::Graph
1726  /// "Graph" concept.
1727  ///
1728  /// The adapted graph can also be modified through this adaptor
1729  /// by adding or removing nodes or edges, unless the \c GR template
1730  /// parameter is set to be \c const.
1731  ///
1732  /// \tparam GR The type of the adapted graph.
1733  /// It must conform to the \ref concepts::Graph "Graph" concept.
1734  /// It can also be specified to be \c const.
1735  /// \tparam EF The type of the edge filter map.
1736  /// It must be a \c bool (or convertible) edge map of the
1737  /// adapted graph. The default type is
1738  /// \ref concepts::Graph::EdgeMap "GR::EdgeMap<bool>".
1739  ///
1740  /// \note The \c Node, \c Edge and \c Arc types of this adaptor and the
1741  /// adapted graph are convertible to each other.
1742#ifdef DOXYGEN
1743  template<typename GR,
1744           typename EF>
1745  class FilterEdges {
1746#else
1747  template<typename GR,
1748           typename EF = typename GR::template EdgeMap<bool> >
1749  class FilterEdges :
1750    public GraphAdaptorExtender<
1751      SubGraphBase<GR, ConstMap<typename GR::Node, Const<bool, true> >,
1752                   EF, false> > {
1753#endif
1754    typedef GraphAdaptorExtender<
1755      SubGraphBase<GR, ConstMap<typename GR::Node, Const<bool, true > >,
1756                   EF, false> > Parent;
1757
1758  public:
1759
1760    /// The type of the adapted graph.
1761    typedef GR Graph;
1762    /// The type of the edge filter map.
1763    typedef EF EdgeFilterMap;
1764
1765    typedef typename Parent::Edge Edge;
1766
1767  protected:
1768    ConstMap<typename GR::Node, Const<bool, true> > const_true_map;
1769
1770    FilterEdges() : const_true_map(true) {
1771      Parent::setNodeFilterMap(const_true_map);
1772    }
1773
1774  public:
1775
1776    /// \brief Constructor
1777    ///
1778    /// Creates a subgraph for the given graph with the given edge
1779    /// filter map.
1780    FilterEdges(GR& graph, EF& edge_filter)
1781      : Parent(), const_true_map() {
1782      Parent::initialize(graph, const_true_map, edge_filter);
1783    }
1784
1785    /// \brief Sets the status of the given edge
1786    ///
1787    /// This function sets the status of the given edge.
1788    /// It is done by simply setting the assigned value of \c e
1789    /// to \c v in the edge filter map.
1790    void status(const Edge& e, bool v) const { Parent::status(e, v); }
1791
1792    /// \brief Returns the status of the given edge
1793    ///
1794    /// This function returns the status of the given edge.
1795    /// It is \c true if the given edge is enabled (i.e. not hidden).
1796    bool status(const Edge& e) const { return Parent::status(e); }
1797
1798    /// \brief Disables the given edge
1799    ///
1800    /// This function disables the given edge in the subgraph,
1801    /// so the iteration jumps over it.
1802    /// It is the same as \ref status() "status(e, false)".
1803    void disable(const Edge& e) const { Parent::status(e, false); }
1804
1805    /// \brief Enables the given edge
1806    ///
1807    /// This function enables the given edge in the subgraph.
1808    /// It is the same as \ref status() "status(e, true)".
1809    void enable(const Edge& e) const { Parent::status(e, true); }
1810
1811  };
1812
1813  /// \brief Returns a read-only FilterEdges adaptor
1814  ///
1815  /// This function just returns a read-only \ref FilterEdges adaptor.
1816  /// \ingroup graph_adaptors
1817  /// \relates FilterEdges
1818  template<typename GR, typename EF>
1819  FilterEdges<const GR, EF>
1820  filterEdges(const GR& graph, EF& edge_filter) {
1821    return FilterEdges<const GR, EF>(graph, edge_filter);
1822  }
1823
1824  template<typename GR, typename EF>
1825  FilterEdges<const GR, const EF>
1826  filterEdges(const GR& graph, const EF& edge_filter) {
1827    return FilterEdges<const GR, const EF>(graph, edge_filter);
1828  }
1829
1830
1831  template <typename DGR>
1832  class UndirectorBase {
1833  public:
1834    typedef DGR Digraph;
1835    typedef UndirectorBase Adaptor;
1836
1837    typedef True UndirectedTag;
1838
1839    typedef typename Digraph::Arc Edge;
1840    typedef typename Digraph::Node Node;
1841
1842    class Arc : public Edge {
1843      friend class UndirectorBase;
1844    protected:
1845      bool _forward;
1846
1847      Arc(const Edge& edge, bool forward) :
1848        Edge(edge), _forward(forward) {}
1849
1850    public:
1851      Arc() {}
1852
1853      Arc(Invalid) : Edge(INVALID), _forward(true) {}
1854
1855      bool operator==(const Arc &other) const {
1856        return _forward == other._forward &&
1857          static_cast<const Edge&>(*this) == static_cast<const Edge&>(other);
1858      }
1859      bool operator!=(const Arc &other) const {
1860        return _forward != other._forward ||
1861          static_cast<const Edge&>(*this) != static_cast<const Edge&>(other);
1862      }
1863      bool operator<(const Arc &other) const {
1864        return _forward < other._forward ||
1865          (_forward == other._forward &&
1866           static_cast<const Edge&>(*this) < static_cast<const Edge&>(other));
1867      }
1868    };
1869
1870    void first(Node& n) const {
1871      _digraph->first(n);
1872    }
1873
1874    void next(Node& n) const {
1875      _digraph->next(n);
1876    }
1877
1878    void first(Arc& a) const {
1879      _digraph->first(a);
1880      a._forward = true;
1881    }
1882
1883    void next(Arc& a) const {
1884      if (a._forward) {
1885        a._forward = false;
1886      } else {
1887        _digraph->next(a);
1888        a._forward = true;
1889      }
1890    }
1891
1892    void first(Edge& e) const {
1893      _digraph->first(e);
1894    }
1895
1896    void next(Edge& e) const {
1897      _digraph->next(e);
1898    }
1899
1900    void firstOut(Arc& a, const Node& n) const {
1901      _digraph->firstIn(a, n);
1902      if( static_cast<const Edge&>(a) != INVALID ) {
1903        a._forward = false;
1904      } else {
1905        _digraph->firstOut(a, n);
1906        a._forward = true;
1907      }
1908    }
1909    void nextOut(Arc &a) const {
1910      if (!a._forward) {
1911        Node n = _digraph->target(a);
1912        _digraph->nextIn(a);
1913        if (static_cast<const Edge&>(a) == INVALID ) {
1914          _digraph->firstOut(a, n);
1915          a._forward = true;
1916        }
1917      }
1918      else {
1919        _digraph->nextOut(a);
1920      }
1921    }
1922
1923    void firstIn(Arc &a, const Node &n) const {
1924      _digraph->firstOut(a, n);
1925      if (static_cast<const Edge&>(a) != INVALID ) {
1926        a._forward = false;
1927      } else {
1928        _digraph->firstIn(a, n);
1929        a._forward = true;
1930      }
1931    }
1932    void nextIn(Arc &a) const {
1933      if (!a._forward) {
1934        Node n = _digraph->source(a);
1935        _digraph->nextOut(a);
1936        if( static_cast<const Edge&>(a) == INVALID ) {
1937          _digraph->firstIn(a, n);
1938          a._forward = true;
1939        }
1940      }
1941      else {
1942        _digraph->nextIn(a);
1943      }
1944    }
1945
1946    void firstInc(Edge &e, bool &d, const Node &n) const {
1947      d = true;
1948      _digraph->firstOut(e, n);
1949      if (e != INVALID) return;
1950      d = false;
1951      _digraph->firstIn(e, n);
1952    }
1953
1954    void nextInc(Edge &e, bool &d) const {
1955      if (d) {
1956        Node s = _digraph->source(e);
1957        _digraph->nextOut(e);
1958        if (e != INVALID) return;
1959        d = false;
1960        _digraph->firstIn(e, s);
1961      } else {
1962        _digraph->nextIn(e);
1963      }
1964    }
1965
1966    Node u(const Edge& e) const {
1967      return _digraph->source(e);
1968    }
1969
1970    Node v(const Edge& e) const {
1971      return _digraph->target(e);
1972    }
1973
1974    Node source(const Arc &a) const {
1975      return a._forward ? _digraph->source(a) : _digraph->target(a);
1976    }
1977
1978    Node target(const Arc &a) const {
1979      return a._forward ? _digraph->target(a) : _digraph->source(a);
1980    }
1981
1982    static Arc direct(const Edge &e, bool d) {
1983      return Arc(e, d);
1984    }
1985    Arc direct(const Edge &e, const Node& n) const {
1986      return Arc(e, _digraph->source(e) == n);
1987    }
1988
1989    static bool direction(const Arc &a) { return a._forward; }
1990
1991    Node nodeFromId(int ix) const { return _digraph->nodeFromId(ix); }
1992    Arc arcFromId(int ix) const {
1993      return direct(_digraph->arcFromId(ix >> 1), bool(ix & 1));
1994    }
1995    Edge edgeFromId(int ix) const { return _digraph->arcFromId(ix); }
1996
1997    int id(const Node &n) const { return _digraph->id(n); }
1998    int id(const Arc &a) const {
1999      return  (_digraph->id(a) << 1) | (a._forward ? 1 : 0);
2000    }
2001    int id(const Edge &e) const { return _digraph->id(e); }
2002
2003    int maxNodeId() const { return _digraph->maxNodeId(); }
2004    int maxArcId() const { return (_digraph->maxArcId() << 1) | 1; }
2005    int maxEdgeId() const { return _digraph->maxArcId(); }
2006
2007    Node addNode() { return _digraph->addNode(); }
2008    Edge addEdge(const Node& u, const Node& v) {
2009      return _digraph->addArc(u, v);
2010    }
2011
2012    void erase(const Node& i) { _digraph->erase(i); }
2013    void erase(const Edge& i) { _digraph->erase(i); }
2014
2015    void clear() { _digraph->clear(); }
2016
2017    typedef NodeNumTagIndicator<Digraph> NodeNumTag;
2018    int nodeNum() const { return _digraph->nodeNum(); }
2019
2020    typedef ArcNumTagIndicator<Digraph> ArcNumTag;
2021    int arcNum() const { return 2 * _digraph->arcNum(); }
2022
2023    typedef ArcNumTag EdgeNumTag;
2024    int edgeNum() const { return _digraph->arcNum(); }
2025
2026    typedef FindArcTagIndicator<Digraph> FindArcTag;
2027    Arc findArc(Node s, Node t, Arc p = INVALID) const {
2028      if (p == INVALID) {
2029        Edge arc = _digraph->findArc(s, t);
2030        if (arc != INVALID) return direct(arc, true);
2031        arc = _digraph->findArc(t, s);
2032        if (arc != INVALID) return direct(arc, false);
2033      } else if (direction(p)) {
2034        Edge arc = _digraph->findArc(s, t, p);
2035        if (arc != INVALID) return direct(arc, true);
2036        arc = _digraph->findArc(t, s);
2037        if (arc != INVALID) return direct(arc, false);
2038      } else {
2039        Edge arc = _digraph->findArc(t, s, p);
2040        if (arc != INVALID) return direct(arc, false);
2041      }
2042      return INVALID;
2043    }
2044
2045    typedef FindArcTag FindEdgeTag;
2046    Edge findEdge(Node s, Node t, Edge p = INVALID) const {
2047      if (s != t) {
2048        if (p == INVALID) {
2049          Edge arc = _digraph->findArc(s, t);
2050          if (arc != INVALID) return arc;
2051          arc = _digraph->findArc(t, s);
2052          if (arc != INVALID) return arc;
2053        } else if (_digraph->source(p) == s) {
2054          Edge arc = _digraph->findArc(s, t, p);
2055          if (arc != INVALID) return arc;
2056          arc = _digraph->findArc(t, s);
2057          if (arc != INVALID) return arc;
2058        } else {
2059          Edge arc = _digraph->findArc(t, s, p);
2060          if (arc != INVALID) return arc;
2061        }
2062      } else {
2063        return _digraph->findArc(s, t, p);
2064      }
2065      return INVALID;
2066    }
2067
2068  private:
2069
2070    template <typename V>
2071    class ArcMapBase {
2072    private:
2073
2074      typedef typename DGR::template ArcMap<V> MapImpl;
2075
2076    public:
2077
2078      typedef typename MapTraits<MapImpl>::ReferenceMapTag ReferenceMapTag;
2079
2080      typedef V Value;
2081      typedef Arc Key;
2082      typedef typename MapTraits<MapImpl>::ConstReturnValue ConstReturnValue;
2083      typedef typename MapTraits<MapImpl>::ReturnValue ReturnValue;
2084      typedef typename MapTraits<MapImpl>::ConstReturnValue ConstReference;
2085      typedef typename MapTraits<MapImpl>::ReturnValue Reference;
2086
2087      ArcMapBase(const UndirectorBase<DGR>& adaptor) :
2088        _forward(*adaptor._digraph), _backward(*adaptor._digraph) {}
2089
2090      ArcMapBase(const UndirectorBase<DGR>& adaptor, const V& value)
2091        : _forward(*adaptor._digraph, value),
2092          _backward(*adaptor._digraph, value) {}
2093
2094      void set(const Arc& a, const V& value) {
2095        if (direction(a)) {
2096          _forward.set(a, value);
2097        } else {
2098          _backward.set(a, value);
2099        }
2100      }
2101
2102      ConstReturnValue operator[](const Arc& a) const {
2103        if (direction(a)) {
2104          return _forward[a];
2105        } else {
2106          return _backward[a];
2107        }
2108      }
2109
2110      ReturnValue operator[](const Arc& a) {
2111        if (direction(a)) {
2112          return _forward[a];
2113        } else {
2114          return _backward[a];
2115        }
2116      }
2117
2118    protected:
2119
2120      MapImpl _forward, _backward;
2121
2122    };
2123
2124  public:
2125
2126    template <typename V>
2127    class NodeMap : public DGR::template NodeMap<V> {
2128      typedef typename DGR::template NodeMap<V> Parent;
2129
2130    public:
2131      typedef V Value;
2132
2133      explicit NodeMap(const UndirectorBase<DGR>& adaptor)
2134        : Parent(*adaptor._digraph) {}
2135
2136      NodeMap(const UndirectorBase<DGR>& adaptor, const V& value)
2137        : Parent(*adaptor._digraph, value) { }
2138
2139    private:
2140      NodeMap& operator=(const NodeMap& cmap) {
2141        return operator=<NodeMap>(cmap);
2142      }
2143
2144      template <typename CMap>
2145      NodeMap& operator=(const CMap& cmap) {
2146        Parent::operator=(cmap);
2147        return *this;
2148      }
2149
2150    };
2151
2152    template <typename V>
2153    class ArcMap
2154      : public SubMapExtender<UndirectorBase<DGR>, ArcMapBase<V> > {
2155      typedef SubMapExtender<UndirectorBase<DGR>, ArcMapBase<V> > Parent;
2156
2157    public:
2158      typedef V Value;
2159
2160      explicit ArcMap(const UndirectorBase<DGR>& adaptor)
2161        : Parent(adaptor) {}
2162
2163      ArcMap(const UndirectorBase<DGR>& adaptor, const V& value)
2164        : Parent(adaptor, value) {}
2165
2166    private:
2167      ArcMap& operator=(const ArcMap& cmap) {
2168        return operator=<ArcMap>(cmap);
2169      }
2170
2171      template <typename CMap>
2172      ArcMap& operator=(const CMap& cmap) {
2173        Parent::operator=(cmap);
2174        return *this;
2175      }
2176    };
2177
2178    template <typename V>
2179    class EdgeMap : public Digraph::template ArcMap<V> {
2180      typedef typename Digraph::template ArcMap<V> Parent;
2181
2182    public:
2183      typedef V Value;
2184
2185      explicit EdgeMap(const UndirectorBase<DGR>& adaptor)
2186        : Parent(*adaptor._digraph) {}
2187
2188      EdgeMap(const UndirectorBase<DGR>& adaptor, const V& value)
2189        : Parent(*adaptor._digraph, value) {}
2190
2191    private:
2192      EdgeMap& operator=(const EdgeMap& cmap) {
2193        return operator=<EdgeMap>(cmap);
2194      }
2195
2196      template <typename CMap>
2197      EdgeMap& operator=(const CMap& cmap) {
2198        Parent::operator=(cmap);
2199        return *this;
2200      }
2201
2202    };
2203
2204    typedef typename ItemSetTraits<DGR, Node>::ItemNotifier NodeNotifier;
2205    NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); }
2206
2207    typedef typename ItemSetTraits<DGR, Edge>::ItemNotifier EdgeNotifier;
2208    EdgeNotifier& notifier(Edge) const { return _digraph->notifier(Edge()); }
2209   
2210    typedef EdgeNotifier ArcNotifier;
2211    ArcNotifier& notifier(Arc) const { return _digraph->notifier(Edge()); }
2212
2213  protected:
2214
2215    UndirectorBase() : _digraph(0) {}
2216
2217    DGR* _digraph;
2218
2219    void initialize(DGR& digraph) {
2220      _digraph = &digraph;
2221    }
2222
2223  };
2224
2225  /// \ingroup graph_adaptors
2226  ///
2227  /// \brief Adaptor class for viewing a digraph as an undirected graph.
2228  ///
2229  /// Undirector adaptor can be used for viewing a digraph as an undirected
2230  /// graph. All arcs of the underlying digraph are showed in the
2231  /// adaptor as an edge (and also as a pair of arcs, of course).
2232  /// This adaptor conforms to the \ref concepts::Graph "Graph" concept.
2233  ///
2234  /// The adapted digraph can also be modified through this adaptor
2235  /// by adding or removing nodes or edges, unless the \c GR template
2236  /// parameter is set to be \c const.
2237  ///
2238  /// \tparam DGR The type of the adapted digraph.
2239  /// It must conform to the \ref concepts::Digraph "Digraph" concept.
2240  /// It can also be specified to be \c const.
2241  ///
2242  /// \note The \c Node type of this adaptor and the adapted digraph are
2243  /// convertible to each other, moreover the \c Edge type of the adaptor
2244  /// and the \c Arc type of the adapted digraph are also convertible to
2245  /// each other.
2246  /// (Thus the \c Arc type of the adaptor is convertible to the \c Arc type
2247  /// of the adapted digraph.)
2248  template<typename DGR>
2249#ifdef DOXYGEN
2250  class Undirector {
2251#else
2252  class Undirector :
2253    public GraphAdaptorExtender<UndirectorBase<DGR> > {
2254#endif
2255    typedef GraphAdaptorExtender<UndirectorBase<DGR> > Parent;
2256  public:
2257    /// The type of the adapted digraph.
2258    typedef DGR Digraph;
2259  protected:
2260    Undirector() { }
2261  public:
2262
2263    /// \brief Constructor
2264    ///
2265    /// Creates an undirected graph from the given digraph.
2266    Undirector(DGR& digraph) {
2267      initialize(digraph);
2268    }
2269
2270    /// \brief Arc map combined from two original arc maps
2271    ///
2272    /// This map adaptor class adapts two arc maps of the underlying
2273    /// digraph to get an arc map of the undirected graph.
2274    /// Its value type is inherited from the first arc map type (\c FW).
2275    /// \tparam FW The type of the "foward" arc map.
2276    /// \tparam BK The type of the "backward" arc map.
2277    template <typename FW, typename BK>
2278    class CombinedArcMap {
2279    public:
2280
2281      /// The key type of the map
2282      typedef typename Parent::Arc Key;
2283      /// The value type of the map
2284      typedef typename FW::Value Value;
2285
2286      typedef typename MapTraits<FW>::ReferenceMapTag ReferenceMapTag;
2287
2288      typedef typename MapTraits<FW>::ReturnValue ReturnValue;
2289      typedef typename MapTraits<FW>::ConstReturnValue ConstReturnValue;
2290      typedef typename MapTraits<FW>::ReturnValue Reference;
2291      typedef typename MapTraits<FW>::ConstReturnValue ConstReference;
2292
2293      /// Constructor
2294      CombinedArcMap(FW& forward, BK& backward)
2295        : _forward(&forward), _backward(&backward) {}
2296
2297      /// Sets the value associated with the given key.
2298      void set(const Key& e, const Value& a) {
2299        if (Parent::direction(e)) {
2300          _forward->set(e, a);
2301        } else {
2302          _backward->set(e, a);
2303        }
2304      }
2305
2306      /// Returns the value associated with the given key.
2307      ConstReturnValue operator[](const Key& e) const {
2308        if (Parent::direction(e)) {
2309          return (*_forward)[e];
2310        } else {
2311          return (*_backward)[e];
2312        }
2313      }
2314
2315      /// Returns a reference to the value associated with the given key.
2316      ReturnValue operator[](const Key& e) {
2317        if (Parent::direction(e)) {
2318          return (*_forward)[e];
2319        } else {
2320          return (*_backward)[e];
2321        }
2322      }
2323
2324    protected:
2325
2326      FW* _forward;
2327      BK* _backward;
2328
2329    };
2330
2331    /// \brief Returns a combined arc map
2332    ///
2333    /// This function just returns a combined arc map.
2334    template <typename FW, typename BK>
2335    static CombinedArcMap<FW, BK>
2336    combinedArcMap(FW& forward, BK& backward) {
2337      return CombinedArcMap<FW, BK>(forward, backward);
2338    }
2339
2340    template <typename FW, typename BK>
2341    static CombinedArcMap<const FW, BK>
2342    combinedArcMap(const FW& forward, BK& backward) {
2343      return CombinedArcMap<const FW, BK>(forward, backward);
2344    }
2345
2346    template <typename FW, typename BK>
2347    static CombinedArcMap<FW, const BK>
2348    combinedArcMap(FW& forward, const BK& backward) {
2349      return CombinedArcMap<FW, const BK>(forward, backward);
2350    }
2351
2352    template <typename FW, typename BK>
2353    static CombinedArcMap<const FW, const BK>
2354    combinedArcMap(const FW& forward, const BK& backward) {
2355      return CombinedArcMap<const FW, const BK>(forward, backward);
2356    }
2357
2358  };
2359
2360  /// \brief Returns a read-only Undirector adaptor
2361  ///
2362  /// This function just returns a read-only \ref Undirector adaptor.
2363  /// \ingroup graph_adaptors
2364  /// \relates Undirector
2365  template<typename DGR>
2366  Undirector<const DGR> undirector(const DGR& digraph) {
2367    return Undirector<const DGR>(digraph);
2368  }
2369
2370
2371  template <typename GR, typename DM>
2372  class OrienterBase {
2373  public:
2374
2375    typedef GR Graph;
2376    typedef DM DirectionMap;
2377
2378    typedef typename GR::Node Node;
2379    typedef typename GR::Edge Arc;
2380
2381    void reverseArc(const Arc& arc) {
2382      _direction->set(arc, !(*_direction)[arc]);
2383    }
2384
2385    void first(Node& i) const { _graph->first(i); }
2386    void first(Arc& i) const { _graph->first(i); }
2387    void firstIn(Arc& i, const Node& n) const {
2388      bool d = true;
2389      _graph->firstInc(i, d, n);
2390      while (i != INVALID && d == (*_direction)[i]) _graph->nextInc(i, d);
2391    }
2392    void firstOut(Arc& i, const Node& n ) const {
2393      bool d = true;
2394      _graph->firstInc(i, d, n);
2395      while (i != INVALID && d != (*_direction)[i]) _graph->nextInc(i, d);
2396    }
2397
2398    void next(Node& i) const { _graph->next(i); }
2399    void next(Arc& i) const { _graph->next(i); }
2400    void nextIn(Arc& i) const {
2401      bool d = !(*_direction)[i];
2402      _graph->nextInc(i, d);
2403      while (i != INVALID && d == (*_direction)[i]) _graph->nextInc(i, d);
2404    }
2405    void nextOut(Arc& i) const {
2406      bool d = (*_direction)[i];
2407      _graph->nextInc(i, d);
2408      while (i != INVALID && d != (*_direction)[i]) _graph->nextInc(i, d);
2409    }
2410
2411    Node source(const Arc& e) const {
2412      return (*_direction)[e] ? _graph->u(e) : _graph->v(e);
2413    }
2414    Node target(const Arc& e) const {
2415      return (*_direction)[e] ? _graph->v(e) : _graph->u(e);
2416    }
2417
2418    typedef NodeNumTagIndicator<Graph> NodeNumTag;
2419    int nodeNum() const { return _graph->nodeNum(); }
2420
2421    typedef EdgeNumTagIndicator<Graph> ArcNumTag;
2422    int arcNum() const { return _graph->edgeNum(); }
2423
2424    typedef FindEdgeTagIndicator<Graph> FindArcTag;
2425    Arc findArc(const Node& u, const Node& v,
2426                const Arc& prev = INVALID) const {
2427      Arc arc = _graph->findEdge(u, v, prev);
2428      while (arc != INVALID && source(arc) != u) {
2429        arc = _graph->findEdge(u, v, arc);
2430      }
2431      return arc;
2432    }
2433
2434    Node addNode() {
2435      return Node(_graph->addNode());
2436    }
2437
2438    Arc addArc(const Node& u, const Node& v) {
2439      Arc arc = _graph->addEdge(u, v);
2440      _direction->set(arc, _graph->u(arc) == u);
2441      return arc;
2442    }
2443
2444    void erase(const Node& i) { _graph->erase(i); }
2445    void erase(const Arc& i) { _graph->erase(i); }
2446
2447    void clear() { _graph->clear(); }
2448
2449    int id(const Node& v) const { return _graph->id(v); }
2450    int id(const Arc& e) const { return _graph->id(e); }
2451
2452    Node nodeFromId(int idx) const { return _graph->nodeFromId(idx); }
2453    Arc arcFromId(int idx) const { return _graph->edgeFromId(idx); }
2454
2455    int maxNodeId() const { return _graph->maxNodeId(); }
2456    int maxArcId() const { return _graph->maxEdgeId(); }
2457
2458    typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier;
2459    NodeNotifier& notifier(Node) const { return _graph->notifier(Node()); }
2460
2461    typedef typename ItemSetTraits<GR, Arc>::ItemNotifier ArcNotifier;
2462    ArcNotifier& notifier(Arc) const { return _graph->notifier(Arc()); }
2463
2464    template <typename V>
2465    class NodeMap : public GR::template NodeMap<V> {
2466      typedef typename GR::template NodeMap<V> Parent;
2467
2468    public:
2469
2470      explicit NodeMap(const OrienterBase<GR, DM>& adapter)
2471        : Parent(*adapter._graph) {}
2472
2473      NodeMap(const OrienterBase<GR, DM>& adapter, const V& value)
2474        : Parent(*adapter._graph, value) {}
2475
2476    private:
2477      NodeMap& operator=(const NodeMap& cmap) {
2478        return operator=<NodeMap>(cmap);
2479      }
2480
2481      template <typename CMap>
2482      NodeMap& operator=(const CMap& cmap) {
2483        Parent::operator=(cmap);
2484        return *this;
2485      }
2486
2487    };
2488
2489    template <typename V>
2490    class ArcMap : public GR::template EdgeMap<V> {
2491      typedef typename Graph::template EdgeMap<V> Parent;
2492
2493    public:
2494
2495      explicit ArcMap(const OrienterBase<GR, DM>& adapter)
2496        : Parent(*adapter._graph) { }
2497
2498      ArcMap(const OrienterBase<GR, DM>& adapter, const V& value)
2499        : Parent(*adapter._graph, value) { }
2500
2501    private:
2502      ArcMap& operator=(const ArcMap& cmap) {
2503        return operator=<ArcMap>(cmap);
2504      }
2505
2506      template <typename CMap>
2507      ArcMap& operator=(const CMap& cmap) {
2508        Parent::operator=(cmap);
2509        return *this;
2510      }
2511    };
2512
2513
2514
2515  protected:
2516    Graph* _graph;
2517    DM* _direction;
2518
2519    void initialize(GR& graph, DM& direction) {
2520      _graph = &graph;
2521      _direction = &direction;
2522    }
2523
2524  };
2525
2526  /// \ingroup graph_adaptors
2527  ///
2528  /// \brief Adaptor class for orienting the edges of a graph to get a digraph
2529  ///
2530  /// Orienter adaptor can be used for orienting the edges of a graph to
2531  /// get a digraph. A \c bool edge map of the underlying graph must be
2532  /// specified, which define the direction of the arcs in the adaptor.
2533  /// The arcs can be easily reversed by the \c reverseArc() member function
2534  /// of the adaptor.
2535  /// This class conforms to the \ref concepts::Digraph "Digraph" concept.
2536  ///
2537  /// The adapted graph can also be modified through this adaptor
2538  /// by adding or removing nodes or arcs, unless the \c GR template
2539  /// parameter is set to be \c const.
2540  ///
2541  /// \tparam GR The type of the adapted graph.
2542  /// It must conform to the \ref concepts::Graph "Graph" concept.
2543  /// It can also be specified to be \c const.
2544  /// \tparam DM The type of the direction map.
2545  /// It must be a \c bool (or convertible) edge map of the
2546  /// adapted graph. The default type is
2547  /// \ref concepts::Graph::EdgeMap "GR::EdgeMap<bool>".
2548  ///
2549  /// \note The \c Node type of this adaptor and the adapted graph are
2550  /// convertible to each other, moreover the \c Arc type of the adaptor
2551  /// and the \c Edge type of the adapted graph are also convertible to
2552  /// each other.
2553#ifdef DOXYGEN
2554  template<typename GR,
2555           typename DM>
2556  class Orienter {
2557#else
2558  template<typename GR,
2559           typename DM = typename GR::template EdgeMap<bool> >
2560  class Orienter :
2561    public DigraphAdaptorExtender<OrienterBase<GR, DM> > {
2562#endif
2563    typedef DigraphAdaptorExtender<OrienterBase<GR, DM> > Parent;
2564  public:
2565
2566    /// The type of the adapted graph.
2567    typedef GR Graph;
2568    /// The type of the direction edge map.
2569    typedef DM DirectionMap;
2570
2571    typedef typename Parent::Arc Arc;
2572
2573  protected:
2574    Orienter() { }
2575
2576  public:
2577
2578    /// \brief Constructor
2579    ///
2580    /// Constructor of the adaptor.
2581    Orienter(GR& graph, DM& direction) {
2582      Parent::initialize(graph, direction);
2583    }
2584
2585    /// \brief Reverses the given arc
2586    ///
2587    /// This function reverses the given arc.
2588    /// It is done by simply negate the assigned value of \c a
2589    /// in the direction map.
2590    void reverseArc(const Arc& a) {
2591      Parent::reverseArc(a);
2592    }
2593  };
2594
2595  /// \brief Returns a read-only Orienter adaptor
2596  ///
2597  /// This function just returns a read-only \ref Orienter adaptor.
2598  /// \ingroup graph_adaptors
2599  /// \relates Orienter
2600  template<typename GR, typename DM>
2601  Orienter<const GR, DM>
2602  orienter(const GR& graph, DM& direction) {
2603    return Orienter<const GR, DM>(graph, direction);
2604  }
2605
2606  template<typename GR, typename DM>
2607  Orienter<const GR, const DM>
2608  orienter(const GR& graph, const DM& direction) {
2609    return Orienter<const GR, const DM>(graph, direction);
2610  }
2611
2612  namespace _adaptor_bits {
2613
2614    template <typename DGR, typename CM, typename FM, typename TL>
2615    class ResForwardFilter {
2616    public:
2617
2618      typedef typename DGR::Arc Key;
2619      typedef bool Value;
2620
2621    private:
2622
2623      const CM* _capacity;
2624      const FM* _flow;
2625      TL _tolerance;
2626
2627    public:
2628
2629      ResForwardFilter(const CM& capacity, const FM& flow,
2630                       const TL& tolerance = TL())
2631        : _capacity(&capacity), _flow(&flow), _tolerance(tolerance) { }
2632
2633      bool operator[](const typename DGR::Arc& a) const {
2634        return _tolerance.positive((*_capacity)[a] - (*_flow)[a]);
2635      }
2636    };
2637
2638    template<typename DGR,typename CM, typename FM, typename TL>
2639    class ResBackwardFilter {
2640    public:
2641
2642      typedef typename DGR::Arc Key;
2643      typedef bool Value;
2644
2645    private:
2646
2647      const CM* _capacity;
2648      const FM* _flow;
2649      TL _tolerance;
2650
2651    public:
2652
2653      ResBackwardFilter(const CM& capacity, const FM& flow,
2654                        const TL& tolerance = TL())
2655        : _capacity(&capacity), _flow(&flow), _tolerance(tolerance) { }
2656
2657      bool operator[](const typename DGR::Arc& a) const {
2658        return _tolerance.positive((*_flow)[a]);
2659      }
2660    };
2661
2662  }
2663
2664  /// \ingroup graph_adaptors
2665  ///
2666  /// \brief Adaptor class for composing the residual digraph for directed
2667  /// flow and circulation problems.
2668  ///
2669  /// ResidualDigraph can be used for composing the \e residual digraph
2670  /// for directed flow and circulation problems. Let \f$ G=(V, A) \f$
2671  /// be a directed graph and let \f$ F \f$ be a number type.
2672  /// Let \f$ flow, cap: A\to F \f$ be functions on the arcs.
2673  /// This adaptor implements a digraph structure with node set \f$ V \f$
2674  /// and arc set \f$ A_{forward}\cup A_{backward} \f$,
2675  /// where \f$ A_{forward}=\{uv : uv\in A, flow(uv)<cap(uv)\} \f$ and
2676  /// \f$ A_{backward}=\{vu : uv\in A, flow(uv)>0\} \f$, i.e. the so
2677  /// called residual digraph.
2678  /// When the union \f$ A_{forward}\cup A_{backward} \f$ is taken,
2679  /// multiplicities are counted, i.e. the adaptor has exactly
2680  /// \f$ |A_{forward}| + |A_{backward}|\f$ arcs (it may have parallel
2681  /// arcs).
2682  /// This class conforms to the \ref concepts::Digraph "Digraph" concept.
2683  ///
2684  /// \tparam DGR The type of the adapted digraph.
2685  /// It must conform to the \ref concepts::Digraph "Digraph" concept.
2686  /// It is implicitly \c const.
2687  /// \tparam CM The type of the capacity map.
2688  /// It must be an arc map of some numerical type, which defines
2689  /// the capacities in the flow problem. It is implicitly \c const.
2690  /// The default type is
2691  /// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
2692  /// \tparam FM The type of the flow map.
2693  /// It must be an arc map of some numerical type, which defines
2694  /// the flow values in the flow problem. The default type is \c CM.
2695  /// \tparam TL The tolerance type for handling inexact computation.
2696  /// The default tolerance type depends on the value type of the
2697  /// capacity map.
2698  ///
2699  /// \note This adaptor is implemented using Undirector and FilterArcs
2700  /// adaptors.
2701  ///
2702  /// \note The \c Node type of this adaptor and the adapted digraph are
2703  /// convertible to each other, moreover the \c Arc type of the adaptor
2704  /// is convertible to the \c Arc type of the adapted digraph.
2705#ifdef DOXYGEN
2706  template<typename DGR, typename CM, typename FM, typename TL>
2707  class ResidualDigraph
2708#else
2709  template<typename DGR,
2710           typename CM = typename DGR::template ArcMap<int>,
2711           typename FM = CM,
2712           typename TL = Tolerance<typename CM::Value> >
2713  class ResidualDigraph
2714    : public SubDigraph<
2715        Undirector<const DGR>,
2716        ConstMap<typename DGR::Node, Const<bool, true> >,
2717        typename Undirector<const DGR>::template CombinedArcMap<
2718          _adaptor_bits::ResForwardFilter<const DGR, CM, FM, TL>,
2719          _adaptor_bits::ResBackwardFilter<const DGR, CM, FM, TL> > >
2720#endif
2721  {
2722  public:
2723
2724    /// The type of the underlying digraph.
2725    typedef DGR Digraph;
2726    /// The type of the capacity map.
2727    typedef CM CapacityMap;
2728    /// The type of the flow map.
2729    typedef FM FlowMap;
2730    /// The tolerance type.
2731    typedef TL Tolerance;
2732
2733    typedef typename CapacityMap::Value Value;
2734    typedef ResidualDigraph Adaptor;
2735
2736  protected:
2737
2738    typedef Undirector<const Digraph> Undirected;
2739
2740    typedef ConstMap<typename DGR::Node, Const<bool, true> > NodeFilter;
2741
2742    typedef _adaptor_bits::ResForwardFilter<const DGR, CM,
2743                                            FM, TL> ForwardFilter;
2744
2745    typedef _adaptor_bits::ResBackwardFilter<const DGR, CM,
2746                                             FM, TL> BackwardFilter;
2747
2748    typedef typename Undirected::
2749      template CombinedArcMap<ForwardFilter, BackwardFilter> ArcFilter;
2750
2751    typedef SubDigraph<Undirected, NodeFilter, ArcFilter> Parent;
2752
2753    const CapacityMap* _capacity;
2754    FlowMap* _flow;
2755
2756    Undirected _graph;
2757    NodeFilter _node_filter;
2758    ForwardFilter _forward_filter;
2759    BackwardFilter _backward_filter;
2760    ArcFilter _arc_filter;
2761
2762  public:
2763
2764    /// \brief Constructor
2765    ///
2766    /// Constructor of the residual digraph adaptor. The parameters are the
2767    /// digraph, the capacity map, the flow map, and a tolerance object.
2768    ResidualDigraph(const DGR& digraph, const CM& capacity,
2769                    FM& flow, const TL& tolerance = Tolerance())
2770      : Parent(), _capacity(&capacity), _flow(&flow),
2771        _graph(digraph), _node_filter(),
2772        _forward_filter(capacity, flow, tolerance),
2773        _backward_filter(capacity, flow, tolerance),
2774        _arc_filter(_forward_filter, _backward_filter)
2775    {
2776      Parent::initialize(_graph, _node_filter, _arc_filter);
2777    }
2778
2779    typedef typename Parent::Arc Arc;
2780
2781    /// \brief Returns the residual capacity of the given arc.
2782    ///
2783    /// Returns the residual capacity of the given arc.
2784    Value residualCapacity(const Arc& a) const {
2785      if (Undirected::direction(a)) {
2786        return (*_capacity)[a] - (*_flow)[a];
2787      } else {
2788        return (*_flow)[a];
2789      }
2790    }
2791
2792    /// \brief Augments on the given arc in the residual digraph.
2793    ///
2794    /// Augments on the given arc in the residual digraph. It increases
2795    /// or decreases the flow value on the original arc according to the
2796    /// direction of the residual arc.
2797    void augment(const Arc& a, const Value& v) const {
2798      if (Undirected::direction(a)) {
2799        _flow->set(a, (*_flow)[a] + v);
2800      } else {
2801        _flow->set(a, (*_flow)[a] - v);
2802      }
2803    }
2804
2805    /// \brief Returns \c true if the given residual arc is a forward arc.
2806    ///
2807    /// Returns \c true if the given residual arc has the same orientation
2808    /// as the original arc, i.e. it is a so called forward arc.
2809    static bool forward(const Arc& a) {
2810      return Undirected::direction(a);
2811    }
2812
2813    /// \brief Returns \c true if the given residual arc is a backward arc.
2814    ///
2815    /// Returns \c true if the given residual arc has the opposite orientation
2816    /// than the original arc, i.e. it is a so called backward arc.
2817    static bool backward(const Arc& a) {
2818      return !Undirected::direction(a);
2819    }
2820
2821    /// \brief Returns the forward oriented residual arc.
2822    ///
2823    /// Returns the forward oriented residual arc related to the given
2824    /// arc of the underlying digraph.
2825    static Arc forward(const typename Digraph::Arc& a) {
2826      return Undirected::direct(a, true);
2827    }
2828
2829    /// \brief Returns the backward oriented residual arc.
2830    ///
2831    /// Returns the backward oriented residual arc related to the given
2832    /// arc of the underlying digraph.
2833    static Arc backward(const typename Digraph::Arc& a) {
2834      return Undirected::direct(a, false);
2835    }
2836
2837    /// \brief Residual capacity map.
2838    ///
2839    /// This map adaptor class can be used for obtaining the residual
2840    /// capacities as an arc map of the residual digraph.
2841    /// Its value type is inherited from the capacity map.
2842    class ResidualCapacity {
2843    protected:
2844      const Adaptor* _adaptor;
2845    public:
2846      /// The key type of the map
2847      typedef Arc Key;
2848      /// The value type of the map
2849      typedef typename CapacityMap::Value Value;
2850
2851      /// Constructor
2852      ResidualCapacity(const ResidualDigraph<DGR, CM, FM, TL>& adaptor)
2853        : _adaptor(&adaptor) {}
2854
2855      /// Returns the value associated with the given residual arc
2856      Value operator[](const Arc& a) const {
2857        return _adaptor->residualCapacity(a);
2858      }
2859
2860    };
2861
2862    /// \brief Returns a residual capacity map
2863    ///
2864    /// This function just returns a residual capacity map.
2865    ResidualCapacity residualCapacity() const {
2866      return ResidualCapacity(*this);
2867    }
2868
2869  };
2870
2871  /// \brief Returns a (read-only) Residual adaptor
2872  ///
2873  /// This function just returns a (read-only) \ref ResidualDigraph adaptor.
2874  /// \ingroup graph_adaptors
2875  /// \relates ResidualDigraph
2876    template<typename DGR, typename CM, typename FM>
2877  ResidualDigraph<DGR, CM, FM>
2878  residualDigraph(const DGR& digraph, const CM& capacity_map, FM& flow_map) {
2879    return ResidualDigraph<DGR, CM, FM> (digraph, capacity_map, flow_map);
2880  }
2881
2882
2883  template <typename DGR>
2884  class SplitNodesBase {
2885    typedef DigraphAdaptorBase<const DGR> Parent;
2886
2887  public:
2888
2889    typedef DGR Digraph;
2890    typedef SplitNodesBase Adaptor;
2891
2892    typedef typename DGR::Node DigraphNode;
2893    typedef typename DGR::Arc DigraphArc;
2894
2895    class Node;
2896    class Arc;
2897
2898  private:
2899
2900    template <typename T> class NodeMapBase;
2901    template <typename T> class ArcMapBase;
2902
2903  public:
2904
2905    class Node : public DigraphNode {
2906      friend class SplitNodesBase;
2907      template <typename T> friend class NodeMapBase;
2908    private:
2909
2910      bool _in;
2911      Node(DigraphNode node, bool in)
2912        : DigraphNode(node), _in(in) {}
2913
2914    public:
2915
2916      Node() {}
2917      Node(Invalid) : DigraphNode(INVALID), _in(true) {}
2918
2919      bool operator==(const Node& node) const {
2920        return DigraphNode::operator==(node) && _in == node._in;
2921      }
2922
2923      bool operator!=(const Node& node) const {
2924        return !(*this == node);
2925      }
2926
2927      bool operator<(const Node& node) const {
2928        return DigraphNode::operator<(node) ||
2929          (DigraphNode::operator==(node) && _in < node._in);
2930      }
2931    };
2932
2933    class Arc {
2934      friend class SplitNodesBase;
2935      template <typename T> friend class ArcMapBase;
2936    private:
2937      typedef BiVariant<DigraphArc, DigraphNode> ArcImpl;
2938
2939      explicit Arc(const DigraphArc& arc) : _item(arc) {}
2940      explicit Arc(const DigraphNode& node) : _item(node) {}
2941
2942      ArcImpl _item;
2943
2944    public:
2945      Arc() {}
2946      Arc(Invalid) : _item(DigraphArc(INVALID)) {}
2947
2948      bool operator==(const Arc& arc) const {
2949        if (_item.firstState()) {
2950          if (arc._item.firstState()) {
2951            return _item.first() == arc._item.first();
2952          }
2953        } else {
2954          if (arc._item.secondState()) {
2955            return _item.second() == arc._item.second();
2956          }
2957        }
2958        return false;
2959      }
2960
2961      bool operator!=(const Arc& arc) const {
2962        return !(*this == arc);
2963      }
2964
2965      bool operator<(const Arc& arc) const {
2966        if (_item.firstState()) {
2967          if (arc._item.firstState()) {
2968            return _item.first() < arc._item.first();
2969          }
2970          return false;
2971        } else {
2972          if (arc._item.secondState()) {
2973            return _item.second() < arc._item.second();
2974          }
2975          return true;
2976        }
2977      }
2978
2979      operator DigraphArc() const { return _item.first(); }
2980      operator DigraphNode() const { return _item.second(); }
2981
2982    };
2983
2984    void first(Node& n) const {
2985      _digraph->first(n);
2986      n._in = true;
2987    }
2988
2989    void next(Node& n) const {
2990      if (n._in) {
2991        n._in = false;
2992      } else {
2993        n._in = true;
2994        _digraph->next(n);
2995      }
2996    }
2997
2998    void first(Arc& e) const {
2999      e._item.setSecond();
3000      _digraph->first(e._item.second());
3001      if (e._item.second() == INVALID) {
3002        e._item.setFirst();
3003        _digraph->first(e._item.first());
3004      }
3005    }
3006
3007    void next(Arc& e) const {
3008      if (e._item.secondState()) {
3009        _digraph->next(e._item.second());
3010        if (e._item.second() == INVALID) {
3011          e._item.setFirst();
3012          _digraph->first(e._item.first());
3013        }
3014      } else {
3015        _digraph->next(e._item.first());
3016      }
3017    }
3018
3019    void firstOut(Arc& e, const Node& n) const {
3020      if (n._in) {
3021        e._item.setSecond(n);
3022      } else {
3023        e._item.setFirst();
3024        _digraph->firstOut(e._item.first(), n);
3025      }
3026    }
3027
3028    void nextOut(Arc& e) const {
3029      if (!e._item.firstState()) {
3030        e._item.setFirst(INVALID);
3031      } else {
3032        _digraph->nextOut(e._item.first());
3033      }
3034    }
3035
3036    void firstIn(Arc& e, const Node& n) const {
3037      if (!n._in) {
3038        e._item.setSecond(n);
3039      } else {
3040        e._item.setFirst();
3041        _digraph->firstIn(e._item.first(), n);
3042      }
3043    }
3044
3045    void nextIn(Arc& e) const {
3046      if (!e._item.firstState()) {
3047        e._item.setFirst(INVALID);
3048      } else {
3049        _digraph->nextIn(e._item.first());
3050      }
3051    }
3052
3053    Node source(const Arc& e) const {
3054      if (e._item.firstState()) {
3055        return Node(_digraph->source(e._item.first()), false);
3056      } else {
3057        return Node(e._item.second(), true);
3058      }
3059    }
3060
3061    Node target(const Arc& e) const {
3062      if (e._item.firstState()) {
3063        return Node(_digraph->target(e._item.first()), true);
3064      } else {
3065        return Node(e._item.second(), false);
3066      }
3067    }
3068
3069    int id(const Node& n) const {
3070      return (_digraph->id(n) << 1) | (n._in ? 0 : 1);
3071    }
3072    Node nodeFromId(int ix) const {
3073      return Node(_digraph->nodeFromId(ix >> 1), (ix & 1) == 0);
3074    }
3075    int maxNodeId() const {
3076      return 2 * _digraph->maxNodeId() + 1;
3077    }
3078
3079    int id(const Arc& e) const {
3080      if (e._item.firstState()) {
3081        return _digraph->id(e._item.first()) << 1;
3082      } else {
3083        return (_digraph->id(e._item.second()) << 1) | 1;
3084      }
3085    }
3086    Arc arcFromId(int ix) const {
3087      if ((ix & 1) == 0) {
3088        return Arc(_digraph->arcFromId(ix >> 1));
3089      } else {
3090        return Arc(_digraph->nodeFromId(ix >> 1));
3091      }
3092    }
3093    int maxArcId() const {
3094      return std::max(_digraph->maxNodeId() << 1,
3095                      (_digraph->maxArcId() << 1) | 1);
3096    }
3097
3098    static bool inNode(const Node& n) {
3099      return n._in;
3100    }
3101
3102    static bool outNode(const Node& n) {
3103      return !n._in;
3104    }
3105
3106    static bool origArc(const Arc& e) {
3107      return e._item.firstState();
3108    }
3109
3110    static bool bindArc(const Arc& e) {
3111      return e._item.secondState();
3112    }
3113
3114    static Node inNode(const DigraphNode& n) {
3115      return Node(n, true);
3116    }
3117
3118    static Node outNode(const DigraphNode& n) {
3119      return Node(n, false);
3120    }
3121
3122    static Arc arc(const DigraphNode& n) {
3123      return Arc(n);
3124    }
3125
3126    static Arc arc(const DigraphArc& e) {
3127      return Arc(e);
3128    }
3129
3130    typedef True NodeNumTag;
3131    int nodeNum() const {
3132      return  2 * countNodes(*_digraph);
3133    }
3134
3135    typedef True ArcNumTag;
3136    int arcNum() const {
3137      return countArcs(*_digraph) + countNodes(*_digraph);
3138    }
3139
3140    typedef True FindArcTag;
3141    Arc findArc(const Node& u, const Node& v,
3142                const Arc& prev = INVALID) const {
3143      if (inNode(u) && outNode(v)) {
3144        if (static_cast<const DigraphNode&>(u) ==
3145            static_cast<const DigraphNode&>(v) && prev == INVALID) {
3146          return Arc(u);
3147        }
3148      }
3149      else if (outNode(u) && inNode(v)) {
3150        return Arc(::lemon::findArc(*_digraph, u, v, prev));
3151      }
3152      return INVALID;
3153    }
3154
3155  private:
3156
3157    template <typename V>
3158    class NodeMapBase
3159      : public MapTraits<typename Parent::template NodeMap<V> > {
3160      typedef typename Parent::template NodeMap<V> NodeImpl;
3161    public:
3162      typedef Node Key;
3163      typedef V Value;
3164      typedef typename MapTraits<NodeImpl>::ReferenceMapTag ReferenceMapTag;
3165      typedef typename MapTraits<NodeImpl>::ReturnValue ReturnValue;
3166      typedef typename MapTraits<NodeImpl>::ConstReturnValue ConstReturnValue;
3167      typedef typename MapTraits<NodeImpl>::ReturnValue Reference;
3168      typedef typename MapTraits<NodeImpl>::ConstReturnValue ConstReference;
3169
3170      NodeMapBase(const SplitNodesBase<DGR>& adaptor)
3171        : _in_map(*adaptor._digraph), _out_map(*adaptor._digraph) {}
3172      NodeMapBase(const SplitNodesBase<DGR>& adaptor, const V& value)
3173        : _in_map(*adaptor._digraph, value),
3174          _out_map(*adaptor._digraph, value) {}
3175
3176      void set(const Node& key, const V& val) {
3177        if (SplitNodesBase<DGR>::inNode(key)) { _in_map.set(key, val); }
3178        else {_out_map.set(key, val); }
3179      }
3180
3181      ReturnValue operator[](const Node& key) {
3182        if (SplitNodesBase<DGR>::inNode(key)) { return _in_map[key]; }
3183        else { return _out_map[key]; }
3184      }
3185
3186      ConstReturnValue operator[](const Node& key) const {
3187        if (Adaptor::inNode(key)) { return _in_map[key]; }
3188        else { return _out_map[key]; }
3189      }
3190
3191    private:
3192      NodeImpl _in_map, _out_map;
3193    };
3194
3195    template <typename V>
3196    class ArcMapBase
3197      : public MapTraits<typename Parent::template ArcMap<V> > {
3198      typedef typename Parent::template ArcMap<V> ArcImpl;
3199      typedef typename Parent::template NodeMap<V> NodeImpl;
3200    public:
3201      typedef Arc Key;
3202      typedef V Value;
3203      typedef typename MapTraits<ArcImpl>::ReferenceMapTag ReferenceMapTag;
3204      typedef typename MapTraits<ArcImpl>::ReturnValue ReturnValue;
3205      typedef typename MapTraits<ArcImpl>::ConstReturnValue ConstReturnValue;
3206      typedef typename MapTraits<ArcImpl>::ReturnValue Reference;
3207      typedef typename MapTraits<ArcImpl>::ConstReturnValue ConstReference;
3208
3209      ArcMapBase(const SplitNodesBase<DGR>& adaptor)
3210        : _arc_map(*adaptor._digraph), _node_map(*adaptor._digraph) {}
3211      ArcMapBase(const SplitNodesBase<DGR>& adaptor, const V& value)
3212        : _arc_map(*adaptor._digraph, value),
3213          _node_map(*adaptor._digraph, value) {}
3214
3215      void set(const Arc& key, const V& val) {
3216        if (SplitNodesBase<DGR>::origArc(key)) {
3217          _arc_map.set(static_cast<const DigraphArc&>(key), val);
3218        } else {
3219          _node_map.set(static_cast<const DigraphNode&>(key), val);
3220        }
3221      }
3222
3223      ReturnValue operator[](const Arc& key) {
3224        if (SplitNodesBase<DGR>::origArc(key)) {
3225          return _arc_map[static_cast<const DigraphArc&>(key)];
3226        } else {
3227          return _node_map[static_cast<const DigraphNode&>(key)];
3228        }
3229      }
3230
3231      ConstReturnValue operator[](const Arc& key) const {
3232        if (SplitNodesBase<DGR>::origArc(key)) {
3233          return _arc_map[static_cast<const DigraphArc&>(key)];
3234        } else {
3235          return _node_map[static_cast<const DigraphNode&>(key)];
3236        }
3237      }
3238
3239    private:
3240      ArcImpl _arc_map;
3241      NodeImpl _node_map;
3242    };
3243
3244  public:
3245
3246    template <typename V>
3247    class NodeMap
3248      : public SubMapExtender<SplitNodesBase<DGR>, NodeMapBase<V> > {
3249      typedef SubMapExtender<SplitNodesBase<DGR>, NodeMapBase<V> > Parent;
3250
3251    public:
3252      typedef V Value;
3253
3254      NodeMap(const SplitNodesBase<DGR>& adaptor)
3255        : Parent(adaptor) {}
3256
3257      NodeMap(const SplitNodesBase<DGR>& adaptor, const V& value)
3258        : Parent(adaptor, value) {}
3259
3260    private:
3261      NodeMap& operator=(const NodeMap& cmap) {
3262        return operator=<NodeMap>(cmap);
3263      }
3264
3265      template <typename CMap>
3266      NodeMap& operator=(const CMap& cmap) {
3267        Parent::operator=(cmap);
3268        return *this;
3269      }
3270    };
3271
3272    template <typename V>
3273    class ArcMap
3274      : public SubMapExtender<SplitNodesBase<DGR>, ArcMapBase<V> > {
3275      typedef SubMapExtender<SplitNodesBase<DGR>, ArcMapBase<V> > Parent;
3276
3277    public:
3278      typedef V Value;
3279
3280      ArcMap(const SplitNodesBase<DGR>& adaptor)
3281        : Parent(adaptor) {}
3282
3283      ArcMap(const SplitNodesBase<DGR>& adaptor, const V& value)
3284        : Parent(adaptor, value) {}
3285
3286    private:
3287      ArcMap& operator=(const ArcMap& cmap) {
3288        return operator=<ArcMap>(cmap);
3289      }
3290
3291      template <typename CMap>
3292      ArcMap& operator=(const CMap& cmap) {
3293        Parent::operator=(cmap);
3294        return *this;
3295      }
3296    };
3297
3298  protected:
3299
3300    SplitNodesBase() : _digraph(0) {}
3301
3302    DGR* _digraph;
3303
3304    void initialize(Digraph& digraph) {
3305      _digraph = &digraph;
3306    }
3307
3308  };
3309
3310  /// \ingroup graph_adaptors
3311  ///
3312  /// \brief Adaptor class for splitting the nodes of a digraph.
3313  ///
3314  /// SplitNodes adaptor can be used for splitting each node into an
3315  /// \e in-node and an \e out-node in a digraph. Formaly, the adaptor
3316  /// replaces each node \f$ u \f$ in the digraph with two nodes,
3317  /// namely node \f$ u_{in} \f$ and node \f$ u_{out} \f$.
3318  /// If there is a \f$ (v, u) \f$ arc in the original digraph, then the
3319  /// new target of the arc will be \f$ u_{in} \f$ and similarly the
3320  /// source of each original \f$ (u, v) \f$ arc will be \f$ u_{out} \f$.
3321  /// The adaptor adds an additional \e bind \e arc from \f$ u_{in} \f$
3322  /// to \f$ u_{out} \f$ for each node \f$ u \f$ of the original digraph.
3323  ///
3324  /// The aim of this class is running an algorithm with respect to node
3325  /// costs or capacities if the algorithm considers only arc costs or
3326  /// capacities directly.
3327  /// In this case you can use \c SplitNodes adaptor, and set the node
3328  /// costs/capacities of the original digraph to the \e bind \e arcs
3329  /// in the adaptor.
3330  ///
3331  /// \tparam DGR The type of the adapted digraph.
3332  /// It must conform to the \ref concepts::Digraph "Digraph" concept.
3333  /// It is implicitly \c const.
3334  ///
3335  /// \note The \c Node type of this adaptor is converible to the \c Node
3336  /// type of the adapted digraph.
3337  template <typename DGR>
3338#ifdef DOXYGEN
3339  class SplitNodes {
3340#else
3341  class SplitNodes
3342    : public DigraphAdaptorExtender<SplitNodesBase<const DGR> > {
3343#endif
3344    typedef DigraphAdaptorExtender<SplitNodesBase<const DGR> > Parent;
3345
3346  public:
3347    typedef DGR Digraph;
3348
3349    typedef typename DGR::Node DigraphNode;
3350    typedef typename DGR::Arc DigraphArc;
3351
3352    typedef typename Parent::Node Node;
3353    typedef typename Parent::Arc Arc;
3354
3355    /// \brief Constructor
3356    ///
3357    /// Constructor of the adaptor.
3358    SplitNodes(const DGR& g) {
3359      Parent::initialize(g);
3360    }
3361
3362    /// \brief Returns \c true if the given node is an in-node.
3363    ///
3364    /// Returns \c true if the given node is an in-node.
3365    static bool inNode(const Node& n) {
3366      return Parent::inNode(n);
3367    }
3368
3369    /// \brief Returns \c true if the given node is an out-node.
3370    ///
3371    /// Returns \c true if the given node is an out-node.
3372    static bool outNode(const Node& n) {
3373      return Parent::outNode(n);
3374    }
3375
3376    /// \brief Returns \c true if the given arc is an original arc.
3377    ///
3378    /// Returns \c true if the given arc is one of the arcs in the
3379    /// original digraph.
3380    static bool origArc(const Arc& a) {
3381      return Parent::origArc(a);
3382    }
3383
3384    /// \brief Returns \c true if the given arc is a bind arc.
3385    ///
3386    /// Returns \c true if the given arc is a bind arc, i.e. it connects
3387    /// an in-node and an out-node.
3388    static bool bindArc(const Arc& a) {
3389      return Parent::bindArc(a);
3390    }
3391
3392    /// \brief Returns the in-node created from the given original node.
3393    ///
3394    /// Returns the in-node created from the given original node.
3395    static Node inNode(const DigraphNode& n) {
3396      return Parent::inNode(n);
3397    }
3398
3399    /// \brief Returns the out-node created from the given original node.
3400    ///
3401    /// Returns the out-node created from the given original node.
3402    static Node outNode(const DigraphNode& n) {
3403      return Parent::outNode(n);
3404    }
3405
3406    /// \brief Returns the bind arc that corresponds to the given
3407    /// original node.
3408    ///
3409    /// Returns the bind arc in the adaptor that corresponds to the given
3410    /// original node, i.e. the arc connecting the in-node and out-node
3411    /// of \c n.
3412    static Arc arc(const DigraphNode& n) {
3413      return Parent::arc(n);
3414    }
3415
3416    /// \brief Returns the arc that corresponds to the given original arc.
3417    ///
3418    /// Returns the arc in the adaptor that corresponds to the given
3419    /// original arc.
3420    static Arc arc(const DigraphArc& a) {
3421      return Parent::arc(a);
3422    }
3423
3424    /// \brief Node map combined from two original node maps
3425    ///
3426    /// This map adaptor class adapts two node maps of the original digraph
3427    /// to get a node map of the split digraph.
3428    /// Its value type is inherited from the first node map type (\c IN).
3429    /// \tparam IN The type of the node map for the in-nodes.
3430    /// \tparam OUT The type of the node map for the out-nodes.
3431    template <typename IN, typename OUT>
3432    class CombinedNodeMap {
3433    public:
3434
3435      /// The key type of the map
3436      typedef Node Key;
3437      /// The value type of the map
3438      typedef typename IN::Value Value;
3439
3440      typedef typename MapTraits<IN>::ReferenceMapTag ReferenceMapTag;
3441      typedef typename MapTraits<IN>::ReturnValue ReturnValue;
3442      typedef typename MapTraits<IN>::ConstReturnValue ConstReturnValue;
3443      typedef typename MapTraits<IN>::ReturnValue Reference;
3444      typedef typename MapTraits<IN>::ConstReturnValue ConstReference;
3445
3446      /// Constructor
3447      CombinedNodeMap(IN& in_map, OUT& out_map)
3448        : _in_map(in_map), _out_map(out_map) {}
3449
3450      /// Returns the value associated with the given key.
3451      Value operator[](const Key& key) const {
3452        if (SplitNodesBase<const DGR>::inNode(key)) {
3453          return _in_map[key];
3454        } else {
3455          return _out_map[key];
3456        }
3457      }
3458
3459      /// Returns a reference to the value associated with the given key.
3460      Value& operator[](const Key& key) {
3461        if (SplitNodesBase<const DGR>::inNode(key)) {
3462          return _in_map[key];
3463        } else {
3464          return _out_map[key];
3465        }
3466      }
3467
3468      /// Sets the value associated with the given key.
3469      void set(const Key& key, const Value& value) {
3470        if (SplitNodesBase<const DGR>::inNode(key)) {
3471          _in_map.set(key, value);
3472        } else {
3473          _out_map.set(key, value);
3474        }
3475      }
3476
3477    private:
3478
3479      IN& _in_map;
3480      OUT& _out_map;
3481
3482    };
3483
3484
3485    /// \brief Returns a combined node map
3486    ///
3487    /// This function just returns a combined node map.
3488    template <typename IN, typename OUT>
3489    static CombinedNodeMap<IN, OUT>
3490    combinedNodeMap(IN& in_map, OUT& out_map) {
3491      return CombinedNodeMap<IN, OUT>(in_map, out_map);
3492    }
3493
3494    template <typename IN, typename OUT>
3495    static CombinedNodeMap<const IN, OUT>
3496    combinedNodeMap(const IN& in_map, OUT& out_map) {
3497      return CombinedNodeMap<const IN, OUT>(in_map, out_map);
3498    }
3499
3500    template <typename IN, typename OUT>
3501    static CombinedNodeMap<IN, const OUT>
3502    combinedNodeMap(IN& in_map, const OUT& out_map) {
3503      return CombinedNodeMap<IN, const OUT>(in_map, out_map);
3504    }
3505
3506    template <typename IN, typename OUT>
3507    static CombinedNodeMap<const IN, const OUT>
3508    combinedNodeMap(const IN& in_map, const OUT& out_map) {
3509      return CombinedNodeMap<const IN, const OUT>(in_map, out_map);
3510    }
3511
3512    /// \brief Arc map combined from an arc map and a node map of the
3513    /// original digraph.
3514    ///
3515    /// This map adaptor class adapts an arc map and a node map of the
3516    /// original digraph to get an arc map of the split digraph.
3517    /// Its value type is inherited from the original arc map type (\c AM).
3518    /// \tparam AM The type of the arc map.
3519    /// \tparam NM the type of the node map.
3520    template <typename AM, typename NM>
3521    class CombinedArcMap {
3522    public:
3523
3524      /// The key type of the map
3525      typedef Arc Key;
3526      /// The value type of the map
3527      typedef typename AM::Value Value;
3528
3529      typedef typename MapTraits<AM>::ReferenceMapTag ReferenceMapTag;
3530      typedef typename MapTraits<AM>::ReturnValue ReturnValue;
3531      typedef typename MapTraits<AM>::ConstReturnValue ConstReturnValue;
3532      typedef typename MapTraits<AM>::ReturnValue Reference;
3533      typedef typename MapTraits<AM>::ConstReturnValue ConstReference;
3534
3535      /// Constructor
3536      CombinedArcMap(AM& arc_map, NM& node_map)
3537        : _arc_map(arc_map), _node_map(node_map) {}
3538
3539      /// Returns the value associated with the given key.
3540      Value operator[](const Key& arc) const {
3541        if (SplitNodesBase<const DGR>::origArc(arc)) {
3542          return _arc_map[arc];
3543        } else {
3544          return _node_map[arc];
3545        }
3546      }
3547
3548      /// Returns a reference to the value associated with the given key.
3549      Value& operator[](const Key& arc) {
3550        if (SplitNodesBase<const DGR>::origArc(arc)) {
3551          return _arc_map[arc];
3552        } else {
3553          return _node_map[arc];
3554        }
3555      }
3556
3557      /// Sets the value associated with the given key.
3558      void set(const Arc& arc, const Value& val) {
3559        if (SplitNodesBase<const DGR>::origArc(arc)) {
3560          _arc_map.set(arc, val);
3561        } else {
3562          _node_map.set(arc, val);
3563        }
3564      }
3565
3566    private:
3567
3568      AM& _arc_map;
3569      NM& _node_map;
3570
3571    };
3572
3573    /// \brief Returns a combined arc map
3574    ///
3575    /// This function just returns a combined arc map.
3576    template <typename ArcMap, typename NodeMap>
3577    static CombinedArcMap<ArcMap, NodeMap>
3578    combinedArcMap(ArcMap& arc_map, NodeMap& node_map) {
3579      return CombinedArcMap<ArcMap, NodeMap>(arc_map, node_map);
3580    }
3581
3582    template <typename ArcMap, typename NodeMap>
3583    static CombinedArcMap<const ArcMap, NodeMap>
3584    combinedArcMap(const ArcMap& arc_map, NodeMap& node_map) {
3585      return CombinedArcMap<const ArcMap, NodeMap>(arc_map, node_map);
3586    }
3587
3588    template <typename ArcMap, typename NodeMap>
3589    static CombinedArcMap<ArcMap, const NodeMap>
3590    combinedArcMap(ArcMap& arc_map, const NodeMap& node_map) {
3591      return CombinedArcMap<ArcMap, const NodeMap>(arc_map, node_map);
3592    }
3593
3594    template <typename ArcMap, typename NodeMap>
3595    static CombinedArcMap<const ArcMap, const NodeMap>
3596    combinedArcMap(const ArcMap& arc_map, const NodeMap& node_map) {
3597      return CombinedArcMap<const ArcMap, const NodeMap>(arc_map, node_map);
3598    }
3599
3600  };
3601
3602  /// \brief Returns a (read-only) SplitNodes adaptor
3603  ///
3604  /// This function just returns a (read-only) \ref SplitNodes adaptor.
3605  /// \ingroup graph_adaptors
3606  /// \relates SplitNodes
3607  template<typename DGR>
3608  SplitNodes<DGR>
3609  splitNodes(const DGR& digraph) {
3610    return SplitNodes<DGR>(digraph);
3611  }
3612
3613#undef LEMON_SCOPE_FIX
3614
3615} //namespace lemon
3616
3617#endif //LEMON_ADAPTORS_H
Note: See TracBrowser for help on using the repository browser.