COIN-OR::LEMON - Graph Library

source: lemon-1.2/lemon/adaptors.h @ 455:5a1e9fdcfd3a

Last change on this file since 455:5a1e9fdcfd3a was 455:5a1e9fdcfd3a, checked in by Alpar Juttner <alpar@…>, 15 years ago

Merge

File size: 110.6 KB
Line 
1/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 *
3 * This file is a part of LEMON, a generic C++ optimization library.
4 *
5 * Copyright (C) 2003-2009
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 *
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
12 *
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
15 * purpose.
16 *
17 */
18
19#ifndef LEMON_ADAPTORS_H
20#define LEMON_ADAPTORS_H
21
22/// \ingroup graph_adaptors
23/// \file
24/// \brief Adaptor classes for digraphs and graphs
25///
26/// This file contains several useful adaptors for digraphs and graphs.
27
28#include <lemon/core.h>
29#include <lemon/maps.h>
30#include <lemon/bits/variant.h>
31
32#include <lemon/bits/graph_adaptor_extender.h>
33#include <lemon/tolerance.h>
34
35#include <algorithm>
36
37namespace lemon {
38
39  template<typename _Digraph>
40  class DigraphAdaptorBase {
41  public:
42    typedef _Digraph Digraph;
43    typedef DigraphAdaptorBase Adaptor;
44    typedef Digraph ParentDigraph;
45
46  protected:
47    Digraph* _digraph;
48    DigraphAdaptorBase() : _digraph(0) { }
49    void setDigraph(Digraph& digraph) { _digraph = &digraph; }
50
51  public:
52    DigraphAdaptorBase(Digraph& digraph) : _digraph(&digraph) { }
53
54    typedef typename Digraph::Node Node;
55    typedef typename Digraph::Arc Arc;
56
57    void first(Node& i) const { _digraph->first(i); }
58    void first(Arc& i) const { _digraph->first(i); }
59    void firstIn(Arc& i, const Node& n) const { _digraph->firstIn(i, n); }
60    void firstOut(Arc& i, const Node& n ) const { _digraph->firstOut(i, n); }
61
62    void next(Node& i) const { _digraph->next(i); }
63    void next(Arc& i) const { _digraph->next(i); }
64    void nextIn(Arc& i) const { _digraph->nextIn(i); }
65    void nextOut(Arc& i) const { _digraph->nextOut(i); }
66
67    Node source(const Arc& a) const { return _digraph->source(a); }
68    Node target(const Arc& a) const { return _digraph->target(a); }
69
70    typedef NodeNumTagIndicator<Digraph> NodeNumTag;
71    int nodeNum() const { return _digraph->nodeNum(); }
72
73    typedef ArcNumTagIndicator<Digraph> ArcNumTag;
74    int arcNum() const { return _digraph->arcNum(); }
75
76    typedef FindArcTagIndicator<Digraph> FindArcTag;
77    Arc findArc(const Node& u, const Node& v, const Arc& prev = INVALID) const {
78      return _digraph->findArc(u, v, prev);
79    }
80
81    Node addNode() { return _digraph->addNode(); }
82    Arc addArc(const Node& u, const Node& v) { return _digraph->addArc(u, v); }
83
84    void erase(const Node& n) { _digraph->erase(n); }
85    void erase(const Arc& a) { _digraph->erase(a); }
86
87    void clear() { _digraph->clear(); }
88
89    int id(const Node& n) const { return _digraph->id(n); }
90    int id(const Arc& a) const { return _digraph->id(a); }
91
92    Node nodeFromId(int ix) const { return _digraph->nodeFromId(ix); }
93    Arc arcFromId(int ix) const { return _digraph->arcFromId(ix); }
94
95    int maxNodeId() const { return _digraph->maxNodeId(); }
96    int maxArcId() const { return _digraph->maxArcId(); }
97
98    typedef typename ItemSetTraits<Digraph, Node>::ItemNotifier NodeNotifier;
99    NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); }
100
101    typedef typename ItemSetTraits<Digraph, Arc>::ItemNotifier ArcNotifier;
102    ArcNotifier& notifier(Arc) const { return _digraph->notifier(Arc()); }
103
104    template <typename _Value>
105    class NodeMap : public Digraph::template NodeMap<_Value> {
106    public:
107
108      typedef typename Digraph::template NodeMap<_Value> Parent;
109
110      explicit NodeMap(const Adaptor& adaptor)
111        : Parent(*adaptor._digraph) {}
112
113      NodeMap(const Adaptor& adaptor, const _Value& value)
114        : Parent(*adaptor._digraph, value) { }
115
116    private:
117      NodeMap& operator=(const NodeMap& cmap) {
118        return operator=<NodeMap>(cmap);
119      }
120
121      template <typename CMap>
122      NodeMap& operator=(const CMap& cmap) {
123        Parent::operator=(cmap);
124        return *this;
125      }
126
127    };
128
129    template <typename _Value>
130    class ArcMap : public Digraph::template ArcMap<_Value> {
131    public:
132
133      typedef typename Digraph::template ArcMap<_Value> Parent;
134
135      explicit ArcMap(const Adaptor& adaptor)
136        : Parent(*adaptor._digraph) {}
137
138      ArcMap(const Adaptor& adaptor, const _Value& value)
139        : Parent(*adaptor._digraph, value) {}
140
141    private:
142      ArcMap& operator=(const ArcMap& cmap) {
143        return operator=<ArcMap>(cmap);
144      }
145
146      template <typename CMap>
147      ArcMap& operator=(const CMap& cmap) {
148        Parent::operator=(cmap);
149        return *this;
150      }
151
152    };
153
154  };
155
156  template<typename _Graph>
157  class GraphAdaptorBase {
158  public:
159    typedef _Graph Graph;
160    typedef Graph ParentGraph;
161
162  protected:
163    Graph* _graph;
164
165    GraphAdaptorBase() : _graph(0) {}
166
167    void setGraph(Graph& graph) { _graph = &graph; }
168
169  public:
170    GraphAdaptorBase(Graph& graph) : _graph(&graph) {}
171
172    typedef typename Graph::Node Node;
173    typedef typename Graph::Arc Arc;
174    typedef typename Graph::Edge Edge;
175
176    void first(Node& i) const { _graph->first(i); }
177    void first(Arc& i) const { _graph->first(i); }
178    void first(Edge& i) const { _graph->first(i); }
179    void firstIn(Arc& i, const Node& n) const { _graph->firstIn(i, n); }
180    void firstOut(Arc& i, const Node& n ) const { _graph->firstOut(i, n); }
181    void firstInc(Edge &i, bool &d, const Node &n) const {
182      _graph->firstInc(i, d, n);
183    }
184
185    void next(Node& i) const { _graph->next(i); }
186    void next(Arc& i) const { _graph->next(i); }
187    void next(Edge& i) const { _graph->next(i); }
188    void nextIn(Arc& i) const { _graph->nextIn(i); }
189    void nextOut(Arc& i) const { _graph->nextOut(i); }
190    void nextInc(Edge &i, bool &d) const { _graph->nextInc(i, d); }
191
192    Node u(const Edge& e) const { return _graph->u(e); }
193    Node v(const Edge& e) const { return _graph->v(e); }
194
195    Node source(const Arc& a) const { return _graph->source(a); }
196    Node target(const Arc& a) const { return _graph->target(a); }
197
198    typedef NodeNumTagIndicator<Graph> NodeNumTag;
199    int nodeNum() const { return _graph->nodeNum(); }
200
201    typedef ArcNumTagIndicator<Graph> ArcNumTag;
202    int arcNum() const { return _graph->arcNum(); }
203
204    typedef EdgeNumTagIndicator<Graph> EdgeNumTag;
205    int edgeNum() const { return _graph->edgeNum(); }
206
207    typedef FindArcTagIndicator<Graph> FindArcTag;
208    Arc findArc(const Node& u, const Node& v,
209                const Arc& prev = INVALID) const {
210      return _graph->findArc(u, v, prev);
211    }
212
213    typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
214    Edge findEdge(const Node& u, const Node& v,
215                  const Edge& prev = INVALID) const {
216      return _graph->findEdge(u, v, prev);
217    }
218
219    Node addNode() { return _graph->addNode(); }
220    Edge addEdge(const Node& u, const Node& v) { return _graph->addEdge(u, v); }
221
222    void erase(const Node& i) { _graph->erase(i); }
223    void erase(const Edge& i) { _graph->erase(i); }
224
225    void clear() { _graph->clear(); }
226
227    bool direction(const Arc& a) const { return _graph->direction(a); }
228    Arc direct(const Edge& e, bool d) const { return _graph->direct(e, d); }
229
230    int id(const Node& v) const { return _graph->id(v); }
231    int id(const Arc& a) const { return _graph->id(a); }
232    int id(const Edge& e) const { return _graph->id(e); }
233
234    Node nodeFromId(int ix) const { return _graph->nodeFromId(ix); }
235    Arc arcFromId(int ix) const { return _graph->arcFromId(ix); }
236    Edge edgeFromId(int ix) const { return _graph->edgeFromId(ix); }
237
238    int maxNodeId() const { return _graph->maxNodeId(); }
239    int maxArcId() const { return _graph->maxArcId(); }
240    int maxEdgeId() const { return _graph->maxEdgeId(); }
241
242    typedef typename ItemSetTraits<Graph, Node>::ItemNotifier NodeNotifier;
243    NodeNotifier& notifier(Node) const { return _graph->notifier(Node()); }
244
245    typedef typename ItemSetTraits<Graph, Arc>::ItemNotifier ArcNotifier;
246    ArcNotifier& notifier(Arc) const { return _graph->notifier(Arc()); }
247
248    typedef typename ItemSetTraits<Graph, Edge>::ItemNotifier EdgeNotifier;
249    EdgeNotifier& notifier(Edge) const { return _graph->notifier(Edge()); }
250
251    template <typename _Value>
252    class NodeMap : public Graph::template NodeMap<_Value> {
253    public:
254      typedef typename Graph::template NodeMap<_Value> Parent;
255      explicit NodeMap(const GraphAdaptorBase<Graph>& adapter)
256        : Parent(*adapter._graph) {}
257      NodeMap(const GraphAdaptorBase<Graph>& adapter, const _Value& value)
258        : Parent(*adapter._graph, value) {}
259
260    private:
261      NodeMap& operator=(const NodeMap& cmap) {
262        return operator=<NodeMap>(cmap);
263      }
264
265      template <typename CMap>
266      NodeMap& operator=(const CMap& cmap) {
267        Parent::operator=(cmap);
268        return *this;
269      }
270
271    };
272
273    template <typename _Value>
274    class ArcMap : public Graph::template ArcMap<_Value> {
275    public:
276      typedef typename Graph::template ArcMap<_Value> Parent;
277      explicit ArcMap(const GraphAdaptorBase<Graph>& adapter)
278        : Parent(*adapter._graph) {}
279      ArcMap(const GraphAdaptorBase<Graph>& adapter, const _Value& value)
280        : Parent(*adapter._graph, value) {}
281
282    private:
283      ArcMap& operator=(const ArcMap& cmap) {
284        return operator=<ArcMap>(cmap);
285      }
286
287      template <typename CMap>
288      ArcMap& operator=(const CMap& cmap) {
289        Parent::operator=(cmap);
290        return *this;
291      }
292    };
293
294    template <typename _Value>
295    class EdgeMap : public Graph::template EdgeMap<_Value> {
296    public:
297      typedef typename Graph::template EdgeMap<_Value> Parent;
298      explicit EdgeMap(const GraphAdaptorBase<Graph>& adapter)
299        : Parent(*adapter._graph) {}
300      EdgeMap(const GraphAdaptorBase<Graph>& adapter, const _Value& value)
301        : Parent(*adapter._graph, value) {}
302
303    private:
304      EdgeMap& operator=(const EdgeMap& cmap) {
305        return operator=<EdgeMap>(cmap);
306      }
307
308      template <typename CMap>
309      EdgeMap& operator=(const CMap& cmap) {
310        Parent::operator=(cmap);
311        return *this;
312      }
313    };
314
315  };
316
317  template <typename _Digraph>
318  class ReverseDigraphBase : public DigraphAdaptorBase<_Digraph> {
319  public:
320    typedef _Digraph Digraph;
321    typedef DigraphAdaptorBase<_Digraph> Parent;
322  protected:
323    ReverseDigraphBase() : Parent() { }
324  public:
325    typedef typename Parent::Node Node;
326    typedef typename Parent::Arc Arc;
327
328    void firstIn(Arc& a, const Node& n) const { Parent::firstOut(a, n); }
329    void firstOut(Arc& a, const Node& n ) const { Parent::firstIn(a, n); }
330
331    void nextIn(Arc& a) const { Parent::nextOut(a); }
332    void nextOut(Arc& a) const { Parent::nextIn(a); }
333
334    Node source(const Arc& a) const { return Parent::target(a); }
335    Node target(const Arc& a) const { return Parent::source(a); }
336
337    Arc addArc(const Node& u, const Node& v) { return Parent::addArc(v, u); }
338
339    typedef FindArcTagIndicator<Digraph> FindArcTag;
340    Arc findArc(const Node& u, const Node& v,
341                const Arc& prev = INVALID) const {
342      return Parent::findArc(v, u, prev);
343    }
344
345  };
346
347  /// \ingroup graph_adaptors
348  ///
349  /// \brief Adaptor class for reversing the orientation of the arcs in
350  /// a digraph.
351  ///
352  /// ReverseDigraph can be used for reversing the arcs in a digraph.
353  /// It conforms to the \ref concepts::Digraph "Digraph" concept.
354  ///
355  /// The adapted digraph can also be modified through this adaptor
356  /// by adding or removing nodes or arcs, unless the \c GR template
357  /// parameter is set to be \c const.
358  ///
359  /// \tparam GR The type of the adapted digraph.
360  /// It must conform to the \ref concepts::Digraph "Digraph" concept.
361  /// It can also be specified to be \c const.
362  ///
363  /// \note The \c Node and \c Arc types of this adaptor and the adapted
364  /// digraph are convertible to each other.
365  template<typename GR>
366#ifdef DOXYGEN
367  class ReverseDigraph {
368#else
369  class ReverseDigraph :
370    public DigraphAdaptorExtender<ReverseDigraphBase<GR> > {
371#endif
372  public:
373    /// The type of the adapted digraph.
374    typedef GR Digraph;
375    typedef DigraphAdaptorExtender<ReverseDigraphBase<GR> > Parent;
376  protected:
377    ReverseDigraph() { }
378  public:
379
380    /// \brief Constructor
381    ///
382    /// Creates a reverse digraph adaptor for the given digraph.
383    explicit ReverseDigraph(Digraph& digraph) {
384      Parent::setDigraph(digraph);
385    }
386  };
387
388  /// \brief Returns a read-only ReverseDigraph adaptor
389  ///
390  /// This function just returns a read-only \ref ReverseDigraph adaptor.
391  /// \ingroup graph_adaptors
392  /// \relates ReverseDigraph
393  template<typename GR>
394  ReverseDigraph<const GR> reverseDigraph(const GR& digraph) {
395    return ReverseDigraph<const GR>(digraph);
396  }
397
398
399  template <typename _Digraph, typename _NodeFilterMap,
400            typename _ArcFilterMap, bool _checked = true>
401  class SubDigraphBase : public DigraphAdaptorBase<_Digraph> {
402  public:
403    typedef _Digraph Digraph;
404    typedef _NodeFilterMap NodeFilterMap;
405    typedef _ArcFilterMap ArcFilterMap;
406
407    typedef SubDigraphBase Adaptor;
408    typedef DigraphAdaptorBase<_Digraph> Parent;
409  protected:
410    NodeFilterMap* _node_filter;
411    ArcFilterMap* _arc_filter;
412    SubDigraphBase()
413      : Parent(), _node_filter(0), _arc_filter(0) { }
414
415    void setNodeFilterMap(NodeFilterMap& node_filter) {
416      _node_filter = &node_filter;
417    }
418    void setArcFilterMap(ArcFilterMap& arc_filter) {
419      _arc_filter = &arc_filter;
420    }
421
422  public:
423
424    typedef typename Parent::Node Node;
425    typedef typename Parent::Arc Arc;
426
427    void first(Node& i) const {
428      Parent::first(i);
429      while (i != INVALID && !(*_node_filter)[i]) Parent::next(i);
430    }
431
432    void first(Arc& i) const {
433      Parent::first(i);
434      while (i != INVALID && (!(*_arc_filter)[i]
435                              || !(*_node_filter)[Parent::source(i)]
436                              || !(*_node_filter)[Parent::target(i)]))
437        Parent::next(i);
438    }
439
440    void firstIn(Arc& i, const Node& n) const {
441      Parent::firstIn(i, n);
442      while (i != INVALID && (!(*_arc_filter)[i]
443                              || !(*_node_filter)[Parent::source(i)]))
444        Parent::nextIn(i);
445    }
446
447    void firstOut(Arc& i, const Node& n) const {
448      Parent::firstOut(i, n);
449      while (i != INVALID && (!(*_arc_filter)[i]
450                              || !(*_node_filter)[Parent::target(i)]))
451        Parent::nextOut(i);
452    }
453
454    void next(Node& i) const {
455      Parent::next(i);
456      while (i != INVALID && !(*_node_filter)[i]) Parent::next(i);
457    }
458
459    void next(Arc& i) const {
460      Parent::next(i);
461      while (i != INVALID && (!(*_arc_filter)[i]
462                              || !(*_node_filter)[Parent::source(i)]
463                              || !(*_node_filter)[Parent::target(i)]))
464        Parent::next(i);
465    }
466
467    void nextIn(Arc& i) const {
468      Parent::nextIn(i);
469      while (i != INVALID && (!(*_arc_filter)[i]
470                              || !(*_node_filter)[Parent::source(i)]))
471        Parent::nextIn(i);
472    }
473
474    void nextOut(Arc& i) const {
475      Parent::nextOut(i);
476      while (i != INVALID && (!(*_arc_filter)[i]
477                              || !(*_node_filter)[Parent::target(i)]))
478        Parent::nextOut(i);
479    }
480
481    void status(const Node& n, bool v) const { _node_filter->set(n, v); }
482    void status(const Arc& a, bool v) const { _arc_filter->set(a, v); }
483
484    bool status(const Node& n) const { return (*_node_filter)[n]; }
485    bool status(const Arc& a) const { return (*_arc_filter)[a]; }
486
487    typedef False NodeNumTag;
488    typedef False ArcNumTag;
489
490    typedef FindArcTagIndicator<Digraph> FindArcTag;
491    Arc findArc(const Node& source, const Node& target,
492                const Arc& prev = INVALID) const {
493      if (!(*_node_filter)[source] || !(*_node_filter)[target]) {
494        return INVALID;
495      }
496      Arc arc = Parent::findArc(source, target, prev);
497      while (arc != INVALID && !(*_arc_filter)[arc]) {
498        arc = Parent::findArc(source, target, arc);
499      }
500      return arc;
501    }
502
503    template <typename _Value>
504    class NodeMap : public SubMapExtender<Adaptor,
505      typename Parent::template NodeMap<_Value> > {
506    public:
507      typedef _Value Value;
508      typedef SubMapExtender<Adaptor, typename Parent::
509                             template NodeMap<Value> > MapParent;
510
511      NodeMap(const Adaptor& adaptor)
512        : MapParent(adaptor) {}
513      NodeMap(const Adaptor& adaptor, const Value& value)
514        : MapParent(adaptor, value) {}
515
516    private:
517      NodeMap& operator=(const NodeMap& cmap) {
518        return operator=<NodeMap>(cmap);
519      }
520
521      template <typename CMap>
522      NodeMap& operator=(const CMap& cmap) {
523        MapParent::operator=(cmap);
524        return *this;
525      }
526    };
527
528    template <typename _Value>
529    class ArcMap : public SubMapExtender<Adaptor,
530      typename Parent::template ArcMap<_Value> > {
531    public:
532      typedef _Value Value;
533      typedef SubMapExtender<Adaptor, typename Parent::
534                             template ArcMap<Value> > MapParent;
535
536      ArcMap(const Adaptor& adaptor)
537        : MapParent(adaptor) {}
538      ArcMap(const Adaptor& adaptor, const Value& value)
539        : MapParent(adaptor, value) {}
540
541    private:
542      ArcMap& operator=(const ArcMap& cmap) {
543        return operator=<ArcMap>(cmap);
544      }
545
546      template <typename CMap>
547      ArcMap& operator=(const CMap& cmap) {
548        MapParent::operator=(cmap);
549        return *this;
550      }
551    };
552
553  };
554
555  template <typename _Digraph, typename _NodeFilterMap, typename _ArcFilterMap>
556  class SubDigraphBase<_Digraph, _NodeFilterMap, _ArcFilterMap, false>
557    : public DigraphAdaptorBase<_Digraph> {
558  public:
559    typedef _Digraph Digraph;
560    typedef _NodeFilterMap NodeFilterMap;
561    typedef _ArcFilterMap ArcFilterMap;
562
563    typedef SubDigraphBase Adaptor;
564    typedef DigraphAdaptorBase<Digraph> Parent;
565  protected:
566    NodeFilterMap* _node_filter;
567    ArcFilterMap* _arc_filter;
568    SubDigraphBase()
569      : Parent(), _node_filter(0), _arc_filter(0) { }
570
571    void setNodeFilterMap(NodeFilterMap& node_filter) {
572      _node_filter = &node_filter;
573    }
574    void setArcFilterMap(ArcFilterMap& arc_filter) {
575      _arc_filter = &arc_filter;
576    }
577
578  public:
579
580    typedef typename Parent::Node Node;
581    typedef typename Parent::Arc Arc;
582
583    void first(Node& i) const {
584      Parent::first(i);
585      while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
586    }
587
588    void first(Arc& i) const {
589      Parent::first(i);
590      while (i!=INVALID && !(*_arc_filter)[i]) Parent::next(i);
591    }
592
593    void firstIn(Arc& i, const Node& n) const {
594      Parent::firstIn(i, n);
595      while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextIn(i);
596    }
597
598    void firstOut(Arc& i, const Node& n) const {
599      Parent::firstOut(i, n);
600      while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextOut(i);
601    }
602
603    void next(Node& i) const {
604      Parent::next(i);
605      while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
606    }
607    void next(Arc& i) const {
608      Parent::next(i);
609      while (i!=INVALID && !(*_arc_filter)[i]) Parent::next(i);
610    }
611    void nextIn(Arc& i) const {
612      Parent::nextIn(i);
613      while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextIn(i);
614    }
615
616    void nextOut(Arc& i) const {
617      Parent::nextOut(i);
618      while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextOut(i);
619    }
620
621    void status(const Node& n, bool v) const { _node_filter->set(n, v); }
622    void status(const Arc& a, bool v) const { _arc_filter->set(a, v); }
623
624    bool status(const Node& n) const { return (*_node_filter)[n]; }
625    bool status(const Arc& a) const { return (*_arc_filter)[a]; }
626
627    typedef False NodeNumTag;
628    typedef False ArcNumTag;
629
630    typedef FindArcTagIndicator<Digraph> FindArcTag;
631    Arc findArc(const Node& source, const Node& target,
632                const Arc& prev = INVALID) const {
633      if (!(*_node_filter)[source] || !(*_node_filter)[target]) {
634        return INVALID;
635      }
636      Arc arc = Parent::findArc(source, target, prev);
637      while (arc != INVALID && !(*_arc_filter)[arc]) {
638        arc = Parent::findArc(source, target, arc);
639      }
640      return arc;
641    }
642
643    template <typename _Value>
644    class NodeMap : public SubMapExtender<Adaptor,
645      typename Parent::template NodeMap<_Value> > {
646    public:
647      typedef _Value Value;
648      typedef SubMapExtender<Adaptor, typename Parent::
649                             template NodeMap<Value> > MapParent;
650
651      NodeMap(const Adaptor& adaptor)
652        : MapParent(adaptor) {}
653      NodeMap(const Adaptor& adaptor, const Value& value)
654        : MapParent(adaptor, value) {}
655
656    private:
657      NodeMap& operator=(const NodeMap& cmap) {
658        return operator=<NodeMap>(cmap);
659      }
660
661      template <typename CMap>
662      NodeMap& operator=(const CMap& cmap) {
663        MapParent::operator=(cmap);
664        return *this;
665      }
666    };
667
668    template <typename _Value>
669    class ArcMap : public SubMapExtender<Adaptor,
670      typename Parent::template ArcMap<_Value> > {
671    public:
672      typedef _Value Value;
673      typedef SubMapExtender<Adaptor, typename Parent::
674                             template ArcMap<Value> > MapParent;
675
676      ArcMap(const Adaptor& adaptor)
677        : MapParent(adaptor) {}
678      ArcMap(const Adaptor& adaptor, const Value& value)
679        : MapParent(adaptor, value) {}
680
681    private:
682      ArcMap& operator=(const ArcMap& cmap) {
683        return operator=<ArcMap>(cmap);
684      }
685
686      template <typename CMap>
687      ArcMap& operator=(const CMap& cmap) {
688        MapParent::operator=(cmap);
689        return *this;
690      }
691    };
692
693  };
694
695  /// \ingroup graph_adaptors
696  ///
697  /// \brief Adaptor class for hiding nodes and arcs in a digraph
698  ///
699  /// SubDigraph can be used for hiding nodes and arcs in a digraph.
700  /// A \c bool node map and a \c bool arc map must be specified, which
701  /// define the filters for nodes and arcs.
702  /// Only the nodes and arcs with \c true filter value are
703  /// shown in the subdigraph. The arcs that are incident to hidden
704  /// nodes are also filtered out.
705  /// This adaptor conforms to the \ref concepts::Digraph "Digraph" concept.
706  ///
707  /// The adapted digraph can also be modified through this adaptor
708  /// by adding or removing nodes or arcs, unless the \c GR template
709  /// parameter is set to be \c const.
710  ///
711  /// \tparam GR The type of the adapted digraph.
712  /// It must conform to the \ref concepts::Digraph "Digraph" concept.
713  /// It can also be specified to be \c const.
714  /// \tparam NF The type of the node filter map.
715  /// It must be a \c bool (or convertible) node map of the
716  /// adapted digraph. The default type is
717  /// \ref concepts::Digraph::NodeMap "GR::NodeMap<bool>".
718  /// \tparam AF The type of the arc filter map.
719  /// It must be \c bool (or convertible) arc map of the
720  /// adapted digraph. The default type is
721  /// \ref concepts::Digraph::ArcMap "GR::ArcMap<bool>".
722  ///
723  /// \note The \c Node and \c Arc types of this adaptor and the adapted
724  /// digraph are convertible to each other.
725  ///
726  /// \see FilterNodes
727  /// \see FilterArcs
728#ifdef DOXYGEN
729  template<typename GR, typename NF, typename AF>
730  class SubDigraph {
731#else
732  template<typename GR,
733           typename NF = typename GR::template NodeMap<bool>,
734           typename AF = typename GR::template ArcMap<bool> >
735  class SubDigraph :
736    public DigraphAdaptorExtender<SubDigraphBase<GR, NF, AF, true> > {
737#endif
738  public:
739    /// The type of the adapted digraph.
740    typedef GR Digraph;
741    /// The type of the node filter map.
742    typedef NF NodeFilterMap;
743    /// The type of the arc filter map.
744    typedef AF ArcFilterMap;
745
746    typedef DigraphAdaptorExtender<SubDigraphBase<GR, NF, AF, true> >
747      Parent;
748
749    typedef typename Parent::Node Node;
750    typedef typename Parent::Arc Arc;
751
752  protected:
753    SubDigraph() { }
754  public:
755
756    /// \brief Constructor
757    ///
758    /// Creates a subdigraph for the given digraph with the
759    /// given node and arc filter maps.
760    SubDigraph(Digraph& digraph, NodeFilterMap& node_filter,
761               ArcFilterMap& arc_filter) {
762      setDigraph(digraph);
763      setNodeFilterMap(node_filter);
764      setArcFilterMap(arc_filter);
765    }
766
767    /// \brief Sets the status of the given node
768    ///
769    /// This function sets the status of the given node.
770    /// It is done by simply setting the assigned value of \c n
771    /// to \c v in the node filter map.
772    void status(const Node& n, bool v) const { Parent::status(n, v); }
773
774    /// \brief Sets the status of the given arc
775    ///
776    /// This function sets the status of the given arc.
777    /// It is done by simply setting the assigned value of \c a
778    /// to \c v in the arc filter map.
779    void status(const Arc& a, bool v) const { Parent::status(a, v); }
780
781    /// \brief Returns the status of the given node
782    ///
783    /// This function returns the status of the given node.
784    /// It is \c true if the given node is enabled (i.e. not hidden).
785    bool status(const Node& n) const { return Parent::status(n); }
786
787    /// \brief Returns the status of the given arc
788    ///
789    /// This function returns the status of the given arc.
790    /// It is \c true if the given arc is enabled (i.e. not hidden).
791    bool status(const Arc& a) const { return Parent::status(a); }
792
793    /// \brief Disables the given node
794    ///
795    /// This function disables the given node in the subdigraph,
796    /// so the iteration jumps over it.
797    /// It is the same as \ref status() "status(n, false)".
798    void disable(const Node& n) const { Parent::status(n, false); }
799
800    /// \brief Disables the given arc
801    ///
802    /// This function disables the given arc in the subdigraph,
803    /// so the iteration jumps over it.
804    /// It is the same as \ref status() "status(a, false)".
805    void disable(const Arc& a) const { Parent::status(a, false); }
806
807    /// \brief Enables the given node
808    ///
809    /// This function enables the given node in the subdigraph.
810    /// It is the same as \ref status() "status(n, true)".
811    void enable(const Node& n) const { Parent::status(n, true); }
812
813    /// \brief Enables the given arc
814    ///
815    /// This function enables the given arc in the subdigraph.
816    /// It is the same as \ref status() "status(a, true)".
817    void enable(const Arc& a) const { Parent::status(a, true); }
818
819  };
820
821  /// \brief Returns a read-only SubDigraph adaptor
822  ///
823  /// This function just returns a read-only \ref SubDigraph adaptor.
824  /// \ingroup graph_adaptors
825  /// \relates SubDigraph
826  template<typename GR, typename NF, typename AF>
827  SubDigraph<const GR, NF, AF>
828  subDigraph(const GR& digraph,
829             NF& node_filter_map, AF& arc_filter_map) {
830    return SubDigraph<const GR, NF, AF>
831      (digraph, node_filter_map, arc_filter_map);
832  }
833
834  template<typename GR, typename NF, typename AF>
835  SubDigraph<const GR, const NF, AF>
836  subDigraph(const GR& digraph,
837             const NF& node_filter_map, AF& arc_filter_map) {
838    return SubDigraph<const GR, const NF, AF>
839      (digraph, node_filter_map, arc_filter_map);
840  }
841
842  template<typename GR, typename NF, typename AF>
843  SubDigraph<const GR, NF, const AF>
844  subDigraph(const GR& digraph,
845             NF& node_filter_map, const AF& arc_filter_map) {
846    return SubDigraph<const GR, NF, const AF>
847      (digraph, node_filter_map, arc_filter_map);
848  }
849
850  template<typename GR, typename NF, typename AF>
851  SubDigraph<const GR, const NF, const AF>
852  subDigraph(const GR& digraph,
853             const NF& node_filter_map, const AF& arc_filter_map) {
854    return SubDigraph<const GR, const NF, const AF>
855      (digraph, node_filter_map, arc_filter_map);
856  }
857
858
859  template <typename _Graph, typename _NodeFilterMap,
860            typename _EdgeFilterMap, bool _checked = true>
861  class SubGraphBase : public GraphAdaptorBase<_Graph> {
862  public:
863    typedef _Graph Graph;
864    typedef _NodeFilterMap NodeFilterMap;
865    typedef _EdgeFilterMap EdgeFilterMap;
866
867    typedef SubGraphBase Adaptor;
868    typedef GraphAdaptorBase<_Graph> Parent;
869  protected:
870
871    NodeFilterMap* _node_filter_map;
872    EdgeFilterMap* _edge_filter_map;
873
874    SubGraphBase()
875      : Parent(), _node_filter_map(0), _edge_filter_map(0) { }
876
877    void setNodeFilterMap(NodeFilterMap& node_filter_map) {
878      _node_filter_map=&node_filter_map;
879    }
880    void setEdgeFilterMap(EdgeFilterMap& edge_filter_map) {
881      _edge_filter_map=&edge_filter_map;
882    }
883
884  public:
885
886    typedef typename Parent::Node Node;
887    typedef typename Parent::Arc Arc;
888    typedef typename Parent::Edge Edge;
889
890    void first(Node& i) const {
891      Parent::first(i);
892      while (i!=INVALID && !(*_node_filter_map)[i]) Parent::next(i);
893    }
894
895    void first(Arc& i) const {
896      Parent::first(i);
897      while (i!=INVALID && (!(*_edge_filter_map)[i]
898                            || !(*_node_filter_map)[Parent::source(i)]
899                            || !(*_node_filter_map)[Parent::target(i)]))
900        Parent::next(i);
901    }
902
903    void first(Edge& i) const {
904      Parent::first(i);
905      while (i!=INVALID && (!(*_edge_filter_map)[i]
906                            || !(*_node_filter_map)[Parent::u(i)]
907                            || !(*_node_filter_map)[Parent::v(i)]))
908        Parent::next(i);
909    }
910
911    void firstIn(Arc& i, const Node& n) const {
912      Parent::firstIn(i, n);
913      while (i!=INVALID && (!(*_edge_filter_map)[i]
914                            || !(*_node_filter_map)[Parent::source(i)]))
915        Parent::nextIn(i);
916    }
917
918    void firstOut(Arc& i, const Node& n) const {
919      Parent::firstOut(i, n);
920      while (i!=INVALID && (!(*_edge_filter_map)[i]
921                            || !(*_node_filter_map)[Parent::target(i)]))
922        Parent::nextOut(i);
923    }
924
925    void firstInc(Edge& i, bool& d, const Node& n) const {
926      Parent::firstInc(i, d, n);
927      while (i!=INVALID && (!(*_edge_filter_map)[i]
928                            || !(*_node_filter_map)[Parent::u(i)]
929                            || !(*_node_filter_map)[Parent::v(i)]))
930        Parent::nextInc(i, d);
931    }
932
933    void next(Node& i) const {
934      Parent::next(i);
935      while (i!=INVALID && !(*_node_filter_map)[i]) Parent::next(i);
936    }
937
938    void next(Arc& i) const {
939      Parent::next(i);
940      while (i!=INVALID && (!(*_edge_filter_map)[i]
941                            || !(*_node_filter_map)[Parent::source(i)]
942                            || !(*_node_filter_map)[Parent::target(i)]))
943        Parent::next(i);
944    }
945
946    void next(Edge& i) const {
947      Parent::next(i);
948      while (i!=INVALID && (!(*_edge_filter_map)[i]
949                            || !(*_node_filter_map)[Parent::u(i)]
950                            || !(*_node_filter_map)[Parent::v(i)]))
951        Parent::next(i);
952    }
953
954    void nextIn(Arc& i) const {
955      Parent::nextIn(i);
956      while (i!=INVALID && (!(*_edge_filter_map)[i]
957                            || !(*_node_filter_map)[Parent::source(i)]))
958        Parent::nextIn(i);
959    }
960
961    void nextOut(Arc& i) const {
962      Parent::nextOut(i);
963      while (i!=INVALID && (!(*_edge_filter_map)[i]
964                            || !(*_node_filter_map)[Parent::target(i)]))
965        Parent::nextOut(i);
966    }
967
968    void nextInc(Edge& i, bool& d) const {
969      Parent::nextInc(i, d);
970      while (i!=INVALID && (!(*_edge_filter_map)[i]
971                            || !(*_node_filter_map)[Parent::u(i)]
972                            || !(*_node_filter_map)[Parent::v(i)]))
973        Parent::nextInc(i, d);
974    }
975
976    void status(const Node& n, bool v) const { _node_filter_map->set(n, v); }
977    void status(const Edge& e, bool v) const { _edge_filter_map->set(e, v); }
978
979    bool status(const Node& n) const { return (*_node_filter_map)[n]; }
980    bool status(const Edge& e) const { return (*_edge_filter_map)[e]; }
981
982    typedef False NodeNumTag;
983    typedef False ArcNumTag;
984    typedef False EdgeNumTag;
985
986    typedef FindArcTagIndicator<Graph> FindArcTag;
987    Arc findArc(const Node& u, const Node& v,
988                const Arc& prev = INVALID) const {
989      if (!(*_node_filter_map)[u] || !(*_node_filter_map)[v]) {
990        return INVALID;
991      }
992      Arc arc = Parent::findArc(u, v, prev);
993      while (arc != INVALID && !(*_edge_filter_map)[arc]) {
994        arc = Parent::findArc(u, v, arc);
995      }
996      return arc;
997    }
998
999    typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
1000    Edge findEdge(const Node& u, const Node& v,
1001                  const Edge& prev = INVALID) const {
1002      if (!(*_node_filter_map)[u] || !(*_node_filter_map)[v]) {
1003        return INVALID;
1004      }
1005      Edge edge = Parent::findEdge(u, v, prev);
1006      while (edge != INVALID && !(*_edge_filter_map)[edge]) {
1007        edge = Parent::findEdge(u, v, edge);
1008      }
1009      return edge;
1010    }
1011
1012    template <typename _Value>
1013    class NodeMap : public SubMapExtender<Adaptor,
1014      typename Parent::template NodeMap<_Value> > {
1015    public:
1016      typedef _Value Value;
1017      typedef SubMapExtender<Adaptor, typename Parent::
1018                             template NodeMap<Value> > MapParent;
1019
1020      NodeMap(const Adaptor& adaptor)
1021        : MapParent(adaptor) {}
1022      NodeMap(const Adaptor& adaptor, const Value& value)
1023        : MapParent(adaptor, value) {}
1024
1025    private:
1026      NodeMap& operator=(const NodeMap& cmap) {
1027        return operator=<NodeMap>(cmap);
1028      }
1029
1030      template <typename CMap>
1031      NodeMap& operator=(const CMap& cmap) {
1032        MapParent::operator=(cmap);
1033        return *this;
1034      }
1035    };
1036
1037    template <typename _Value>
1038    class ArcMap : public SubMapExtender<Adaptor,
1039      typename Parent::template ArcMap<_Value> > {
1040    public:
1041      typedef _Value Value;
1042      typedef SubMapExtender<Adaptor, typename Parent::
1043                             template ArcMap<Value> > MapParent;
1044
1045      ArcMap(const Adaptor& adaptor)
1046        : MapParent(adaptor) {}
1047      ArcMap(const Adaptor& adaptor, const Value& value)
1048        : MapParent(adaptor, value) {}
1049
1050    private:
1051      ArcMap& operator=(const ArcMap& cmap) {
1052        return operator=<ArcMap>(cmap);
1053      }
1054
1055      template <typename CMap>
1056      ArcMap& operator=(const CMap& cmap) {
1057        MapParent::operator=(cmap);
1058        return *this;
1059      }
1060    };
1061
1062    template <typename _Value>
1063    class EdgeMap : public SubMapExtender<Adaptor,
1064      typename Parent::template EdgeMap<_Value> > {
1065    public:
1066      typedef _Value Value;
1067      typedef SubMapExtender<Adaptor, typename Parent::
1068                             template EdgeMap<Value> > MapParent;
1069
1070      EdgeMap(const Adaptor& adaptor)
1071        : MapParent(adaptor) {}
1072
1073      EdgeMap(const Adaptor& adaptor, const Value& value)
1074        : MapParent(adaptor, value) {}
1075
1076    private:
1077      EdgeMap& operator=(const EdgeMap& cmap) {
1078        return operator=<EdgeMap>(cmap);
1079      }
1080
1081      template <typename CMap>
1082      EdgeMap& operator=(const CMap& cmap) {
1083        MapParent::operator=(cmap);
1084        return *this;
1085      }
1086    };
1087
1088  };
1089
1090  template <typename _Graph, typename _NodeFilterMap, typename _EdgeFilterMap>
1091  class SubGraphBase<_Graph, _NodeFilterMap, _EdgeFilterMap, false>
1092    : public GraphAdaptorBase<_Graph> {
1093  public:
1094    typedef _Graph Graph;
1095    typedef _NodeFilterMap NodeFilterMap;
1096    typedef _EdgeFilterMap EdgeFilterMap;
1097
1098    typedef SubGraphBase Adaptor;
1099    typedef GraphAdaptorBase<_Graph> Parent;
1100  protected:
1101    NodeFilterMap* _node_filter_map;
1102    EdgeFilterMap* _edge_filter_map;
1103    SubGraphBase() : Parent(),
1104                     _node_filter_map(0), _edge_filter_map(0) { }
1105
1106    void setNodeFilterMap(NodeFilterMap& node_filter_map) {
1107      _node_filter_map=&node_filter_map;
1108    }
1109    void setEdgeFilterMap(EdgeFilterMap& edge_filter_map) {
1110      _edge_filter_map=&edge_filter_map;
1111    }
1112
1113  public:
1114
1115    typedef typename Parent::Node Node;
1116    typedef typename Parent::Arc Arc;
1117    typedef typename Parent::Edge Edge;
1118
1119    void first(Node& i) const {
1120      Parent::first(i);
1121      while (i!=INVALID && !(*_node_filter_map)[i]) Parent::next(i);
1122    }
1123
1124    void first(Arc& i) const {
1125      Parent::first(i);
1126      while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::next(i);
1127    }
1128
1129    void first(Edge& i) const {
1130      Parent::first(i);
1131      while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::next(i);
1132    }
1133
1134    void firstIn(Arc& i, const Node& n) const {
1135      Parent::firstIn(i, n);
1136      while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::nextIn(i);
1137    }
1138
1139    void firstOut(Arc& i, const Node& n) const {
1140      Parent::firstOut(i, n);
1141      while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::nextOut(i);
1142    }
1143
1144    void firstInc(Edge& i, bool& d, const Node& n) const {
1145      Parent::firstInc(i, d, n);
1146      while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::nextInc(i, d);
1147    }
1148
1149    void next(Node& i) const {
1150      Parent::next(i);
1151      while (i!=INVALID && !(*_node_filter_map)[i]) Parent::next(i);
1152    }
1153    void next(Arc& i) const {
1154      Parent::next(i);
1155      while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::next(i);
1156    }
1157    void next(Edge& i) const {
1158      Parent::next(i);
1159      while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::next(i);
1160    }
1161    void nextIn(Arc& i) const {
1162      Parent::nextIn(i);
1163      while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::nextIn(i);
1164    }
1165
1166    void nextOut(Arc& i) const {
1167      Parent::nextOut(i);
1168      while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::nextOut(i);
1169    }
1170    void nextInc(Edge& i, bool& d) const {
1171      Parent::nextInc(i, d);
1172      while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::nextInc(i, d);
1173    }
1174
1175    void status(const Node& n, bool v) const { _node_filter_map->set(n, v); }
1176    void status(const Edge& e, bool v) const { _edge_filter_map->set(e, v); }
1177
1178    bool status(const Node& n) const { return (*_node_filter_map)[n]; }
1179    bool status(const Edge& e) const { return (*_edge_filter_map)[e]; }
1180
1181    typedef False NodeNumTag;
1182    typedef False ArcNumTag;
1183    typedef False EdgeNumTag;
1184
1185    typedef FindArcTagIndicator<Graph> FindArcTag;
1186    Arc findArc(const Node& u, const Node& v,
1187                const Arc& prev = INVALID) const {
1188      Arc arc = Parent::findArc(u, v, prev);
1189      while (arc != INVALID && !(*_edge_filter_map)[arc]) {
1190        arc = Parent::findArc(u, v, arc);
1191      }
1192      return arc;
1193    }
1194
1195    typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
1196    Edge findEdge(const Node& u, const Node& v,
1197                  const Edge& prev = INVALID) const {
1198      Edge edge = Parent::findEdge(u, v, prev);
1199      while (edge != INVALID && !(*_edge_filter_map)[edge]) {
1200        edge = Parent::findEdge(u, v, edge);
1201      }
1202      return edge;
1203    }
1204
1205    template <typename _Value>
1206    class NodeMap : public SubMapExtender<Adaptor,
1207      typename Parent::template NodeMap<_Value> > {
1208    public:
1209      typedef _Value Value;
1210      typedef SubMapExtender<Adaptor, typename Parent::
1211                             template NodeMap<Value> > MapParent;
1212
1213      NodeMap(const Adaptor& adaptor)
1214        : MapParent(adaptor) {}
1215      NodeMap(const Adaptor& adaptor, const Value& value)
1216        : MapParent(adaptor, value) {}
1217
1218    private:
1219      NodeMap& operator=(const NodeMap& cmap) {
1220        return operator=<NodeMap>(cmap);
1221      }
1222
1223      template <typename CMap>
1224      NodeMap& operator=(const CMap& cmap) {
1225        MapParent::operator=(cmap);
1226        return *this;
1227      }
1228    };
1229
1230    template <typename _Value>
1231    class ArcMap : public SubMapExtender<Adaptor,
1232      typename Parent::template ArcMap<_Value> > {
1233    public:
1234      typedef _Value Value;
1235      typedef SubMapExtender<Adaptor, typename Parent::
1236                             template ArcMap<Value> > MapParent;
1237
1238      ArcMap(const Adaptor& adaptor)
1239        : MapParent(adaptor) {}
1240      ArcMap(const Adaptor& adaptor, const Value& value)
1241        : MapParent(adaptor, value) {}
1242
1243    private:
1244      ArcMap& operator=(const ArcMap& cmap) {
1245        return operator=<ArcMap>(cmap);
1246      }
1247
1248      template <typename CMap>
1249      ArcMap& operator=(const CMap& cmap) {
1250        MapParent::operator=(cmap);
1251        return *this;
1252      }
1253    };
1254
1255    template <typename _Value>
1256    class EdgeMap : public SubMapExtender<Adaptor,
1257      typename Parent::template EdgeMap<_Value> > {
1258    public:
1259      typedef _Value Value;
1260      typedef SubMapExtender<Adaptor, typename Parent::
1261                             template EdgeMap<Value> > MapParent;
1262
1263      EdgeMap(const Adaptor& adaptor)
1264        : MapParent(adaptor) {}
1265
1266      EdgeMap(const Adaptor& adaptor, const _Value& value)
1267        : MapParent(adaptor, value) {}
1268
1269    private:
1270      EdgeMap& operator=(const EdgeMap& cmap) {
1271        return operator=<EdgeMap>(cmap);
1272      }
1273
1274      template <typename CMap>
1275      EdgeMap& operator=(const CMap& cmap) {
1276        MapParent::operator=(cmap);
1277        return *this;
1278      }
1279    };
1280
1281  };
1282
1283  /// \ingroup graph_adaptors
1284  ///
1285  /// \brief Adaptor class for hiding nodes and edges in an undirected
1286  /// graph.
1287  ///
1288  /// SubGraph can be used for hiding nodes and edges in a graph.
1289  /// A \c bool node map and a \c bool edge map must be specified, which
1290  /// define the filters for nodes and edges.
1291  /// Only the nodes and edges with \c true filter value are
1292  /// shown in the subgraph. The edges that are incident to hidden
1293  /// nodes are also filtered out.
1294  /// This adaptor conforms to the \ref concepts::Graph "Graph" concept.
1295  ///
1296  /// The adapted graph can also be modified through this adaptor
1297  /// by adding or removing nodes or edges, unless the \c GR template
1298  /// parameter is set to be \c const.
1299  ///
1300  /// \tparam GR The type of the adapted graph.
1301  /// It must conform to the \ref concepts::Graph "Graph" concept.
1302  /// It can also be specified to be \c const.
1303  /// \tparam NF The type of the node filter map.
1304  /// It must be a \c bool (or convertible) node map of the
1305  /// adapted graph. The default type is
1306  /// \ref concepts::Graph::NodeMap "GR::NodeMap<bool>".
1307  /// \tparam EF The type of the edge filter map.
1308  /// It must be a \c bool (or convertible) edge map of the
1309  /// adapted graph. The default type is
1310  /// \ref concepts::Graph::EdgeMap "GR::EdgeMap<bool>".
1311  ///
1312  /// \note The \c Node, \c Edge and \c Arc types of this adaptor and the
1313  /// adapted graph are convertible to each other.
1314  ///
1315  /// \see FilterNodes
1316  /// \see FilterEdges
1317#ifdef DOXYGEN
1318  template<typename GR, typename NF, typename EF>
1319  class SubGraph {
1320#else
1321  template<typename GR,
1322           typename NF = typename GR::template NodeMap<bool>,
1323           typename EF = typename GR::template EdgeMap<bool> >
1324  class SubGraph :
1325    public GraphAdaptorExtender<SubGraphBase<GR, NF, EF, true> > {
1326#endif
1327  public:
1328    /// The type of the adapted graph.
1329    typedef GR Graph;
1330    /// The type of the node filter map.
1331    typedef NF NodeFilterMap;
1332    /// The type of the edge filter map.
1333    typedef EF EdgeFilterMap;
1334
1335    typedef GraphAdaptorExtender< SubGraphBase<GR, NF, EF, true> >
1336      Parent;
1337
1338    typedef typename Parent::Node Node;
1339    typedef typename Parent::Edge Edge;
1340
1341  protected:
1342    SubGraph() { }
1343  public:
1344
1345    /// \brief Constructor
1346    ///
1347    /// Creates a subgraph for the given graph with the given node
1348    /// and edge filter maps.
1349    SubGraph(Graph& graph, NodeFilterMap& node_filter_map,
1350             EdgeFilterMap& edge_filter_map) {
1351      setGraph(graph);
1352      setNodeFilterMap(node_filter_map);
1353      setEdgeFilterMap(edge_filter_map);
1354    }
1355
1356    /// \brief Sets the status of the given node
1357    ///
1358    /// This function sets the status of the given node.
1359    /// It is done by simply setting the assigned value of \c n
1360    /// to \c v in the node filter map.
1361    void status(const Node& n, bool v) const { Parent::status(n, v); }
1362
1363    /// \brief Sets the status of the given edge
1364    ///
1365    /// This function sets the status of the given edge.
1366    /// It is done by simply setting the assigned value of \c e
1367    /// to \c v in the edge filter map.
1368    void status(const Edge& e, bool v) const { Parent::status(e, v); }
1369
1370    /// \brief Returns the status of the given node
1371    ///
1372    /// This function returns the status of the given node.
1373    /// It is \c true if the given node is enabled (i.e. not hidden).
1374    bool status(const Node& n) const { return Parent::status(n); }
1375
1376    /// \brief Returns the status of the given edge
1377    ///
1378    /// This function returns the status of the given edge.
1379    /// It is \c true if the given edge is enabled (i.e. not hidden).
1380    bool status(const Edge& e) const { return Parent::status(e); }
1381
1382    /// \brief Disables the given node
1383    ///
1384    /// This function disables the given node in the subdigraph,
1385    /// so the iteration jumps over it.
1386    /// It is the same as \ref status() "status(n, false)".
1387    void disable(const Node& n) const { Parent::status(n, false); }
1388
1389    /// \brief Disables the given edge
1390    ///
1391    /// This function disables the given edge in the subgraph,
1392    /// so the iteration jumps over it.
1393    /// It is the same as \ref status() "status(e, false)".
1394    void disable(const Edge& e) const { Parent::status(e, false); }
1395
1396    /// \brief Enables the given node
1397    ///
1398    /// This function enables the given node in the subdigraph.
1399    /// It is the same as \ref status() "status(n, true)".
1400    void enable(const Node& n) const { Parent::status(n, true); }
1401
1402    /// \brief Enables the given edge
1403    ///
1404    /// This function enables the given edge in the subgraph.
1405    /// It is the same as \ref status() "status(e, true)".
1406    void enable(const Edge& e) const { Parent::status(e, true); }
1407
1408  };
1409
1410  /// \brief Returns a read-only SubGraph adaptor
1411  ///
1412  /// This function just returns a read-only \ref SubGraph adaptor.
1413  /// \ingroup graph_adaptors
1414  /// \relates SubGraph
1415  template<typename GR, typename NF, typename EF>
1416  SubGraph<const GR, NF, EF>
1417  subGraph(const GR& graph,
1418           NF& node_filter_map, EF& edge_filter_map) {
1419    return SubGraph<const GR, NF, EF>
1420      (graph, node_filter_map, edge_filter_map);
1421  }
1422
1423  template<typename GR, typename NF, typename EF>
1424  SubGraph<const GR, const NF, EF>
1425  subGraph(const GR& graph,
1426           const NF& node_filter_map, EF& edge_filter_map) {
1427    return SubGraph<const GR, const NF, EF>
1428      (graph, node_filter_map, edge_filter_map);
1429  }
1430
1431  template<typename GR, typename NF, typename EF>
1432  SubGraph<const GR, NF, const EF>
1433  subGraph(const GR& graph,
1434           NF& node_filter_map, const EF& edge_filter_map) {
1435    return SubGraph<const GR, NF, const EF>
1436      (graph, node_filter_map, edge_filter_map);
1437  }
1438
1439  template<typename GR, typename NF, typename EF>
1440  SubGraph<const GR, const NF, const EF>
1441  subGraph(const GR& graph,
1442           const NF& node_filter_map, const EF& edge_filter_map) {
1443    return SubGraph<const GR, const NF, const EF>
1444      (graph, node_filter_map, edge_filter_map);
1445  }
1446
1447
1448  /// \ingroup graph_adaptors
1449  ///
1450  /// \brief Adaptor class for hiding nodes in a digraph or a graph.
1451  ///
1452  /// FilterNodes adaptor can be used for hiding nodes in a digraph or a
1453  /// graph. A \c bool node map must be specified, which defines the filter
1454  /// for the nodes. Only the nodes with \c true filter value and the
1455  /// arcs/edges incident to nodes both with \c true filter value are shown
1456  /// in the subgraph. This adaptor conforms to the \ref concepts::Digraph
1457  /// "Digraph" concept or the \ref concepts::Graph "Graph" concept
1458  /// depending on the \c GR template parameter.
1459  ///
1460  /// The adapted (di)graph can also be modified through this adaptor
1461  /// by adding or removing nodes or arcs/edges, unless the \c GR template
1462  /// parameter is set to be \c const.
1463  ///
1464  /// \tparam GR The type of the adapted digraph or graph.
1465  /// It must conform to the \ref concepts::Digraph "Digraph" concept
1466  /// or the \ref concepts::Graph "Graph" concept.
1467  /// It can also be specified to be \c const.
1468  /// \tparam NF The type of the node filter map.
1469  /// It must be a \c bool (or convertible) node map of the
1470  /// adapted (di)graph. The default type is
1471  /// \ref concepts::Graph::NodeMap "GR::NodeMap<bool>".
1472  ///
1473  /// \note The \c Node and <tt>Arc/Edge</tt> types of this adaptor and the
1474  /// adapted (di)graph are convertible to each other.
1475#ifdef DOXYGEN
1476  template<typename GR, typename NF>
1477  class FilterNodes {
1478#else
1479  template<typename GR,
1480           typename NF = typename GR::template NodeMap<bool>,
1481           typename Enable = void>
1482  class FilterNodes :
1483    public DigraphAdaptorExtender<
1484      SubDigraphBase<GR, NF, ConstMap<typename GR::Arc, bool>, true> > {
1485#endif
1486  public:
1487
1488    typedef GR Digraph;
1489    typedef NF NodeFilterMap;
1490
1491    typedef DigraphAdaptorExtender<
1492      SubDigraphBase<GR, NF, ConstMap<typename GR::Arc, bool>, true> >
1493      Parent;
1494
1495    typedef typename Parent::Node Node;
1496
1497  protected:
1498    ConstMap<typename Digraph::Arc, bool> const_true_map;
1499
1500    FilterNodes() : const_true_map(true) {
1501      Parent::setArcFilterMap(const_true_map);
1502    }
1503
1504  public:
1505
1506    /// \brief Constructor
1507    ///
1508    /// Creates a subgraph for the given digraph or graph with the
1509    /// given node filter map.
1510    FilterNodes(GR& graph, NodeFilterMap& node_filter) :
1511      Parent(), const_true_map(true)
1512    {
1513      Parent::setDigraph(graph);
1514      Parent::setNodeFilterMap(node_filter);
1515      Parent::setArcFilterMap(const_true_map);
1516    }
1517
1518    /// \brief Sets the status of the given node
1519    ///
1520    /// This function sets the status of the given node.
1521    /// It is done by simply setting the assigned value of \c n
1522    /// to \c v in the node filter map.
1523    void status(const Node& n, bool v) const { Parent::status(n, v); }
1524
1525    /// \brief Returns the status of the given node
1526    ///
1527    /// This function returns the status of the given node.
1528    /// It is \c true if the given node is enabled (i.e. not hidden).
1529    bool status(const Node& n) const { return Parent::status(n); }
1530
1531    /// \brief Disables the given node
1532    ///
1533    /// This function disables the given node, so the iteration
1534    /// jumps over it.
1535    /// It is the same as \ref status() "status(n, false)".
1536    void disable(const Node& n) const { Parent::status(n, false); }
1537
1538    /// \brief Enables the given node
1539    ///
1540    /// This function enables the given node.
1541    /// It is the same as \ref status() "status(n, true)".
1542    void enable(const Node& n) const { Parent::status(n, true); }
1543
1544  };
1545
1546  template<typename GR, typename NF>
1547  class FilterNodes<GR, NF,
1548                    typename enable_if<UndirectedTagIndicator<GR> >::type> :
1549    public GraphAdaptorExtender<
1550      SubGraphBase<GR, NF, ConstMap<typename GR::Edge, bool>, true> > {
1551
1552  public:
1553    typedef GR Graph;
1554    typedef NF NodeFilterMap;
1555    typedef GraphAdaptorExtender<
1556      SubGraphBase<GR, NF, ConstMap<typename GR::Edge, bool>, true> >
1557      Parent;
1558
1559    typedef typename Parent::Node Node;
1560  protected:
1561    ConstMap<typename Graph::Edge, bool> const_true_map;
1562
1563    FilterNodes() : const_true_map(true) {
1564      Parent::setEdgeFilterMap(const_true_map);
1565    }
1566
1567  public:
1568
1569    FilterNodes(Graph& _graph, NodeFilterMap& node_filter_map) :
1570      Parent(), const_true_map(true) {
1571      Parent::setGraph(_graph);
1572      Parent::setNodeFilterMap(node_filter_map);
1573      Parent::setEdgeFilterMap(const_true_map);
1574    }
1575
1576    void status(const Node& n, bool v) const { Parent::status(n, v); }
1577    bool status(const Node& n) const { return Parent::status(n); }
1578    void disable(const Node& n) const { Parent::status(n, false); }
1579    void enable(const Node& n) const { Parent::status(n, true); }
1580
1581  };
1582
1583
1584  /// \brief Returns a read-only FilterNodes adaptor
1585  ///
1586  /// This function just returns a read-only \ref FilterNodes adaptor.
1587  /// \ingroup graph_adaptors
1588  /// \relates FilterNodes
1589  template<typename GR, typename NF>
1590  FilterNodes<const GR, NF>
1591  filterNodes(const GR& graph, NF& node_filter_map) {
1592    return FilterNodes<const GR, NF>(graph, node_filter_map);
1593  }
1594
1595  template<typename GR, typename NF>
1596  FilterNodes<const GR, const NF>
1597  filterNodes(const GR& graph, const NF& node_filter_map) {
1598    return FilterNodes<const GR, const NF>(graph, node_filter_map);
1599  }
1600
1601  /// \ingroup graph_adaptors
1602  ///
1603  /// \brief Adaptor class for hiding arcs in a digraph.
1604  ///
1605  /// FilterArcs adaptor can be used for hiding arcs in a digraph.
1606  /// A \c bool arc map must be specified, which defines the filter for
1607  /// the arcs. Only the arcs with \c true filter value are shown in the
1608  /// subdigraph. This adaptor conforms to the \ref concepts::Digraph
1609  /// "Digraph" concept.
1610  ///
1611  /// The adapted digraph can also be modified through this adaptor
1612  /// by adding or removing nodes or arcs, unless the \c GR template
1613  /// parameter is set to be \c const.
1614  ///
1615  /// \tparam GR The type of the adapted digraph.
1616  /// It must conform to the \ref concepts::Digraph "Digraph" concept.
1617  /// It can also be specified to be \c const.
1618  /// \tparam AF The type of the arc filter map.
1619  /// It must be a \c bool (or convertible) arc map of the
1620  /// adapted digraph. The default type is
1621  /// \ref concepts::Digraph::ArcMap "GR::ArcMap<bool>".
1622  ///
1623  /// \note The \c Node and \c Arc types of this adaptor and the adapted
1624  /// digraph are convertible to each other.
1625#ifdef DOXYGEN
1626  template<typename GR,
1627           typename AF>
1628  class FilterArcs {
1629#else
1630  template<typename GR,
1631           typename AF = typename GR::template ArcMap<bool> >
1632  class FilterArcs :
1633    public DigraphAdaptorExtender<
1634      SubDigraphBase<GR, ConstMap<typename GR::Node, bool>, AF, false> > {
1635#endif
1636  public:
1637    /// The type of the adapted digraph.
1638    typedef GR Digraph;
1639    /// The type of the arc filter map.
1640    typedef AF ArcFilterMap;
1641
1642    typedef DigraphAdaptorExtender<
1643      SubDigraphBase<GR, ConstMap<typename GR::Node, bool>, AF, false> >
1644      Parent;
1645
1646    typedef typename Parent::Arc Arc;
1647
1648  protected:
1649    ConstMap<typename Digraph::Node, bool> const_true_map;
1650
1651    FilterArcs() : const_true_map(true) {
1652      Parent::setNodeFilterMap(const_true_map);
1653    }
1654
1655  public:
1656
1657    /// \brief Constructor
1658    ///
1659    /// Creates a subdigraph for the given digraph with the given arc
1660    /// filter map.
1661    FilterArcs(Digraph& digraph, ArcFilterMap& arc_filter)
1662      : Parent(), const_true_map(true) {
1663      Parent::setDigraph(digraph);
1664      Parent::setNodeFilterMap(const_true_map);
1665      Parent::setArcFilterMap(arc_filter);
1666    }
1667
1668    /// \brief Sets the status of the given arc
1669    ///
1670    /// This function sets the status of the given arc.
1671    /// It is done by simply setting the assigned value of \c a
1672    /// to \c v in the arc filter map.
1673    void status(const Arc& a, bool v) const { Parent::status(a, v); }
1674
1675    /// \brief Returns the status of the given arc
1676    ///
1677    /// This function returns the status of the given arc.
1678    /// It is \c true if the given arc is enabled (i.e. not hidden).
1679    bool status(const Arc& a) const { return Parent::status(a); }
1680
1681    /// \brief Disables the given arc
1682    ///
1683    /// This function disables the given arc in the subdigraph,
1684    /// so the iteration jumps over it.
1685    /// It is the same as \ref status() "status(a, false)".
1686    void disable(const Arc& a) const { Parent::status(a, false); }
1687
1688    /// \brief Enables the given arc
1689    ///
1690    /// This function enables the given arc in the subdigraph.
1691    /// It is the same as \ref status() "status(a, true)".
1692    void enable(const Arc& a) const { Parent::status(a, true); }
1693
1694  };
1695
1696  /// \brief Returns a read-only FilterArcs adaptor
1697  ///
1698  /// This function just returns a read-only \ref FilterArcs adaptor.
1699  /// \ingroup graph_adaptors
1700  /// \relates FilterArcs
1701  template<typename GR, typename AF>
1702  FilterArcs<const GR, AF>
1703  filterArcs(const GR& digraph, AF& arc_filter_map) {
1704    return FilterArcs<const GR, AF>(digraph, arc_filter_map);
1705  }
1706
1707  template<typename GR, typename AF>
1708  FilterArcs<const GR, const AF>
1709  filterArcs(const GR& digraph, const AF& arc_filter_map) {
1710    return FilterArcs<const GR, const AF>(digraph, arc_filter_map);
1711  }
1712
1713  /// \ingroup graph_adaptors
1714  ///
1715  /// \brief Adaptor class for hiding edges in a graph.
1716  ///
1717  /// FilterEdges adaptor can be used for hiding edges in a graph.
1718  /// A \c bool edge map must be specified, which defines the filter for
1719  /// the edges. Only the edges with \c true filter value are shown in the
1720  /// subgraph. This adaptor conforms to the \ref concepts::Graph
1721  /// "Graph" concept.
1722  ///
1723  /// The adapted graph can also be modified through this adaptor
1724  /// by adding or removing nodes or edges, unless the \c GR template
1725  /// parameter is set to be \c const.
1726  ///
1727  /// \tparam GR The type of the adapted graph.
1728  /// It must conform to the \ref concepts::Graph "Graph" concept.
1729  /// It can also be specified to be \c const.
1730  /// \tparam EF The type of the edge filter map.
1731  /// It must be a \c bool (or convertible) edge map of the
1732  /// adapted graph. The default type is
1733  /// \ref concepts::Graph::EdgeMap "GR::EdgeMap<bool>".
1734  ///
1735  /// \note The \c Node, \c Edge and \c Arc types of this adaptor and the
1736  /// adapted graph are convertible to each other.
1737#ifdef DOXYGEN
1738  template<typename GR,
1739           typename EF>
1740  class FilterEdges {
1741#else
1742  template<typename GR,
1743           typename EF = typename GR::template EdgeMap<bool> >
1744  class FilterEdges :
1745    public GraphAdaptorExtender<
1746      SubGraphBase<GR, ConstMap<typename GR::Node,bool>, EF, false> > {
1747#endif
1748  public:
1749    /// The type of the adapted graph.
1750    typedef GR Graph;
1751    /// The type of the edge filter map.
1752    typedef EF EdgeFilterMap;
1753
1754    typedef GraphAdaptorExtender<
1755      SubGraphBase<GR, ConstMap<typename GR::Node,bool>, EF, false> >
1756      Parent;
1757
1758    typedef typename Parent::Edge Edge;
1759
1760  protected:
1761    ConstMap<typename Graph::Node, bool> const_true_map;
1762
1763    FilterEdges() : const_true_map(true) {
1764      Parent::setNodeFilterMap(const_true_map);
1765    }
1766
1767  public:
1768
1769    /// \brief Constructor
1770    ///
1771    /// Creates a subgraph for the given graph with the given edge
1772    /// filter map.
1773    FilterEdges(Graph& graph, EdgeFilterMap& edge_filter_map) :
1774      Parent(), const_true_map(true) {
1775      Parent::setGraph(graph);
1776      Parent::setNodeFilterMap(const_true_map);
1777      Parent::setEdgeFilterMap(edge_filter_map);
1778    }
1779
1780    /// \brief Sets the status of the given edge
1781    ///
1782    /// This function sets the status of the given edge.
1783    /// It is done by simply setting the assigned value of \c e
1784    /// to \c v in the edge filter map.
1785    void status(const Edge& e, bool v) const { Parent::status(e, v); }
1786
1787    /// \brief Returns the status of the given edge
1788    ///
1789    /// This function returns the status of the given edge.
1790    /// It is \c true if the given edge is enabled (i.e. not hidden).
1791    bool status(const Edge& e) const { return Parent::status(e); }
1792
1793    /// \brief Disables the given edge
1794    ///
1795    /// This function disables the given edge in the subgraph,
1796    /// so the iteration jumps over it.
1797    /// It is the same as \ref status() "status(e, false)".
1798    void disable(const Edge& e) const { Parent::status(e, false); }
1799
1800    /// \brief Enables the given edge
1801    ///
1802    /// This function enables the given edge in the subgraph.
1803    /// It is the same as \ref status() "status(e, true)".
1804    void enable(const Edge& e) const { Parent::status(e, true); }
1805
1806  };
1807
1808  /// \brief Returns a read-only FilterEdges adaptor
1809  ///
1810  /// This function just returns a read-only \ref FilterEdges adaptor.
1811  /// \ingroup graph_adaptors
1812  /// \relates FilterEdges
1813  template<typename GR, typename EF>
1814  FilterEdges<const GR, EF>
1815  filterEdges(const GR& graph, EF& edge_filter_map) {
1816    return FilterEdges<const GR, EF>(graph, edge_filter_map);
1817  }
1818
1819  template<typename GR, typename EF>
1820  FilterEdges<const GR, const EF>
1821  filterEdges(const GR& graph, const EF& edge_filter_map) {
1822    return FilterEdges<const GR, const EF>(graph, edge_filter_map);
1823  }
1824
1825
1826  template <typename _Digraph>
1827  class UndirectorBase {
1828  public:
1829    typedef _Digraph Digraph;
1830    typedef UndirectorBase Adaptor;
1831
1832    typedef True UndirectedTag;
1833
1834    typedef typename Digraph::Arc Edge;
1835    typedef typename Digraph::Node Node;
1836
1837    class Arc : public Edge {
1838      friend class UndirectorBase;
1839    protected:
1840      bool _forward;
1841
1842      Arc(const Edge& edge, bool forward) :
1843        Edge(edge), _forward(forward) {}
1844
1845    public:
1846      Arc() {}
1847
1848      Arc(Invalid) : Edge(INVALID), _forward(true) {}
1849
1850      bool operator==(const Arc &other) const {
1851        return _forward == other._forward &&
1852          static_cast<const Edge&>(*this) == static_cast<const Edge&>(other);
1853      }
1854      bool operator!=(const Arc &other) const {
1855        return _forward != other._forward ||
1856          static_cast<const Edge&>(*this) != static_cast<const Edge&>(other);
1857      }
1858      bool operator<(const Arc &other) const {
1859        return _forward < other._forward ||
1860          (_forward == other._forward &&
1861           static_cast<const Edge&>(*this) < static_cast<const Edge&>(other));
1862      }
1863    };
1864
1865    void first(Node& n) const {
1866      _digraph->first(n);
1867    }
1868
1869    void next(Node& n) const {
1870      _digraph->next(n);
1871    }
1872
1873    void first(Arc& a) const {
1874      _digraph->first(a);
1875      a._forward = true;
1876    }
1877
1878    void next(Arc& a) const {
1879      if (a._forward) {
1880        a._forward = false;
1881      } else {
1882        _digraph->next(a);
1883        a._forward = true;
1884      }
1885    }
1886
1887    void first(Edge& e) const {
1888      _digraph->first(e);
1889    }
1890
1891    void next(Edge& e) const {
1892      _digraph->next(e);
1893    }
1894
1895    void firstOut(Arc& a, const Node& n) const {
1896      _digraph->firstIn(a, n);
1897      if( static_cast<const Edge&>(a) != INVALID ) {
1898        a._forward = false;
1899      } else {
1900        _digraph->firstOut(a, n);
1901        a._forward = true;
1902      }
1903    }
1904    void nextOut(Arc &a) const {
1905      if (!a._forward) {
1906        Node n = _digraph->target(a);
1907        _digraph->nextIn(a);
1908        if (static_cast<const Edge&>(a) == INVALID ) {
1909          _digraph->firstOut(a, n);
1910          a._forward = true;
1911        }
1912      }
1913      else {
1914        _digraph->nextOut(a);
1915      }
1916    }
1917
1918    void firstIn(Arc &a, const Node &n) const {
1919      _digraph->firstOut(a, n);
1920      if (static_cast<const Edge&>(a) != INVALID ) {
1921        a._forward = false;
1922      } else {
1923        _digraph->firstIn(a, n);
1924        a._forward = true;
1925      }
1926    }
1927    void nextIn(Arc &a) const {
1928      if (!a._forward) {
1929        Node n = _digraph->source(a);
1930        _digraph->nextOut(a);
1931        if( static_cast<const Edge&>(a) == INVALID ) {
1932          _digraph->firstIn(a, n);
1933          a._forward = true;
1934        }
1935      }
1936      else {
1937        _digraph->nextIn(a);
1938      }
1939    }
1940
1941    void firstInc(Edge &e, bool &d, const Node &n) const {
1942      d = true;
1943      _digraph->firstOut(e, n);
1944      if (e != INVALID) return;
1945      d = false;
1946      _digraph->firstIn(e, n);
1947    }
1948
1949    void nextInc(Edge &e, bool &d) const {
1950      if (d) {
1951        Node s = _digraph->source(e);
1952        _digraph->nextOut(e);
1953        if (e != INVALID) return;
1954        d = false;
1955        _digraph->firstIn(e, s);
1956      } else {
1957        _digraph->nextIn(e);
1958      }
1959    }
1960
1961    Node u(const Edge& e) const {
1962      return _digraph->source(e);
1963    }
1964
1965    Node v(const Edge& e) const {
1966      return _digraph->target(e);
1967    }
1968
1969    Node source(const Arc &a) const {
1970      return a._forward ? _digraph->source(a) : _digraph->target(a);
1971    }
1972
1973    Node target(const Arc &a) const {
1974      return a._forward ? _digraph->target(a) : _digraph->source(a);
1975    }
1976
1977    static Arc direct(const Edge &e, bool d) {
1978      return Arc(e, d);
1979    }
1980    Arc direct(const Edge &e, const Node& n) const {
1981      return Arc(e, _digraph->source(e) == n);
1982    }
1983
1984    static bool direction(const Arc &a) { return a._forward; }
1985
1986    Node nodeFromId(int ix) const { return _digraph->nodeFromId(ix); }
1987    Arc arcFromId(int ix) const {
1988      return direct(_digraph->arcFromId(ix >> 1), bool(ix & 1));
1989    }
1990    Edge edgeFromId(int ix) const { return _digraph->arcFromId(ix); }
1991
1992    int id(const Node &n) const { return _digraph->id(n); }
1993    int id(const Arc &a) const {
1994      return  (_digraph->id(a) << 1) | (a._forward ? 1 : 0);
1995    }
1996    int id(const Edge &e) const { return _digraph->id(e); }
1997
1998    int maxNodeId() const { return _digraph->maxNodeId(); }
1999    int maxArcId() const { return (_digraph->maxArcId() << 1) | 1; }
2000    int maxEdgeId() const { return _digraph->maxArcId(); }
2001
2002    Node addNode() { return _digraph->addNode(); }
2003    Edge addEdge(const Node& u, const Node& v) {
2004      return _digraph->addArc(u, v);
2005    }
2006
2007    void erase(const Node& i) { _digraph->erase(i); }
2008    void erase(const Edge& i) { _digraph->erase(i); }
2009
2010    void clear() { _digraph->clear(); }
2011
2012    typedef NodeNumTagIndicator<Digraph> NodeNumTag;
2013    int nodeNum() const { return _digraph->nodeNum(); }
2014
2015    typedef ArcNumTagIndicator<Digraph> ArcNumTag;
2016    int arcNum() const { return 2 * _digraph->arcNum(); }
2017
2018    typedef ArcNumTag EdgeNumTag;
2019    int edgeNum() const { return _digraph->arcNum(); }
2020
2021    typedef FindArcTagIndicator<Digraph> FindArcTag;
2022    Arc findArc(Node s, Node t, Arc p = INVALID) const {
2023      if (p == INVALID) {
2024        Edge arc = _digraph->findArc(s, t);
2025        if (arc != INVALID) return direct(arc, true);
2026        arc = _digraph->findArc(t, s);
2027        if (arc != INVALID) return direct(arc, false);
2028      } else if (direction(p)) {
2029        Edge arc = _digraph->findArc(s, t, p);
2030        if (arc != INVALID) return direct(arc, true);
2031        arc = _digraph->findArc(t, s);
2032        if (arc != INVALID) return direct(arc, false);
2033      } else {
2034        Edge arc = _digraph->findArc(t, s, p);
2035        if (arc != INVALID) return direct(arc, false);
2036      }
2037      return INVALID;
2038    }
2039
2040    typedef FindArcTag FindEdgeTag;
2041    Edge findEdge(Node s, Node t, Edge p = INVALID) const {
2042      if (s != t) {
2043        if (p == INVALID) {
2044          Edge arc = _digraph->findArc(s, t);
2045          if (arc != INVALID) return arc;
2046          arc = _digraph->findArc(t, s);
2047          if (arc != INVALID) return arc;
2048        } else if (_digraph->source(p) == s) {
2049          Edge arc = _digraph->findArc(s, t, p);
2050          if (arc != INVALID) return arc;
2051          arc = _digraph->findArc(t, s);
2052          if (arc != INVALID) return arc;
2053        } else {
2054          Edge arc = _digraph->findArc(t, s, p);
2055          if (arc != INVALID) return arc;
2056        }
2057      } else {
2058        return _digraph->findArc(s, t, p);
2059      }
2060      return INVALID;
2061    }
2062
2063  private:
2064
2065    template <typename _Value>
2066    class ArcMapBase {
2067    private:
2068
2069      typedef typename Digraph::template ArcMap<_Value> MapImpl;
2070
2071    public:
2072
2073      typedef typename MapTraits<MapImpl>::ReferenceMapTag ReferenceMapTag;
2074
2075      typedef _Value Value;
2076      typedef Arc Key;
2077      typedef typename MapTraits<MapImpl>::ConstReturnValue ConstReturnValue;
2078      typedef typename MapTraits<MapImpl>::ReturnValue ReturnValue;
2079      typedef typename MapTraits<MapImpl>::ConstReturnValue ConstReference;
2080      typedef typename MapTraits<MapImpl>::ReturnValue Reference;
2081
2082      ArcMapBase(const Adaptor& adaptor) :
2083        _forward(*adaptor._digraph), _backward(*adaptor._digraph) {}
2084
2085      ArcMapBase(const Adaptor& adaptor, const Value& v)
2086        : _forward(*adaptor._digraph, v), _backward(*adaptor._digraph, v) {}
2087
2088      void set(const Arc& a, const Value& v) {
2089        if (direction(a)) {
2090          _forward.set(a, v);
2091        } else {
2092          _backward.set(a, v);
2093        }
2094      }
2095
2096      ConstReturnValue operator[](const Arc& a) const {
2097        if (direction(a)) {
2098          return _forward[a];
2099        } else {
2100          return _backward[a];
2101        }
2102      }
2103
2104      ReturnValue operator[](const Arc& a) {
2105        if (direction(a)) {
2106          return _forward[a];
2107        } else {
2108          return _backward[a];
2109        }
2110      }
2111
2112    protected:
2113
2114      MapImpl _forward, _backward;
2115
2116    };
2117
2118  public:
2119
2120    template <typename _Value>
2121    class NodeMap : public Digraph::template NodeMap<_Value> {
2122    public:
2123
2124      typedef _Value Value;
2125      typedef typename Digraph::template NodeMap<Value> Parent;
2126
2127      explicit NodeMap(const Adaptor& adaptor)
2128        : Parent(*adaptor._digraph) {}
2129
2130      NodeMap(const Adaptor& adaptor, const _Value& value)
2131        : Parent(*adaptor._digraph, value) { }
2132
2133    private:
2134      NodeMap& operator=(const NodeMap& cmap) {
2135        return operator=<NodeMap>(cmap);
2136      }
2137
2138      template <typename CMap>
2139      NodeMap& operator=(const CMap& cmap) {
2140        Parent::operator=(cmap);
2141        return *this;
2142      }
2143
2144    };
2145
2146    template <typename _Value>
2147    class ArcMap
2148      : public SubMapExtender<Adaptor, ArcMapBase<_Value> >
2149    {
2150    public:
2151      typedef _Value Value;
2152      typedef SubMapExtender<Adaptor, ArcMapBase<Value> > Parent;
2153
2154      explicit ArcMap(const Adaptor& adaptor)
2155        : Parent(adaptor) {}
2156
2157      ArcMap(const Adaptor& adaptor, const Value& value)
2158        : Parent(adaptor, value) {}
2159
2160    private:
2161      ArcMap& operator=(const ArcMap& cmap) {
2162        return operator=<ArcMap>(cmap);
2163      }
2164
2165      template <typename CMap>
2166      ArcMap& operator=(const CMap& cmap) {
2167        Parent::operator=(cmap);
2168        return *this;
2169      }
2170    };
2171
2172    template <typename _Value>
2173    class EdgeMap : public Digraph::template ArcMap<_Value> {
2174    public:
2175
2176      typedef _Value Value;
2177      typedef typename Digraph::template ArcMap<Value> Parent;
2178
2179      explicit EdgeMap(const Adaptor& adaptor)
2180        : Parent(*adaptor._digraph) {}
2181
2182      EdgeMap(const Adaptor& adaptor, const Value& value)
2183        : Parent(*adaptor._digraph, value) {}
2184
2185    private:
2186      EdgeMap& operator=(const EdgeMap& cmap) {
2187        return operator=<EdgeMap>(cmap);
2188      }
2189
2190      template <typename CMap>
2191      EdgeMap& operator=(const CMap& cmap) {
2192        Parent::operator=(cmap);
2193        return *this;
2194      }
2195
2196    };
2197
2198    typedef typename ItemSetTraits<Digraph, Node>::ItemNotifier NodeNotifier;
2199    NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); }
2200
2201    typedef typename ItemSetTraits<Digraph, Edge>::ItemNotifier EdgeNotifier;
2202    EdgeNotifier& notifier(Edge) const { return _digraph->notifier(Edge()); }
2203
2204  protected:
2205
2206    UndirectorBase() : _digraph(0) {}
2207
2208    Digraph* _digraph;
2209
2210    void setDigraph(Digraph& digraph) {
2211      _digraph = &digraph;
2212    }
2213
2214  };
2215
2216  /// \ingroup graph_adaptors
2217  ///
2218  /// \brief Adaptor class for viewing a digraph as an undirected graph.
2219  ///
2220  /// Undirector adaptor can be used for viewing a digraph as an undirected
2221  /// graph. All arcs of the underlying digraph are showed in the
2222  /// adaptor as an edge (and also as a pair of arcs, of course).
2223  /// This adaptor conforms to the \ref concepts::Graph "Graph" concept.
2224  ///
2225  /// The adapted digraph can also be modified through this adaptor
2226  /// by adding or removing nodes or edges, unless the \c GR template
2227  /// parameter is set to be \c const.
2228  ///
2229  /// \tparam GR The type of the adapted digraph.
2230  /// It must conform to the \ref concepts::Digraph "Digraph" concept.
2231  /// It can also be specified to be \c const.
2232  ///
2233  /// \note The \c Node type of this adaptor and the adapted digraph are
2234  /// convertible to each other, moreover the \c Edge type of the adaptor
2235  /// and the \c Arc type of the adapted digraph are also convertible to
2236  /// each other.
2237  /// (Thus the \c Arc type of the adaptor is convertible to the \c Arc type
2238  /// of the adapted digraph.)
2239  template<typename GR>
2240#ifdef DOXYGEN
2241  class Undirector {
2242#else
2243  class Undirector :
2244    public GraphAdaptorExtender<UndirectorBase<GR> > {
2245#endif
2246  public:
2247    /// The type of the adapted digraph.
2248    typedef GR Digraph;
2249    typedef GraphAdaptorExtender<UndirectorBase<GR> > Parent;
2250  protected:
2251    Undirector() { }
2252  public:
2253
2254    /// \brief Constructor
2255    ///
2256    /// Creates an undirected graph from the given digraph.
2257    Undirector(Digraph& digraph) {
2258      setDigraph(digraph);
2259    }
2260
2261    /// \brief Arc map combined from two original arc maps
2262    ///
2263    /// This map adaptor class adapts two arc maps of the underlying
2264    /// digraph to get an arc map of the undirected graph.
2265    /// Its value type is inherited from the first arc map type
2266    /// (\c %ForwardMap).
2267    template <typename ForwardMap, typename BackwardMap>
2268    class CombinedArcMap {
2269    public:
2270
2271      /// The key type of the map
2272      typedef typename Parent::Arc Key;
2273      /// The value type of the map
2274      typedef typename ForwardMap::Value Value;
2275
2276      typedef typename MapTraits<ForwardMap>::ReferenceMapTag ReferenceMapTag;
2277
2278      typedef typename MapTraits<ForwardMap>::ReturnValue ReturnValue;
2279      typedef typename MapTraits<ForwardMap>::ConstReturnValue ConstReturnValue;
2280      typedef typename MapTraits<ForwardMap>::ReturnValue Reference;
2281      typedef typename MapTraits<ForwardMap>::ConstReturnValue ConstReference;
2282
2283      /// Constructor
2284      CombinedArcMap(ForwardMap& forward, BackwardMap& backward)
2285        : _forward(&forward), _backward(&backward) {}
2286
2287      /// Sets the value associated with the given key.
2288      void set(const Key& e, const Value& a) {
2289        if (Parent::direction(e)) {
2290          _forward->set(e, a);
2291        } else {
2292          _backward->set(e, a);
2293        }
2294      }
2295
2296      /// Returns the value associated with the given key.
2297      ConstReturnValue operator[](const Key& e) const {
2298        if (Parent::direction(e)) {
2299          return (*_forward)[e];
2300        } else {
2301          return (*_backward)[e];
2302        }
2303      }
2304
2305      /// Returns a reference to the value associated with the given key.
2306      ReturnValue operator[](const Key& e) {
2307        if (Parent::direction(e)) {
2308          return (*_forward)[e];
2309        } else {
2310          return (*_backward)[e];
2311        }
2312      }
2313
2314    protected:
2315
2316      ForwardMap* _forward;
2317      BackwardMap* _backward;
2318
2319    };
2320
2321    /// \brief Returns a combined arc map
2322    ///
2323    /// This function just returns a combined arc map.
2324    template <typename ForwardMap, typename BackwardMap>
2325    static CombinedArcMap<ForwardMap, BackwardMap>
2326    combinedArcMap(ForwardMap& forward, BackwardMap& backward) {
2327      return CombinedArcMap<ForwardMap, BackwardMap>(forward, backward);
2328    }
2329
2330    template <typename ForwardMap, typename BackwardMap>
2331    static CombinedArcMap<const ForwardMap, BackwardMap>
2332    combinedArcMap(const ForwardMap& forward, BackwardMap& backward) {
2333      return CombinedArcMap<const ForwardMap,
2334        BackwardMap>(forward, backward);
2335    }
2336
2337    template <typename ForwardMap, typename BackwardMap>
2338    static CombinedArcMap<ForwardMap, const BackwardMap>
2339    combinedArcMap(ForwardMap& forward, const BackwardMap& backward) {
2340      return CombinedArcMap<ForwardMap,
2341        const BackwardMap>(forward, backward);
2342    }
2343
2344    template <typename ForwardMap, typename BackwardMap>
2345    static CombinedArcMap<const ForwardMap, const BackwardMap>
2346    combinedArcMap(const ForwardMap& forward, const BackwardMap& backward) {
2347      return CombinedArcMap<const ForwardMap,
2348        const BackwardMap>(forward, backward);
2349    }
2350
2351  };
2352
2353  /// \brief Returns a read-only Undirector adaptor
2354  ///
2355  /// This function just returns a read-only \ref Undirector adaptor.
2356  /// \ingroup graph_adaptors
2357  /// \relates Undirector
2358  template<typename GR>
2359  Undirector<const GR> undirector(const GR& digraph) {
2360    return Undirector<const GR>(digraph);
2361  }
2362
2363
2364  template <typename _Graph, typename _DirectionMap>
2365  class OrienterBase {
2366  public:
2367
2368    typedef _Graph Graph;
2369    typedef _DirectionMap DirectionMap;
2370
2371    typedef typename Graph::Node Node;
2372    typedef typename Graph::Edge Arc;
2373
2374    void reverseArc(const Arc& arc) {
2375      _direction->set(arc, !(*_direction)[arc]);
2376    }
2377
2378    void first(Node& i) const { _graph->first(i); }
2379    void first(Arc& i) const { _graph->first(i); }
2380    void firstIn(Arc& i, const Node& n) const {
2381      bool d = true;
2382      _graph->firstInc(i, d, n);
2383      while (i != INVALID && d == (*_direction)[i]) _graph->nextInc(i, d);
2384    }
2385    void firstOut(Arc& i, const Node& n ) const {
2386      bool d = true;
2387      _graph->firstInc(i, d, n);
2388      while (i != INVALID && d != (*_direction)[i]) _graph->nextInc(i, d);
2389    }
2390
2391    void next(Node& i) const { _graph->next(i); }
2392    void next(Arc& i) const { _graph->next(i); }
2393    void nextIn(Arc& i) const {
2394      bool d = !(*_direction)[i];
2395      _graph->nextInc(i, d);
2396      while (i != INVALID && d == (*_direction)[i]) _graph->nextInc(i, d);
2397    }
2398    void nextOut(Arc& i) const {
2399      bool d = (*_direction)[i];
2400      _graph->nextInc(i, d);
2401      while (i != INVALID && d != (*_direction)[i]) _graph->nextInc(i, d);
2402    }
2403
2404    Node source(const Arc& e) const {
2405      return (*_direction)[e] ? _graph->u(e) : _graph->v(e);
2406    }
2407    Node target(const Arc& e) const {
2408      return (*_direction)[e] ? _graph->v(e) : _graph->u(e);
2409    }
2410
2411    typedef NodeNumTagIndicator<Graph> NodeNumTag;
2412    int nodeNum() const { return _graph->nodeNum(); }
2413
2414    typedef EdgeNumTagIndicator<Graph> ArcNumTag;
2415    int arcNum() const { return _graph->edgeNum(); }
2416
2417    typedef FindEdgeTagIndicator<Graph> FindArcTag;
2418    Arc findArc(const Node& u, const Node& v,
2419                const Arc& prev = INVALID) const {
2420      Arc arc = _graph->findEdge(u, v, prev);
2421      while (arc != INVALID && source(arc) != u) {
2422        arc = _graph->findEdge(u, v, arc);
2423      }
2424      return arc;
2425    }
2426
2427    Node addNode() {
2428      return Node(_graph->addNode());
2429    }
2430
2431    Arc addArc(const Node& u, const Node& v) {
2432      Arc arc = _graph->addEdge(u, v);
2433      _direction->set(arc, _graph->u(arc) == u);
2434      return arc;
2435    }
2436
2437    void erase(const Node& i) { _graph->erase(i); }
2438    void erase(const Arc& i) { _graph->erase(i); }
2439
2440    void clear() { _graph->clear(); }
2441
2442    int id(const Node& v) const { return _graph->id(v); }
2443    int id(const Arc& e) const { return _graph->id(e); }
2444
2445    Node nodeFromId(int idx) const { return _graph->nodeFromId(idx); }
2446    Arc arcFromId(int idx) const { return _graph->edgeFromId(idx); }
2447
2448    int maxNodeId() const { return _graph->maxNodeId(); }
2449    int maxArcId() const { return _graph->maxEdgeId(); }
2450
2451    typedef typename ItemSetTraits<Graph, Node>::ItemNotifier NodeNotifier;
2452    NodeNotifier& notifier(Node) const { return _graph->notifier(Node()); }
2453
2454    typedef typename ItemSetTraits<Graph, Arc>::ItemNotifier ArcNotifier;
2455    ArcNotifier& notifier(Arc) const { return _graph->notifier(Arc()); }
2456
2457    template <typename _Value>
2458    class NodeMap : public _Graph::template NodeMap<_Value> {
2459    public:
2460
2461      typedef typename _Graph::template NodeMap<_Value> Parent;
2462
2463      explicit NodeMap(const OrienterBase& adapter)
2464        : Parent(*adapter._graph) {}
2465
2466      NodeMap(const OrienterBase& adapter, const _Value& value)
2467        : Parent(*adapter._graph, value) {}
2468
2469    private:
2470      NodeMap& operator=(const NodeMap& cmap) {
2471        return operator=<NodeMap>(cmap);
2472      }
2473
2474      template <typename CMap>
2475      NodeMap& operator=(const CMap& cmap) {
2476        Parent::operator=(cmap);
2477        return *this;
2478      }
2479
2480    };
2481
2482    template <typename _Value>
2483    class ArcMap : public _Graph::template EdgeMap<_Value> {
2484    public:
2485
2486      typedef typename Graph::template EdgeMap<_Value> Parent;
2487
2488      explicit ArcMap(const OrienterBase& adapter)
2489        : Parent(*adapter._graph) { }
2490
2491      ArcMap(const OrienterBase& adapter, const _Value& value)
2492        : Parent(*adapter._graph, value) { }
2493
2494    private:
2495      ArcMap& operator=(const ArcMap& cmap) {
2496        return operator=<ArcMap>(cmap);
2497      }
2498
2499      template <typename CMap>
2500      ArcMap& operator=(const CMap& cmap) {
2501        Parent::operator=(cmap);
2502        return *this;
2503      }
2504    };
2505
2506
2507
2508  protected:
2509    Graph* _graph;
2510    DirectionMap* _direction;
2511
2512    void setDirectionMap(DirectionMap& direction) {
2513      _direction = &direction;
2514    }
2515
2516    void setGraph(Graph& graph) {
2517      _graph = &graph;
2518    }
2519
2520  };
2521
2522  /// \ingroup graph_adaptors
2523  ///
2524  /// \brief Adaptor class for orienting the edges of a graph to get a digraph
2525  ///
2526  /// Orienter adaptor can be used for orienting the edges of a graph to
2527  /// get a digraph. A \c bool edge map of the underlying graph must be
2528  /// specified, which define the direction of the arcs in the adaptor.
2529  /// The arcs can be easily reversed by the \c reverseArc() member function
2530  /// of the adaptor.
2531  /// This class conforms to the \ref concepts::Digraph "Digraph" concept.
2532  ///
2533  /// The adapted graph can also be modified through this adaptor
2534  /// by adding or removing nodes or arcs, unless the \c GR template
2535  /// parameter is set to be \c const.
2536  ///
2537  /// \tparam GR The type of the adapted graph.
2538  /// It must conform to the \ref concepts::Graph "Graph" concept.
2539  /// It can also be specified to be \c const.
2540  /// \tparam DM The type of the direction map.
2541  /// It must be a \c bool (or convertible) edge map of the
2542  /// adapted graph. The default type is
2543  /// \ref concepts::Graph::EdgeMap "GR::EdgeMap<bool>".
2544  ///
2545  /// \note The \c Node type of this adaptor and the adapted graph are
2546  /// convertible to each other, moreover the \c Arc type of the adaptor
2547  /// and the \c Edge type of the adapted graph are also convertible to
2548  /// each other.
2549#ifdef DOXYGEN
2550  template<typename GR,
2551           typename DM>
2552  class Orienter {
2553#else
2554  template<typename GR,
2555           typename DM = typename GR::template EdgeMap<bool> >
2556  class Orienter :
2557    public DigraphAdaptorExtender<OrienterBase<GR, DM> > {
2558#endif
2559  public:
2560
2561    /// The type of the adapted graph.
2562    typedef GR Graph;
2563    /// The type of the direction edge map.
2564    typedef DM DirectionMap;
2565
2566    typedef DigraphAdaptorExtender<OrienterBase<GR, DM> > Parent;
2567    typedef typename Parent::Arc Arc;
2568  protected:
2569    Orienter() { }
2570  public:
2571
2572    /// \brief Constructor
2573    ///
2574    /// Constructor of the adaptor.
2575    Orienter(Graph& graph, DirectionMap& direction) {
2576      setGraph(graph);
2577      setDirectionMap(direction);
2578    }
2579
2580    /// \brief Reverses the given arc
2581    ///
2582    /// This function reverses the given arc.
2583    /// It is done by simply negate the assigned value of \c a
2584    /// in the direction map.
2585    void reverseArc(const Arc& a) {
2586      Parent::reverseArc(a);
2587    }
2588  };
2589
2590  /// \brief Returns a read-only Orienter adaptor
2591  ///
2592  /// This function just returns a read-only \ref Orienter adaptor.
2593  /// \ingroup graph_adaptors
2594  /// \relates Orienter
2595  template<typename GR, typename DM>
2596  Orienter<const GR, DM>
2597  orienter(const GR& graph, DM& direction_map) {
2598    return Orienter<const GR, DM>(graph, direction_map);
2599  }
2600
2601  template<typename GR, typename DM>
2602  Orienter<const GR, const DM>
2603  orienter(const GR& graph, const DM& direction_map) {
2604    return Orienter<const GR, const DM>(graph, direction_map);
2605  }
2606
2607  namespace _adaptor_bits {
2608
2609    template<typename Digraph,
2610             typename CapacityMap,
2611             typename FlowMap,
2612             typename Tolerance>
2613    class ResForwardFilter {
2614    public:
2615
2616      typedef typename Digraph::Arc Key;
2617      typedef bool Value;
2618
2619    private:
2620
2621      const CapacityMap* _capacity;
2622      const FlowMap* _flow;
2623      Tolerance _tolerance;
2624    public:
2625
2626      ResForwardFilter(const CapacityMap& capacity, const FlowMap& flow,
2627                       const Tolerance& tolerance = Tolerance())
2628        : _capacity(&capacity), _flow(&flow), _tolerance(tolerance) { }
2629
2630      bool operator[](const typename Digraph::Arc& a) const {
2631        return _tolerance.positive((*_capacity)[a] - (*_flow)[a]);
2632      }
2633    };
2634
2635    template<typename Digraph,
2636             typename CapacityMap,
2637             typename FlowMap,
2638             typename Tolerance>
2639    class ResBackwardFilter {
2640    public:
2641
2642      typedef typename Digraph::Arc Key;
2643      typedef bool Value;
2644
2645    private:
2646
2647      const CapacityMap* _capacity;
2648      const FlowMap* _flow;
2649      Tolerance _tolerance;
2650
2651    public:
2652
2653      ResBackwardFilter(const CapacityMap& capacity, const FlowMap& flow,
2654                        const Tolerance& tolerance = Tolerance())
2655        : _capacity(&capacity), _flow(&flow), _tolerance(tolerance) { }
2656
2657      bool operator[](const typename Digraph::Arc& a) const {
2658        return _tolerance.positive((*_flow)[a]);
2659      }
2660    };
2661
2662  }
2663
2664  /// \ingroup graph_adaptors
2665  ///
2666  /// \brief Adaptor class for composing the residual digraph for directed
2667  /// flow and circulation problems.
2668  ///
2669  /// Residual can be used for composing the \e residual digraph for directed
2670  /// flow and circulation problems. Let \f$ G=(V, A) \f$ be a directed graph
2671  /// and let \f$ F \f$ be a number type. Let \f$ flow, cap: A\to F \f$ be
2672  /// functions on the arcs.
2673  /// This adaptor implements a digraph structure with node set \f$ V \f$
2674  /// and arc set \f$ A_{forward}\cup A_{backward} \f$,
2675  /// where \f$ A_{forward}=\{uv : uv\in A, flow(uv)<cap(uv)\} \f$ and
2676  /// \f$ A_{backward}=\{vu : uv\in A, flow(uv)>0\} \f$, i.e. the so
2677  /// called residual digraph.
2678  /// When the union \f$ A_{forward}\cup A_{backward} \f$ is taken,
2679  /// multiplicities are counted, i.e. the adaptor has exactly
2680  /// \f$ |A_{forward}| + |A_{backward}|\f$ arcs (it may have parallel
2681  /// arcs).
2682  /// This class conforms to the \ref concepts::Digraph "Digraph" concept.
2683  ///
2684  /// \tparam GR The type of the adapted digraph.
2685  /// It must conform to the \ref concepts::Digraph "Digraph" concept.
2686  /// It is implicitly \c const.
2687  /// \tparam CM The type of the capacity map.
2688  /// It must be an arc map of some numerical type, which defines
2689  /// the capacities in the flow problem. It is implicitly \c const.
2690  /// The default type is
2691  /// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
2692  /// \tparam FM The type of the flow map.
2693  /// It must be an arc map of some numerical type, which defines
2694  /// the flow values in the flow problem. The default type is \c CM.
2695  /// \tparam TL The tolerance type for handling inexact computation.
2696  /// The default tolerance type depends on the value type of the
2697  /// capacity map.
2698  ///
2699  /// \note This adaptor is implemented using Undirector and FilterArcs
2700  /// adaptors.
2701  ///
2702  /// \note The \c Node type of this adaptor and the adapted digraph are
2703  /// convertible to each other, moreover the \c Arc type of the adaptor
2704  /// is convertible to the \c Arc type of the adapted digraph.
2705#ifdef DOXYGEN
2706  template<typename GR, typename CM, typename FM, typename TL>
2707  class Residual
2708#else
2709  template<typename GR,
2710           typename CM = typename GR::template ArcMap<int>,
2711           typename FM = CM,
2712           typename TL = Tolerance<typename CM::Value> >
2713  class Residual :
2714    public FilterArcs<
2715      Undirector<const GR>,
2716      typename Undirector<const GR>::template CombinedArcMap<
2717        _adaptor_bits::ResForwardFilter<const GR, CM, FM, TL>,
2718        _adaptor_bits::ResBackwardFilter<const GR, CM, FM, TL> > >
2719#endif
2720  {
2721  public:
2722
2723    /// The type of the underlying digraph.
2724    typedef GR Digraph;
2725    /// The type of the capacity map.
2726    typedef CM CapacityMap;
2727    /// The type of the flow map.
2728    typedef FM FlowMap;
2729    /// The tolerance type.
2730    typedef TL Tolerance;
2731
2732    typedef typename CapacityMap::Value Value;
2733    typedef Residual Adaptor;
2734
2735  protected:
2736
2737    typedef Undirector<const Digraph> Undirected;
2738
2739    typedef _adaptor_bits::ResForwardFilter<const Digraph, CapacityMap,
2740                                            FlowMap, Tolerance> ForwardFilter;
2741
2742    typedef _adaptor_bits::ResBackwardFilter<const Digraph, CapacityMap,
2743                                             FlowMap, Tolerance> BackwardFilter;
2744
2745    typedef typename Undirected::
2746      template CombinedArcMap<ForwardFilter, BackwardFilter> ArcFilter;
2747
2748    typedef FilterArcs<Undirected, ArcFilter> Parent;
2749
2750    const CapacityMap* _capacity;
2751    FlowMap* _flow;
2752
2753    Undirected _graph;
2754    ForwardFilter _forward_filter;
2755    BackwardFilter _backward_filter;
2756    ArcFilter _arc_filter;
2757
2758  public:
2759
2760    /// \brief Constructor
2761    ///
2762    /// Constructor of the residual digraph adaptor. The parameters are the
2763    /// digraph, the capacity map, the flow map, and a tolerance object.
2764    Residual(const Digraph& digraph, const CapacityMap& capacity,
2765             FlowMap& flow, const Tolerance& tolerance = Tolerance())
2766      : Parent(), _capacity(&capacity), _flow(&flow), _graph(digraph),
2767        _forward_filter(capacity, flow, tolerance),
2768        _backward_filter(capacity, flow, tolerance),
2769        _arc_filter(_forward_filter, _backward_filter)
2770    {
2771      Parent::setDigraph(_graph);
2772      Parent::setArcFilterMap(_arc_filter);
2773    }
2774
2775    typedef typename Parent::Arc Arc;
2776
2777    /// \brief Returns the residual capacity of the given arc.
2778    ///
2779    /// Returns the residual capacity of the given arc.
2780    Value residualCapacity(const Arc& a) const {
2781      if (Undirected::direction(a)) {
2782        return (*_capacity)[a] - (*_flow)[a];
2783      } else {
2784        return (*_flow)[a];
2785      }
2786    }
2787
2788    /// \brief Augments on the given arc in the residual digraph.
2789    ///
2790    /// Augments on the given arc in the residual digraph. It increases
2791    /// or decreases the flow value on the original arc according to the
2792    /// direction of the residual arc.
2793    void augment(const Arc& a, const Value& v) const {
2794      if (Undirected::direction(a)) {
2795        _flow->set(a, (*_flow)[a] + v);
2796      } else {
2797        _flow->set(a, (*_flow)[a] - v);
2798      }
2799    }
2800
2801    /// \brief Returns \c true if the given residual arc is a forward arc.
2802    ///
2803    /// Returns \c true if the given residual arc has the same orientation
2804    /// as the original arc, i.e. it is a so called forward arc.
2805    static bool forward(const Arc& a) {
2806      return Undirected::direction(a);
2807    }
2808
2809    /// \brief Returns \c true if the given residual arc is a backward arc.
2810    ///
2811    /// Returns \c true if the given residual arc has the opposite orientation
2812    /// than the original arc, i.e. it is a so called backward arc.
2813    static bool backward(const Arc& a) {
2814      return !Undirected::direction(a);
2815    }
2816
2817    /// \brief Returns the forward oriented residual arc.
2818    ///
2819    /// Returns the forward oriented residual arc related to the given
2820    /// arc of the underlying digraph.
2821    static Arc forward(const typename Digraph::Arc& a) {
2822      return Undirected::direct(a, true);
2823    }
2824
2825    /// \brief Returns the backward oriented residual arc.
2826    ///
2827    /// Returns the backward oriented residual arc related to the given
2828    /// arc of the underlying digraph.
2829    static Arc backward(const typename Digraph::Arc& a) {
2830      return Undirected::direct(a, false);
2831    }
2832
2833    /// \brief Residual capacity map.
2834    ///
2835    /// This map adaptor class can be used for obtaining the residual
2836    /// capacities as an arc map of the residual digraph.
2837    /// Its value type is inherited from the capacity map.
2838    class ResidualCapacity {
2839    protected:
2840      const Adaptor* _adaptor;
2841    public:
2842      /// The key type of the map
2843      typedef Arc Key;
2844      /// The value type of the map
2845      typedef typename CapacityMap::Value Value;
2846
2847      /// Constructor
2848      ResidualCapacity(const Adaptor& adaptor) : _adaptor(&adaptor) {}
2849
2850      /// Returns the value associated with the given residual arc
2851      Value operator[](const Arc& a) const {
2852        return _adaptor->residualCapacity(a);
2853      }
2854
2855    };
2856
2857    /// \brief Returns a residual capacity map
2858    ///
2859    /// This function just returns a residual capacity map.
2860    ResidualCapacity residualCapacity() const {
2861      return ResidualCapacity(*this);
2862    }
2863
2864  };
2865
2866  /// \brief Returns a (read-only) Residual adaptor
2867  ///
2868  /// This function just returns a (read-only) \ref Residual adaptor.
2869  /// \ingroup graph_adaptors
2870  /// \relates Residual
2871  template<typename GR, typename CM, typename FM>
2872  Residual<GR, CM, FM> residual(const GR& digraph,
2873                                const CM& capacity_map,
2874                                FM& flow_map) {
2875    return Residual<GR, CM, FM> (digraph, capacity_map, flow_map);
2876  }
2877
2878
2879  template <typename _Digraph>
2880  class SplitNodesBase {
2881  public:
2882
2883    typedef _Digraph Digraph;
2884    typedef DigraphAdaptorBase<const _Digraph> Parent;
2885    typedef SplitNodesBase Adaptor;
2886
2887    typedef typename Digraph::Node DigraphNode;
2888    typedef typename Digraph::Arc DigraphArc;
2889
2890    class Node;
2891    class Arc;
2892
2893  private:
2894
2895    template <typename T> class NodeMapBase;
2896    template <typename T> class ArcMapBase;
2897
2898  public:
2899
2900    class Node : public DigraphNode {
2901      friend class SplitNodesBase;
2902      template <typename T> friend class NodeMapBase;
2903    private:
2904
2905      bool _in;
2906      Node(DigraphNode node, bool in)
2907        : DigraphNode(node), _in(in) {}
2908
2909    public:
2910
2911      Node() {}
2912      Node(Invalid) : DigraphNode(INVALID), _in(true) {}
2913
2914      bool operator==(const Node& node) const {
2915        return DigraphNode::operator==(node) && _in == node._in;
2916      }
2917
2918      bool operator!=(const Node& node) const {
2919        return !(*this == node);
2920      }
2921
2922      bool operator<(const Node& node) const {
2923        return DigraphNode::operator<(node) ||
2924          (DigraphNode::operator==(node) && _in < node._in);
2925      }
2926    };
2927
2928    class Arc {
2929      friend class SplitNodesBase;
2930      template <typename T> friend class ArcMapBase;
2931    private:
2932      typedef BiVariant<DigraphArc, DigraphNode> ArcImpl;
2933
2934      explicit Arc(const DigraphArc& arc) : _item(arc) {}
2935      explicit Arc(const DigraphNode& node) : _item(node) {}
2936
2937      ArcImpl _item;
2938
2939    public:
2940      Arc() {}
2941      Arc(Invalid) : _item(DigraphArc(INVALID)) {}
2942
2943      bool operator==(const Arc& arc) const {
2944        if (_item.firstState()) {
2945          if (arc._item.firstState()) {
2946            return _item.first() == arc._item.first();
2947          }
2948        } else {
2949          if (arc._item.secondState()) {
2950            return _item.second() == arc._item.second();
2951          }
2952        }
2953        return false;
2954      }
2955
2956      bool operator!=(const Arc& arc) const {
2957        return !(*this == arc);
2958      }
2959
2960      bool operator<(const Arc& arc) const {
2961        if (_item.firstState()) {
2962          if (arc._item.firstState()) {
2963            return _item.first() < arc._item.first();
2964          }
2965          return false;
2966        } else {
2967          if (arc._item.secondState()) {
2968            return _item.second() < arc._item.second();
2969          }
2970          return true;
2971        }
2972      }
2973
2974      operator DigraphArc() const { return _item.first(); }
2975      operator DigraphNode() const { return _item.second(); }
2976
2977    };
2978
2979    void first(Node& n) const {
2980      _digraph->first(n);
2981      n._in = true;
2982    }
2983
2984    void next(Node& n) const {
2985      if (n._in) {
2986        n._in = false;
2987      } else {
2988        n._in = true;
2989        _digraph->next(n);
2990      }
2991    }
2992
2993    void first(Arc& e) const {
2994      e._item.setSecond();
2995      _digraph->first(e._item.second());
2996      if (e._item.second() == INVALID) {
2997        e._item.setFirst();
2998        _digraph->first(e._item.first());
2999      }
3000    }
3001
3002    void next(Arc& e) const {
3003      if (e._item.secondState()) {
3004        _digraph->next(e._item.second());
3005        if (e._item.second() == INVALID) {
3006          e._item.setFirst();
3007          _digraph->first(e._item.first());
3008        }
3009      } else {
3010        _digraph->next(e._item.first());
3011      }
3012    }
3013
3014    void firstOut(Arc& e, const Node& n) const {
3015      if (n._in) {
3016        e._item.setSecond(n);
3017      } else {
3018        e._item.setFirst();
3019        _digraph->firstOut(e._item.first(), n);
3020      }
3021    }
3022
3023    void nextOut(Arc& e) const {
3024      if (!e._item.firstState()) {
3025        e._item.setFirst(INVALID);
3026      } else {
3027        _digraph->nextOut(e._item.first());
3028      }
3029    }
3030
3031    void firstIn(Arc& e, const Node& n) const {
3032      if (!n._in) {
3033        e._item.setSecond(n);
3034      } else {
3035        e._item.setFirst();
3036        _digraph->firstIn(e._item.first(), n);
3037      }
3038    }
3039
3040    void nextIn(Arc& e) const {
3041      if (!e._item.firstState()) {
3042        e._item.setFirst(INVALID);
3043      } else {
3044        _digraph->nextIn(e._item.first());
3045      }
3046    }
3047
3048    Node source(const Arc& e) const {
3049      if (e._item.firstState()) {
3050        return Node(_digraph->source(e._item.first()), false);
3051      } else {
3052        return Node(e._item.second(), true);
3053      }
3054    }
3055
3056    Node target(const Arc& e) const {
3057      if (e._item.firstState()) {
3058        return Node(_digraph->target(e._item.first()), true);
3059      } else {
3060        return Node(e._item.second(), false);
3061      }
3062    }
3063
3064    int id(const Node& n) const {
3065      return (_digraph->id(n) << 1) | (n._in ? 0 : 1);
3066    }
3067    Node nodeFromId(int ix) const {
3068      return Node(_digraph->nodeFromId(ix >> 1), (ix & 1) == 0);
3069    }
3070    int maxNodeId() const {
3071      return 2 * _digraph->maxNodeId() + 1;
3072    }
3073
3074    int id(const Arc& e) const {
3075      if (e._item.firstState()) {
3076        return _digraph->id(e._item.first()) << 1;
3077      } else {
3078        return (_digraph->id(e._item.second()) << 1) | 1;
3079      }
3080    }
3081    Arc arcFromId(int ix) const {
3082      if ((ix & 1) == 0) {
3083        return Arc(_digraph->arcFromId(ix >> 1));
3084      } else {
3085        return Arc(_digraph->nodeFromId(ix >> 1));
3086      }
3087    }
3088    int maxArcId() const {
3089      return std::max(_digraph->maxNodeId() << 1,
3090                      (_digraph->maxArcId() << 1) | 1);
3091    }
3092
3093    static bool inNode(const Node& n) {
3094      return n._in;
3095    }
3096
3097    static bool outNode(const Node& n) {
3098      return !n._in;
3099    }
3100
3101    static bool origArc(const Arc& e) {
3102      return e._item.firstState();
3103    }
3104
3105    static bool bindArc(const Arc& e) {
3106      return e._item.secondState();
3107    }
3108
3109    static Node inNode(const DigraphNode& n) {
3110      return Node(n, true);
3111    }
3112
3113    static Node outNode(const DigraphNode& n) {
3114      return Node(n, false);
3115    }
3116
3117    static Arc arc(const DigraphNode& n) {
3118      return Arc(n);
3119    }
3120
3121    static Arc arc(const DigraphArc& e) {
3122      return Arc(e);
3123    }
3124
3125    typedef True NodeNumTag;
3126    int nodeNum() const {
3127      return  2 * countNodes(*_digraph);
3128    }
3129
3130    typedef True ArcNumTag;
3131    int arcNum() const {
3132      return countArcs(*_digraph) + countNodes(*_digraph);
3133    }
3134
3135    typedef True FindArcTag;
3136    Arc findArc(const Node& u, const Node& v,
3137                const Arc& prev = INVALID) const {
3138      if (inNode(u) && outNode(v)) {
3139        if (static_cast<const DigraphNode&>(u) ==
3140            static_cast<const DigraphNode&>(v) && prev == INVALID) {
3141          return Arc(u);
3142        }
3143      }
3144      else if (outNode(u) && inNode(v)) {
3145        return Arc(::lemon::findArc(*_digraph, u, v, prev));
3146      }
3147      return INVALID;
3148    }
3149
3150  private:
3151
3152    template <typename _Value>
3153    class NodeMapBase
3154      : public MapTraits<typename Parent::template NodeMap<_Value> > {
3155      typedef typename Parent::template NodeMap<_Value> NodeImpl;
3156    public:
3157      typedef Node Key;
3158      typedef _Value Value;
3159      typedef typename MapTraits<NodeImpl>::ReferenceMapTag ReferenceMapTag;
3160      typedef typename MapTraits<NodeImpl>::ReturnValue ReturnValue;
3161      typedef typename MapTraits<NodeImpl>::ConstReturnValue ConstReturnValue;
3162      typedef typename MapTraits<NodeImpl>::ReturnValue Reference;
3163      typedef typename MapTraits<NodeImpl>::ConstReturnValue ConstReference;
3164
3165      NodeMapBase(const Adaptor& adaptor)
3166        : _in_map(*adaptor._digraph), _out_map(*adaptor._digraph) {}
3167      NodeMapBase(const Adaptor& adaptor, const Value& value)
3168        : _in_map(*adaptor._digraph, value),
3169          _out_map(*adaptor._digraph, value) {}
3170
3171      void set(const Node& key, const Value& val) {
3172        if (Adaptor::inNode(key)) { _in_map.set(key, val); }
3173        else {_out_map.set(key, val); }
3174      }
3175
3176      ReturnValue operator[](const Node& key) {
3177        if (Adaptor::inNode(key)) { return _in_map[key]; }
3178        else { return _out_map[key]; }
3179      }
3180
3181      ConstReturnValue operator[](const Node& key) const {
3182        if (Adaptor::inNode(key)) { return _in_map[key]; }
3183        else { return _out_map[key]; }
3184      }
3185
3186    private:
3187      NodeImpl _in_map, _out_map;
3188    };
3189
3190    template <typename _Value>
3191    class ArcMapBase
3192      : public MapTraits<typename Parent::template ArcMap<_Value> > {
3193      typedef typename Parent::template ArcMap<_Value> ArcImpl;
3194      typedef typename Parent::template NodeMap<_Value> NodeImpl;
3195    public:
3196      typedef Arc Key;
3197      typedef _Value Value;
3198      typedef typename MapTraits<ArcImpl>::ReferenceMapTag ReferenceMapTag;
3199      typedef typename MapTraits<ArcImpl>::ReturnValue ReturnValue;
3200      typedef typename MapTraits<ArcImpl>::ConstReturnValue ConstReturnValue;
3201      typedef typename MapTraits<ArcImpl>::ReturnValue Reference;
3202      typedef typename MapTraits<ArcImpl>::ConstReturnValue ConstReference;
3203
3204      ArcMapBase(const Adaptor& adaptor)
3205        : _arc_map(*adaptor._digraph), _node_map(*adaptor._digraph) {}
3206      ArcMapBase(const Adaptor& adaptor, const Value& value)
3207        : _arc_map(*adaptor._digraph, value),
3208          _node_map(*adaptor._digraph, value) {}
3209
3210      void set(const Arc& key, const Value& val) {
3211        if (Adaptor::origArc(key)) {
3212          _arc_map.set(key._item.first(), val);
3213        } else {
3214          _node_map.set(key._item.second(), val);
3215        }
3216      }
3217
3218      ReturnValue operator[](const Arc& key) {
3219        if (Adaptor::origArc(key)) {
3220          return _arc_map[key._item.first()];
3221        } else {
3222          return _node_map[key._item.second()];
3223        }
3224      }
3225
3226      ConstReturnValue operator[](const Arc& key) const {
3227        if (Adaptor::origArc(key)) {
3228          return _arc_map[key._item.first()];
3229        } else {
3230          return _node_map[key._item.second()];
3231        }
3232      }
3233
3234    private:
3235      ArcImpl _arc_map;
3236      NodeImpl _node_map;
3237    };
3238
3239  public:
3240
3241    template <typename _Value>
3242    class NodeMap
3243      : public SubMapExtender<Adaptor, NodeMapBase<_Value> >
3244    {
3245    public:
3246      typedef _Value Value;
3247      typedef SubMapExtender<Adaptor, NodeMapBase<Value> > Parent;
3248
3249      NodeMap(const Adaptor& adaptor)
3250        : Parent(adaptor) {}
3251
3252      NodeMap(const Adaptor& adaptor, const Value& value)
3253        : Parent(adaptor, value) {}
3254
3255    private:
3256      NodeMap& operator=(const NodeMap& cmap) {
3257        return operator=<NodeMap>(cmap);
3258      }
3259
3260      template <typename CMap>
3261      NodeMap& operator=(const CMap& cmap) {
3262        Parent::operator=(cmap);
3263        return *this;
3264      }
3265    };
3266
3267    template <typename _Value>
3268    class ArcMap
3269      : public SubMapExtender<Adaptor, ArcMapBase<_Value> >
3270    {
3271    public:
3272      typedef _Value Value;
3273      typedef SubMapExtender<Adaptor, ArcMapBase<Value> > Parent;
3274
3275      ArcMap(const Adaptor& adaptor)
3276        : Parent(adaptor) {}
3277
3278      ArcMap(const Adaptor& adaptor, const Value& value)
3279        : Parent(adaptor, value) {}
3280
3281    private:
3282      ArcMap& operator=(const ArcMap& cmap) {
3283        return operator=<ArcMap>(cmap);
3284      }
3285
3286      template <typename CMap>
3287      ArcMap& operator=(const CMap& cmap) {
3288        Parent::operator=(cmap);
3289        return *this;
3290      }
3291    };
3292
3293  protected:
3294
3295    SplitNodesBase() : _digraph(0) {}
3296
3297    Digraph* _digraph;
3298
3299    void setDigraph(Digraph& digraph) {
3300      _digraph = &digraph;
3301    }
3302
3303  };
3304
3305  /// \ingroup graph_adaptors
3306  ///
3307  /// \brief Adaptor class for splitting the nodes of a digraph.
3308  ///
3309  /// SplitNodes adaptor can be used for splitting each node into an
3310  /// \e in-node and an \e out-node in a digraph. Formaly, the adaptor
3311  /// replaces each node \f$ u \f$ in the digraph with two nodes,
3312  /// namely node \f$ u_{in} \f$ and node \f$ u_{out} \f$.
3313  /// If there is a \f$ (v, u) \f$ arc in the original digraph, then the
3314  /// new target of the arc will be \f$ u_{in} \f$ and similarly the
3315  /// source of each original \f$ (u, v) \f$ arc will be \f$ u_{out} \f$.
3316  /// The adaptor adds an additional \e bind \e arc from \f$ u_{in} \f$
3317  /// to \f$ u_{out} \f$ for each node \f$ u \f$ of the original digraph.
3318  ///
3319  /// The aim of this class is running an algorithm with respect to node
3320  /// costs or capacities if the algorithm considers only arc costs or
3321  /// capacities directly.
3322  /// In this case you can use \c SplitNodes adaptor, and set the node
3323  /// costs/capacities of the original digraph to the \e bind \e arcs
3324  /// in the adaptor.
3325  ///
3326  /// \tparam GR The type of the adapted digraph.
3327  /// It must conform to the \ref concepts::Digraph "Digraph" concept.
3328  /// It is implicitly \c const.
3329  ///
3330  /// \note The \c Node type of this adaptor is converible to the \c Node
3331  /// type of the adapted digraph.
3332  template <typename GR>
3333#ifdef DOXYGEN
3334  class SplitNodes {
3335#else
3336  class SplitNodes
3337    : public DigraphAdaptorExtender<SplitNodesBase<const GR> > {
3338#endif
3339  public:
3340    typedef GR Digraph;
3341    typedef DigraphAdaptorExtender<SplitNodesBase<const GR> > Parent;
3342
3343    typedef typename Digraph::Node DigraphNode;
3344    typedef typename Digraph::Arc DigraphArc;
3345
3346    typedef typename Parent::Node Node;
3347    typedef typename Parent::Arc Arc;
3348
3349    /// \brief Constructor
3350    ///
3351    /// Constructor of the adaptor.
3352    SplitNodes(const Digraph& g) {
3353      Parent::setDigraph(g);
3354    }
3355
3356    /// \brief Returns \c true if the given node is an in-node.
3357    ///
3358    /// Returns \c true if the given node is an in-node.
3359    static bool inNode(const Node& n) {
3360      return Parent::inNode(n);
3361    }
3362
3363    /// \brief Returns \c true if the given node is an out-node.
3364    ///
3365    /// Returns \c true if the given node is an out-node.
3366    static bool outNode(const Node& n) {
3367      return Parent::outNode(n);
3368    }
3369
3370    /// \brief Returns \c true if the given arc is an original arc.
3371    ///
3372    /// Returns \c true if the given arc is one of the arcs in the
3373    /// original digraph.
3374    static bool origArc(const Arc& a) {
3375      return Parent::origArc(a);
3376    }
3377
3378    /// \brief Returns \c true if the given arc is a bind arc.
3379    ///
3380    /// Returns \c true if the given arc is a bind arc, i.e. it connects
3381    /// an in-node and an out-node.
3382    static bool bindArc(const Arc& a) {
3383      return Parent::bindArc(a);
3384    }
3385
3386    /// \brief Returns the in-node created from the given original node.
3387    ///
3388    /// Returns the in-node created from the given original node.
3389    static Node inNode(const DigraphNode& n) {
3390      return Parent::inNode(n);
3391    }
3392
3393    /// \brief Returns the out-node created from the given original node.
3394    ///
3395    /// Returns the out-node created from the given original node.
3396    static Node outNode(const DigraphNode& n) {
3397      return Parent::outNode(n);
3398    }
3399
3400    /// \brief Returns the bind arc that corresponds to the given
3401    /// original node.
3402    ///
3403    /// Returns the bind arc in the adaptor that corresponds to the given
3404    /// original node, i.e. the arc connecting the in-node and out-node
3405    /// of \c n.
3406    static Arc arc(const DigraphNode& n) {
3407      return Parent::arc(n);
3408    }
3409
3410    /// \brief Returns the arc that corresponds to the given original arc.
3411    ///
3412    /// Returns the arc in the adaptor that corresponds to the given
3413    /// original arc.
3414    static Arc arc(const DigraphArc& a) {
3415      return Parent::arc(a);
3416    }
3417
3418    /// \brief Node map combined from two original node maps
3419    ///
3420    /// This map adaptor class adapts two node maps of the original digraph
3421    /// to get a node map of the split digraph.
3422    /// Its value type is inherited from the first node map type
3423    /// (\c InNodeMap).
3424    template <typename InNodeMap, typename OutNodeMap>
3425    class CombinedNodeMap {
3426    public:
3427
3428      /// The key type of the map
3429      typedef Node Key;
3430      /// The value type of the map
3431      typedef typename InNodeMap::Value Value;
3432
3433      typedef typename MapTraits<InNodeMap>::ReferenceMapTag ReferenceMapTag;
3434      typedef typename MapTraits<InNodeMap>::ReturnValue ReturnValue;
3435      typedef typename MapTraits<InNodeMap>::ConstReturnValue ConstReturnValue;
3436      typedef typename MapTraits<InNodeMap>::ReturnValue Reference;
3437      typedef typename MapTraits<InNodeMap>::ConstReturnValue ConstReference;
3438
3439      /// Constructor
3440      CombinedNodeMap(InNodeMap& in_map, OutNodeMap& out_map)
3441        : _in_map(in_map), _out_map(out_map) {}
3442
3443      /// Returns the value associated with the given key.
3444      Value operator[](const Key& key) const {
3445        if (Parent::inNode(key)) {
3446          return _in_map[key];
3447        } else {
3448          return _out_map[key];
3449        }
3450      }
3451
3452      /// Returns a reference to the value associated with the given key.
3453      Value& operator[](const Key& key) {
3454        if (Parent::inNode(key)) {
3455          return _in_map[key];
3456        } else {
3457          return _out_map[key];
3458        }
3459      }
3460
3461      /// Sets the value associated with the given key.
3462      void set(const Key& key, const Value& value) {
3463        if (Parent::inNode(key)) {
3464          _in_map.set(key, value);
3465        } else {
3466          _out_map.set(key, value);
3467        }
3468      }
3469
3470    private:
3471
3472      InNodeMap& _in_map;
3473      OutNodeMap& _out_map;
3474
3475    };
3476
3477
3478    /// \brief Returns a combined node map
3479    ///
3480    /// This function just returns a combined node map.
3481    template <typename InNodeMap, typename OutNodeMap>
3482    static CombinedNodeMap<InNodeMap, OutNodeMap>
3483    combinedNodeMap(InNodeMap& in_map, OutNodeMap& out_map) {
3484      return CombinedNodeMap<InNodeMap, OutNodeMap>(in_map, out_map);
3485    }
3486
3487    template <typename InNodeMap, typename OutNodeMap>
3488    static CombinedNodeMap<const InNodeMap, OutNodeMap>
3489    combinedNodeMap(const InNodeMap& in_map, OutNodeMap& out_map) {
3490      return CombinedNodeMap<const InNodeMap, OutNodeMap>(in_map, out_map);
3491    }
3492
3493    template <typename InNodeMap, typename OutNodeMap>
3494    static CombinedNodeMap<InNodeMap, const OutNodeMap>
3495    combinedNodeMap(InNodeMap& in_map, const OutNodeMap& out_map) {
3496      return CombinedNodeMap<InNodeMap, const OutNodeMap>(in_map, out_map);
3497    }
3498
3499    template <typename InNodeMap, typename OutNodeMap>
3500    static CombinedNodeMap<const InNodeMap, const OutNodeMap>
3501    combinedNodeMap(const InNodeMap& in_map, const OutNodeMap& out_map) {
3502      return CombinedNodeMap<const InNodeMap,
3503        const OutNodeMap>(in_map, out_map);
3504    }
3505
3506    /// \brief Arc map combined from an arc map and a node map of the
3507    /// original digraph.
3508    ///
3509    /// This map adaptor class adapts an arc map and a node map of the
3510    /// original digraph to get an arc map of the split digraph.
3511    /// Its value type is inherited from the original arc map type
3512    /// (\c ArcMap).
3513    template <typename ArcMap, typename NodeMap>
3514    class CombinedArcMap {
3515    public:
3516
3517      /// The key type of the map
3518      typedef Arc Key;
3519      /// The value type of the map
3520      typedef typename ArcMap::Value Value;
3521
3522      typedef typename MapTraits<ArcMap>::ReferenceMapTag ReferenceMapTag;
3523      typedef typename MapTraits<ArcMap>::ReturnValue ReturnValue;
3524      typedef typename MapTraits<ArcMap>::ConstReturnValue ConstReturnValue;
3525      typedef typename MapTraits<ArcMap>::ReturnValue Reference;
3526      typedef typename MapTraits<ArcMap>::ConstReturnValue ConstReference;
3527
3528      /// Constructor
3529      CombinedArcMap(ArcMap& arc_map, NodeMap& node_map)
3530        : _arc_map(arc_map), _node_map(node_map) {}
3531
3532      /// Returns the value associated with the given key.
3533      Value operator[](const Key& arc) const {
3534        if (Parent::origArc(arc)) {
3535          return _arc_map[arc];
3536        } else {
3537          return _node_map[arc];
3538        }
3539      }
3540
3541      /// Returns a reference to the value associated with the given key.
3542      Value& operator[](const Key& arc) {
3543        if (Parent::origArc(arc)) {
3544          return _arc_map[arc];
3545        } else {
3546          return _node_map[arc];
3547        }
3548      }
3549
3550      /// Sets the value associated with the given key.
3551      void set(const Arc& arc, const Value& val) {
3552        if (Parent::origArc(arc)) {
3553          _arc_map.set(arc, val);
3554        } else {
3555          _node_map.set(arc, val);
3556        }
3557      }
3558
3559    private:
3560      ArcMap& _arc_map;
3561      NodeMap& _node_map;
3562    };
3563
3564    /// \brief Returns a combined arc map
3565    ///
3566    /// This function just returns a combined arc map.
3567    template <typename ArcMap, typename NodeMap>
3568    static CombinedArcMap<ArcMap, NodeMap>
3569    combinedArcMap(ArcMap& arc_map, NodeMap& node_map) {
3570      return CombinedArcMap<ArcMap, NodeMap>(arc_map, node_map);
3571    }
3572
3573    template <typename ArcMap, typename NodeMap>
3574    static CombinedArcMap<const ArcMap, NodeMap>
3575    combinedArcMap(const ArcMap& arc_map, NodeMap& node_map) {
3576      return CombinedArcMap<const ArcMap, NodeMap>(arc_map, node_map);
3577    }
3578
3579    template <typename ArcMap, typename NodeMap>
3580    static CombinedArcMap<ArcMap, const NodeMap>
3581    combinedArcMap(ArcMap& arc_map, const NodeMap& node_map) {
3582      return CombinedArcMap<ArcMap, const NodeMap>(arc_map, node_map);
3583    }
3584
3585    template <typename ArcMap, typename NodeMap>
3586    static CombinedArcMap<const ArcMap, const NodeMap>
3587    combinedArcMap(const ArcMap& arc_map, const NodeMap& node_map) {
3588      return CombinedArcMap<const ArcMap, const NodeMap>(arc_map, node_map);
3589    }
3590
3591  };
3592
3593  /// \brief Returns a (read-only) SplitNodes adaptor
3594  ///
3595  /// This function just returns a (read-only) \ref SplitNodes adaptor.
3596  /// \ingroup graph_adaptors
3597  /// \relates SplitNodes
3598  template<typename GR>
3599  SplitNodes<GR>
3600  splitNodes(const GR& digraph) {
3601    return SplitNodes<GR>(digraph);
3602  }
3603
3604} //namespace lemon
3605
3606#endif //LEMON_ADAPTORS_H
Note: See TracBrowser for help on using the repository browser.