/* -*- mode: C++; indent-tabs-mode: nil; -*- * * This file is a part of LEMON, a generic C++ optimization library. * * Copyright (C) 2003-2008 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport * (Egervary Research Group on Combinatorial Optimization, EGRES). * * Permission to use, modify and distribute this software is granted * provided that this copyright notice appears in all copies. For * precise terms see the accompanying LICENSE file. * * This software is provided "AS IS" with no warranty of any kind, * express or implied, and with no claim as to its suitability for any * purpose. * */ #ifndef LEMON_ADAPTORS_H #define LEMON_ADAPTORS_H /// \ingroup graph_adaptors /// \file /// \brief Several graph adaptors /// /// This file contains several useful adaptors for digraphs and graphs. #include #include #include #include #include #include namespace lemon { template class DigraphAdaptorBase { public: typedef _Digraph Digraph; typedef DigraphAdaptorBase Adaptor; typedef Digraph ParentDigraph; protected: Digraph* _digraph; DigraphAdaptorBase() : _digraph(0) { } void setDigraph(Digraph& digraph) { _digraph = &digraph; } public: DigraphAdaptorBase(Digraph& digraph) : _digraph(&digraph) { } typedef typename Digraph::Node Node; typedef typename Digraph::Arc Arc; void first(Node& i) const { _digraph->first(i); } void first(Arc& i) const { _digraph->first(i); } void firstIn(Arc& i, const Node& n) const { _digraph->firstIn(i, n); } void firstOut(Arc& i, const Node& n ) const { _digraph->firstOut(i, n); } void next(Node& i) const { _digraph->next(i); } void next(Arc& i) const { _digraph->next(i); } void nextIn(Arc& i) const { _digraph->nextIn(i); } void nextOut(Arc& i) const { _digraph->nextOut(i); } Node source(const Arc& a) const { return _digraph->source(a); } Node target(const Arc& a) const { return _digraph->target(a); } typedef NodeNumTagIndicator NodeNumTag; int nodeNum() const { return _digraph->nodeNum(); } typedef ArcNumTagIndicator ArcNumTag; int arcNum() const { return _digraph->arcNum(); } typedef FindArcTagIndicator FindArcTag; Arc findArc(const Node& u, const Node& v, const Arc& prev = INVALID) const { return _digraph->findArc(u, v, prev); } Node addNode() { return _digraph->addNode(); } Arc addArc(const Node& u, const Node& v) { return _digraph->addArc(u, v); } void erase(const Node& n) { _digraph->erase(n); } void erase(const Arc& a) { _digraph->erase(a); } void clear() { _digraph->clear(); } int id(const Node& n) const { return _digraph->id(n); } int id(const Arc& a) const { return _digraph->id(a); } Node nodeFromId(int ix) const { return _digraph->nodeFromId(ix); } Arc arcFromId(int ix) const { return _digraph->arcFromId(ix); } int maxNodeId() const { return _digraph->maxNodeId(); } int maxArcId() const { return _digraph->maxArcId(); } typedef typename ItemSetTraits::ItemNotifier NodeNotifier; NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); } typedef typename ItemSetTraits::ItemNotifier ArcNotifier; ArcNotifier& notifier(Arc) const { return _digraph->notifier(Arc()); } template class NodeMap : public Digraph::template NodeMap<_Value> { public: typedef typename Digraph::template NodeMap<_Value> Parent; explicit NodeMap(const Adaptor& adaptor) : Parent(*adaptor._digraph) {} NodeMap(const Adaptor& adaptor, const _Value& value) : Parent(*adaptor._digraph, value) { } private: NodeMap& operator=(const NodeMap& cmap) { return operator=(cmap); } template NodeMap& operator=(const CMap& cmap) { Parent::operator=(cmap); return *this; } }; template class ArcMap : public Digraph::template ArcMap<_Value> { public: typedef typename Digraph::template ArcMap<_Value> Parent; explicit ArcMap(const Adaptor& adaptor) : Parent(*adaptor._digraph) {} ArcMap(const Adaptor& adaptor, const _Value& value) : Parent(*adaptor._digraph, value) {} private: ArcMap& operator=(const ArcMap& cmap) { return operator=(cmap); } template ArcMap& operator=(const CMap& cmap) { Parent::operator=(cmap); return *this; } }; }; template class GraphAdaptorBase { public: typedef _Graph Graph; typedef Graph ParentGraph; protected: Graph* _graph; GraphAdaptorBase() : _graph(0) {} void setGraph(Graph& graph) { _graph = &graph; } public: GraphAdaptorBase(Graph& graph) : _graph(&graph) {} typedef typename Graph::Node Node; typedef typename Graph::Arc Arc; typedef typename Graph::Edge Edge; void first(Node& i) const { _graph->first(i); } void first(Arc& i) const { _graph->first(i); } void first(Edge& i) const { _graph->first(i); } void firstIn(Arc& i, const Node& n) const { _graph->firstIn(i, n); } void firstOut(Arc& i, const Node& n ) const { _graph->firstOut(i, n); } void firstInc(Edge &i, bool &d, const Node &n) const { _graph->firstInc(i, d, n); } void next(Node& i) const { _graph->next(i); } void next(Arc& i) const { _graph->next(i); } void next(Edge& i) const { _graph->next(i); } void nextIn(Arc& i) const { _graph->nextIn(i); } void nextOut(Arc& i) const { _graph->nextOut(i); } void nextInc(Edge &i, bool &d) const { _graph->nextInc(i, d); } Node u(const Edge& e) const { return _graph->u(e); } Node v(const Edge& e) const { return _graph->v(e); } Node source(const Arc& a) const { return _graph->source(a); } Node target(const Arc& a) const { return _graph->target(a); } typedef NodeNumTagIndicator NodeNumTag; int nodeNum() const { return _graph->nodeNum(); } typedef ArcNumTagIndicator ArcNumTag; int arcNum() const { return _graph->arcNum(); } typedef EdgeNumTagIndicator EdgeNumTag; int edgeNum() const { return _graph->edgeNum(); } typedef FindArcTagIndicator FindArcTag; Arc findArc(const Node& u, const Node& v, const Arc& prev = INVALID) const { return _graph->findArc(u, v, prev); } typedef FindEdgeTagIndicator FindEdgeTag; Edge findEdge(const Node& u, const Node& v, const Edge& prev = INVALID) const { return _graph->findEdge(u, v, prev); } Node addNode() { return _graph->addNode(); } Edge addEdge(const Node& u, const Node& v) { return _graph->addEdge(u, v); } void erase(const Node& i) { _graph->erase(i); } void erase(const Edge& i) { _graph->erase(i); } void clear() { _graph->clear(); } bool direction(const Arc& a) const { return _graph->direction(a); } Arc direct(const Edge& e, bool d) const { return _graph->direct(e, d); } int id(const Node& v) const { return _graph->id(v); } int id(const Arc& a) const { return _graph->id(a); } int id(const Edge& e) const { return _graph->id(e); } Node nodeFromId(int ix) const { return _graph->nodeFromId(ix); } Arc arcFromId(int ix) const { return _graph->arcFromId(ix); } Edge edgeFromId(int ix) const { return _graph->edgeFromId(ix); } int maxNodeId() const { return _graph->maxNodeId(); } int maxArcId() const { return _graph->maxArcId(); } int maxEdgeId() const { return _graph->maxEdgeId(); } typedef typename ItemSetTraits::ItemNotifier NodeNotifier; NodeNotifier& notifier(Node) const { return _graph->notifier(Node()); } typedef typename ItemSetTraits::ItemNotifier ArcNotifier; ArcNotifier& notifier(Arc) const { return _graph->notifier(Arc()); } typedef typename ItemSetTraits::ItemNotifier EdgeNotifier; EdgeNotifier& notifier(Edge) const { return _graph->notifier(Edge()); } template class NodeMap : public Graph::template NodeMap<_Value> { public: typedef typename Graph::template NodeMap<_Value> Parent; explicit NodeMap(const GraphAdaptorBase& adapter) : Parent(*adapter._graph) {} NodeMap(const GraphAdaptorBase& adapter, const _Value& value) : Parent(*adapter._graph, value) {} private: NodeMap& operator=(const NodeMap& cmap) { return operator=(cmap); } template NodeMap& operator=(const CMap& cmap) { Parent::operator=(cmap); return *this; } }; template class ArcMap : public Graph::template ArcMap<_Value> { public: typedef typename Graph::template ArcMap<_Value> Parent; explicit ArcMap(const GraphAdaptorBase& adapter) : Parent(*adapter._graph) {} ArcMap(const GraphAdaptorBase& adapter, const _Value& value) : Parent(*adapter._graph, value) {} private: ArcMap& operator=(const ArcMap& cmap) { return operator=(cmap); } template ArcMap& operator=(const CMap& cmap) { Parent::operator=(cmap); return *this; } }; template class EdgeMap : public Graph::template EdgeMap<_Value> { public: typedef typename Graph::template EdgeMap<_Value> Parent; explicit EdgeMap(const GraphAdaptorBase& adapter) : Parent(*adapter._graph) {} EdgeMap(const GraphAdaptorBase& adapter, const _Value& value) : Parent(*adapter._graph, value) {} private: EdgeMap& operator=(const EdgeMap& cmap) { return operator=(cmap); } template EdgeMap& operator=(const CMap& cmap) { Parent::operator=(cmap); return *this; } }; }; template class ReverseDigraphBase : public DigraphAdaptorBase<_Digraph> { public: typedef _Digraph Digraph; typedef DigraphAdaptorBase<_Digraph> Parent; protected: ReverseDigraphBase() : Parent() { } public: typedef typename Parent::Node Node; typedef typename Parent::Arc Arc; void firstIn(Arc& a, const Node& n) const { Parent::firstOut(a, n); } void firstOut(Arc& a, const Node& n ) const { Parent::firstIn(a, n); } void nextIn(Arc& a) const { Parent::nextOut(a); } void nextOut(Arc& a) const { Parent::nextIn(a); } Node source(const Arc& a) const { return Parent::target(a); } Node target(const Arc& a) const { return Parent::source(a); } Arc addArc(const Node& u, const Node& v) { return Parent::addArc(v, u); } typedef FindArcTagIndicator FindArcTag; Arc findArc(const Node& u, const Node& v, const Arc& prev = INVALID) const { return Parent::findArc(v, u, prev); } }; /// \ingroup graph_adaptors /// /// \brief A digraph adaptor which reverses the orientation of the arcs. /// /// ReverseDigraph reverses the arcs in the adapted digraph. The /// SubDigraph is conform to the \ref concepts::Digraph /// "Digraph concept". /// /// \tparam _Digraph It must be conform to the \ref concepts::Digraph /// "Digraph concept". The type can be specified to be const. template class ReverseDigraph : public DigraphAdaptorExtender > { public: typedef _Digraph Digraph; typedef DigraphAdaptorExtender< ReverseDigraphBase<_Digraph> > Parent; protected: ReverseDigraph() { } public: /// \brief Constructor /// /// Creates a reverse digraph adaptor for the given digraph explicit ReverseDigraph(Digraph& digraph) { Parent::setDigraph(digraph); } }; /// \brief Just gives back a reverse digraph adaptor /// /// Just gives back a reverse digraph adaptor template ReverseDigraph reverseDigraph(const Digraph& digraph) { return ReverseDigraph(digraph); } template class SubDigraphBase : public DigraphAdaptorBase<_Digraph> { public: typedef _Digraph Digraph; typedef _NodeFilterMap NodeFilterMap; typedef _ArcFilterMap ArcFilterMap; typedef SubDigraphBase Adaptor; typedef DigraphAdaptorBase<_Digraph> Parent; protected: NodeFilterMap* _node_filter; ArcFilterMap* _arc_filter; SubDigraphBase() : Parent(), _node_filter(0), _arc_filter(0) { } void setNodeFilterMap(NodeFilterMap& node_filter) { _node_filter = &node_filter; } void setArcFilterMap(ArcFilterMap& arc_filter) { _arc_filter = &arc_filter; } public: typedef typename Parent::Node Node; typedef typename Parent::Arc Arc; void first(Node& i) const { Parent::first(i); while (i != INVALID && !(*_node_filter)[i]) Parent::next(i); } void first(Arc& i) const { Parent::first(i); while (i != INVALID && (!(*_arc_filter)[i] || !(*_node_filter)[Parent::source(i)] || !(*_node_filter)[Parent::target(i)])) Parent::next(i); } void firstIn(Arc& i, const Node& n) const { Parent::firstIn(i, n); while (i != INVALID && (!(*_arc_filter)[i] || !(*_node_filter)[Parent::source(i)])) Parent::nextIn(i); } void firstOut(Arc& i, const Node& n) const { Parent::firstOut(i, n); while (i != INVALID && (!(*_arc_filter)[i] || !(*_node_filter)[Parent::target(i)])) Parent::nextOut(i); } void next(Node& i) const { Parent::next(i); while (i != INVALID && !(*_node_filter)[i]) Parent::next(i); } void next(Arc& i) const { Parent::next(i); while (i != INVALID && (!(*_arc_filter)[i] || !(*_node_filter)[Parent::source(i)] || !(*_node_filter)[Parent::target(i)])) Parent::next(i); } void nextIn(Arc& i) const { Parent::nextIn(i); while (i != INVALID && (!(*_arc_filter)[i] || !(*_node_filter)[Parent::source(i)])) Parent::nextIn(i); } void nextOut(Arc& i) const { Parent::nextOut(i); while (i != INVALID && (!(*_arc_filter)[i] || !(*_node_filter)[Parent::target(i)])) Parent::nextOut(i); } void hide(const Node& n) const { _node_filter->set(n, false); } void hide(const Arc& a) const { _arc_filter->set(a, false); } void unHide(const Node& n) const { _node_filter->set(n, true); } void unHide(const Arc& a) const { _arc_filter->set(a, true); } bool hidden(const Node& n) const { return !(*_node_filter)[n]; } bool hidden(const Arc& a) const { return !(*_arc_filter)[a]; } typedef False NodeNumTag; typedef False ArcNumTag; typedef FindArcTagIndicator FindArcTag; Arc findArc(const Node& source, const Node& target, const Arc& prev = INVALID) const { if (!(*_node_filter)[source] || !(*_node_filter)[target]) { return INVALID; } Arc arc = Parent::findArc(source, target, prev); while (arc != INVALID && !(*_arc_filter)[arc]) { arc = Parent::findArc(source, target, arc); } return arc; } template class NodeMap : public SubMapExtender > { public: typedef _Value Value; typedef SubMapExtender > MapParent; NodeMap(const Adaptor& adaptor) : MapParent(adaptor) {} NodeMap(const Adaptor& adaptor, const Value& value) : MapParent(adaptor, value) {} private: NodeMap& operator=(const NodeMap& cmap) { return operator=(cmap); } template NodeMap& operator=(const CMap& cmap) { MapParent::operator=(cmap); return *this; } }; template class ArcMap : public SubMapExtender > { public: typedef _Value Value; typedef SubMapExtender > MapParent; ArcMap(const Adaptor& adaptor) : MapParent(adaptor) {} ArcMap(const Adaptor& adaptor, const Value& value) : MapParent(adaptor, value) {} private: ArcMap& operator=(const ArcMap& cmap) { return operator=(cmap); } template ArcMap& operator=(const CMap& cmap) { MapParent::operator=(cmap); return *this; } }; }; template class SubDigraphBase<_Digraph, _NodeFilterMap, _ArcFilterMap, false> : public DigraphAdaptorBase<_Digraph> { public: typedef _Digraph Digraph; typedef _NodeFilterMap NodeFilterMap; typedef _ArcFilterMap ArcFilterMap; typedef SubDigraphBase Adaptor; typedef DigraphAdaptorBase Parent; protected: NodeFilterMap* _node_filter; ArcFilterMap* _arc_filter; SubDigraphBase() : Parent(), _node_filter(0), _arc_filter(0) { } void setNodeFilterMap(NodeFilterMap& node_filter) { _node_filter = &node_filter; } void setArcFilterMap(ArcFilterMap& arc_filter) { _arc_filter = &arc_filter; } public: typedef typename Parent::Node Node; typedef typename Parent::Arc Arc; void first(Node& i) const { Parent::first(i); while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i); } void first(Arc& i) const { Parent::first(i); while (i!=INVALID && !(*_arc_filter)[i]) Parent::next(i); } void firstIn(Arc& i, const Node& n) const { Parent::firstIn(i, n); while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextIn(i); } void firstOut(Arc& i, const Node& n) const { Parent::firstOut(i, n); while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextOut(i); } void next(Node& i) const { Parent::next(i); while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i); } void next(Arc& i) const { Parent::next(i); while (i!=INVALID && !(*_arc_filter)[i]) Parent::next(i); } void nextIn(Arc& i) const { Parent::nextIn(i); while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextIn(i); } void nextOut(Arc& i) const { Parent::nextOut(i); while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextOut(i); } void hide(const Node& n) const { _node_filter->set(n, false); } void hide(const Arc& e) const { _arc_filter->set(e, false); } void unHide(const Node& n) const { _node_filter->set(n, true); } void unHide(const Arc& e) const { _arc_filter->set(e, true); } bool hidden(const Node& n) const { return !(*_node_filter)[n]; } bool hidden(const Arc& e) const { return !(*_arc_filter)[e]; } typedef False NodeNumTag; typedef False ArcNumTag; typedef FindArcTagIndicator FindArcTag; Arc findArc(const Node& source, const Node& target, const Arc& prev = INVALID) const { if (!(*_node_filter)[source] || !(*_node_filter)[target]) { return INVALID; } Arc arc = Parent::findArc(source, target, prev); while (arc != INVALID && !(*_arc_filter)[arc]) { arc = Parent::findArc(source, target, arc); } return arc; } template class NodeMap : public SubMapExtender > { public: typedef _Value Value; typedef SubMapExtender > MapParent; NodeMap(const Adaptor& adaptor) : MapParent(adaptor) {} NodeMap(const Adaptor& adaptor, const Value& value) : MapParent(adaptor, value) {} private: NodeMap& operator=(const NodeMap& cmap) { return operator=(cmap); } template NodeMap& operator=(const CMap& cmap) { MapParent::operator=(cmap); return *this; } }; template class ArcMap : public SubMapExtender > { public: typedef _Value Value; typedef SubMapExtender > MapParent; ArcMap(const Adaptor& adaptor) : MapParent(adaptor) {} ArcMap(const Adaptor& adaptor, const Value& value) : MapParent(adaptor, value) {} private: ArcMap& operator=(const ArcMap& cmap) { return operator=(cmap); } template ArcMap& operator=(const CMap& cmap) { MapParent::operator=(cmap); return *this; } }; }; /// \ingroup graph_adaptors /// /// \brief An adaptor for hiding nodes and arcs in a digraph /// /// SubDigraph hides nodes and arcs in a digraph. A bool node map /// and a bool arc map must be specified, which define the filters /// for nodes and arcs. Just the nodes and arcs with true value are /// shown in the subdigraph. The SubDigraph is conform to the \ref /// concepts::Digraph "Digraph concept". If the \c _checked parameter /// is true, then the arcs incident to filtered nodes are also /// filtered out. /// /// \tparam _Digraph It must be conform to the \ref /// concepts::Digraph "Digraph concept". The type can be specified /// to const. /// \tparam _NodeFilterMap A bool valued node map of the the adapted digraph. /// \tparam _ArcFilterMap A bool valued arc map of the the adapted digraph. /// \tparam _checked If the parameter is false then the arc filtering /// is not checked with respect to node filter. Otherwise, each arc /// is automatically filtered, which is incident to a filtered node. /// /// \see FilterNodes /// \see FilterArcs template, typename _ArcFilterMap = typename _Digraph::template ArcMap, bool _checked = true> class SubDigraph : public DigraphAdaptorExtender< SubDigraphBase<_Digraph, _NodeFilterMap, _ArcFilterMap, _checked> > { public: typedef _Digraph Digraph; typedef _NodeFilterMap NodeFilterMap; typedef _ArcFilterMap ArcFilterMap; typedef DigraphAdaptorExtender< SubDigraphBase > Parent; typedef typename Parent::Node Node; typedef typename Parent::Arc Arc; protected: SubDigraph() { } public: /// \brief Constructor /// /// Creates a subdigraph for the given digraph with /// given node and arc map filters. SubDigraph(Digraph& digraph, NodeFilterMap& node_filter, ArcFilterMap& arc_filter) { setDigraph(digraph); setNodeFilterMap(node_filter); setArcFilterMap(arc_filter); } /// \brief Hides the node of the graph /// /// This function hides \c n in the digraph, i.e. the iteration /// jumps over it. This is done by simply setting the value of \c n /// to be false in the corresponding node-map. void hide(const Node& n) const { Parent::hide(n); } /// \brief Hides the arc of the graph /// /// This function hides \c a in the digraph, i.e. the iteration /// jumps over it. This is done by simply setting the value of \c a /// to be false in the corresponding arc-map. void hide(const Arc& a) const { Parent::hide(a); } /// \brief Unhides the node of the graph /// /// The value of \c n is set to be true in the node-map which stores /// hide information. If \c n was hidden previuosly, then it is shown /// again void unHide(const Node& n) const { Parent::unHide(n); } /// \brief Unhides the arc of the graph /// /// The value of \c a is set to be true in the arc-map which stores /// hide information. If \c a was hidden previuosly, then it is shown /// again void unHide(const Arc& a) const { Parent::unHide(a); } /// \brief Returns true if \c n is hidden. /// /// Returns true if \c n is hidden. /// bool hidden(const Node& n) const { return Parent::hidden(n); } /// \brief Returns true if \c a is hidden. /// /// Returns true if \c a is hidden. /// bool hidden(const Arc& a) const { return Parent::hidden(a); } }; /// \brief Just gives back a subdigraph /// /// Just gives back a subdigraph template SubDigraph subDigraph(const Digraph& digraph, NodeFilterMap& nfm, ArcFilterMap& afm) { return SubDigraph (digraph, nfm, afm); } template SubDigraph subDigraph(const Digraph& digraph, const NodeFilterMap& nfm, ArcFilterMap& afm) { return SubDigraph (digraph, nfm, afm); } template SubDigraph subDigraph(const Digraph& digraph, NodeFilterMap& nfm, const ArcFilterMap& afm) { return SubDigraph (digraph, nfm, afm); } template SubDigraph subDigraph(const Digraph& digraph, const NodeFilterMap& nfm, const ArcFilterMap& afm) { return SubDigraph(digraph, nfm, afm); } template class SubGraphBase : public GraphAdaptorBase<_Graph> { public: typedef _Graph Graph; typedef SubGraphBase Adaptor; typedef GraphAdaptorBase<_Graph> Parent; protected: NodeFilterMap* _node_filter_map; EdgeFilterMap* _edge_filter_map; SubGraphBase() : Parent(), _node_filter_map(0), _edge_filter_map(0) { } void setNodeFilterMap(NodeFilterMap& node_filter_map) { _node_filter_map=&node_filter_map; } void setEdgeFilterMap(EdgeFilterMap& edge_filter_map) { _edge_filter_map=&edge_filter_map; } public: typedef typename Parent::Node Node; typedef typename Parent::Arc Arc; typedef typename Parent::Edge Edge; void first(Node& i) const { Parent::first(i); while (i!=INVALID && !(*_node_filter_map)[i]) Parent::next(i); } void first(Arc& i) const { Parent::first(i); while (i!=INVALID && (!(*_edge_filter_map)[i] || !(*_node_filter_map)[Parent::source(i)] || !(*_node_filter_map)[Parent::target(i)])) Parent::next(i); } void first(Edge& i) const { Parent::first(i); while (i!=INVALID && (!(*_edge_filter_map)[i] || !(*_node_filter_map)[Parent::u(i)] || !(*_node_filter_map)[Parent::v(i)])) Parent::next(i); } void firstIn(Arc& i, const Node& n) const { Parent::firstIn(i, n); while (i!=INVALID && (!(*_edge_filter_map)[i] || !(*_node_filter_map)[Parent::source(i)])) Parent::nextIn(i); } void firstOut(Arc& i, const Node& n) const { Parent::firstOut(i, n); while (i!=INVALID && (!(*_edge_filter_map)[i] || !(*_node_filter_map)[Parent::target(i)])) Parent::nextOut(i); } void firstInc(Edge& i, bool& d, const Node& n) const { Parent::firstInc(i, d, n); while (i!=INVALID && (!(*_edge_filter_map)[i] || !(*_node_filter_map)[Parent::u(i)] || !(*_node_filter_map)[Parent::v(i)])) Parent::nextInc(i, d); } void next(Node& i) const { Parent::next(i); while (i!=INVALID && !(*_node_filter_map)[i]) Parent::next(i); } void next(Arc& i) const { Parent::next(i); while (i!=INVALID && (!(*_edge_filter_map)[i] || !(*_node_filter_map)[Parent::source(i)] || !(*_node_filter_map)[Parent::target(i)])) Parent::next(i); } void next(Edge& i) const { Parent::next(i); while (i!=INVALID && (!(*_edge_filter_map)[i] || !(*_node_filter_map)[Parent::u(i)] || !(*_node_filter_map)[Parent::v(i)])) Parent::next(i); } void nextIn(Arc& i) const { Parent::nextIn(i); while (i!=INVALID && (!(*_edge_filter_map)[i] || !(*_node_filter_map)[Parent::source(i)])) Parent::nextIn(i); } void nextOut(Arc& i) const { Parent::nextOut(i); while (i!=INVALID && (!(*_edge_filter_map)[i] || !(*_node_filter_map)[Parent::target(i)])) Parent::nextOut(i); } void nextInc(Edge& i, bool& d) const { Parent::nextInc(i, d); while (i!=INVALID && (!(*_edge_filter_map)[i] || !(*_node_filter_map)[Parent::u(i)] || !(*_node_filter_map)[Parent::v(i)])) Parent::nextInc(i, d); } void hide(const Node& n) const { _node_filter_map->set(n, false); } void hide(const Edge& e) const { _edge_filter_map->set(e, false); } void unHide(const Node& n) const { _node_filter_map->set(n, true); } void unHide(const Edge& e) const { _edge_filter_map->set(e, true); } bool hidden(const Node& n) const { return !(*_node_filter_map)[n]; } bool hidden(const Edge& e) const { return !(*_edge_filter_map)[e]; } typedef False NodeNumTag; typedef False ArcNumTag; typedef False EdgeNumTag; typedef FindArcTagIndicator FindArcTag; Arc findArc(const Node& u, const Node& v, const Arc& prev = INVALID) const { if (!(*_node_filter_map)[u] || !(*_node_filter_map)[v]) { return INVALID; } Arc arc = Parent::findArc(u, v, prev); while (arc != INVALID && !(*_edge_filter_map)[arc]) { arc = Parent::findArc(u, v, arc); } return arc; } typedef FindEdgeTagIndicator FindEdgeTag; Edge findEdge(const Node& u, const Node& v, const Edge& prev = INVALID) const { if (!(*_node_filter_map)[u] || !(*_node_filter_map)[v]) { return INVALID; } Edge edge = Parent::findEdge(u, v, prev); while (edge != INVALID && !(*_edge_filter_map)[edge]) { edge = Parent::findEdge(u, v, edge); } return edge; } template class NodeMap : public SubMapExtender > { public: typedef _Value Value; typedef SubMapExtender > MapParent; NodeMap(const Adaptor& adaptor) : MapParent(adaptor) {} NodeMap(const Adaptor& adaptor, const Value& value) : MapParent(adaptor, value) {} private: NodeMap& operator=(const NodeMap& cmap) { return operator=(cmap); } template NodeMap& operator=(const CMap& cmap) { MapParent::operator=(cmap); return *this; } }; template class ArcMap : public SubMapExtender > { public: typedef _Value Value; typedef SubMapExtender > MapParent; ArcMap(const Adaptor& adaptor) : MapParent(adaptor) {} ArcMap(const Adaptor& adaptor, const Value& value) : MapParent(adaptor, value) {} private: ArcMap& operator=(const ArcMap& cmap) { return operator=(cmap); } template ArcMap& operator=(const CMap& cmap) { MapParent::operator=(cmap); return *this; } }; template class EdgeMap : public SubMapExtender > { public: typedef _Value Value; typedef SubMapExtender > MapParent; EdgeMap(const Adaptor& adaptor) : MapParent(adaptor) {} EdgeMap(const Adaptor& adaptor, const Value& value) : MapParent(adaptor, value) {} private: EdgeMap& operator=(const EdgeMap& cmap) { return operator=(cmap); } template EdgeMap& operator=(const CMap& cmap) { MapParent::operator=(cmap); return *this; } }; }; template class SubGraphBase<_Graph, NodeFilterMap, EdgeFilterMap, false> : public GraphAdaptorBase<_Graph> { public: typedef _Graph Graph; typedef SubGraphBase Adaptor; typedef GraphAdaptorBase<_Graph> Parent; protected: NodeFilterMap* _node_filter_map; EdgeFilterMap* _edge_filter_map; SubGraphBase() : Parent(), _node_filter_map(0), _edge_filter_map(0) { } void setNodeFilterMap(NodeFilterMap& node_filter_map) { _node_filter_map=&node_filter_map; } void setEdgeFilterMap(EdgeFilterMap& edge_filter_map) { _edge_filter_map=&edge_filter_map; } public: typedef typename Parent::Node Node; typedef typename Parent::Arc Arc; typedef typename Parent::Edge Edge; void first(Node& i) const { Parent::first(i); while (i!=INVALID && !(*_node_filter_map)[i]) Parent::next(i); } void first(Arc& i) const { Parent::first(i); while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::next(i); } void first(Edge& i) const { Parent::first(i); while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::next(i); } void firstIn(Arc& i, const Node& n) const { Parent::firstIn(i, n); while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::nextIn(i); } void firstOut(Arc& i, const Node& n) const { Parent::firstOut(i, n); while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::nextOut(i); } void firstInc(Edge& i, bool& d, const Node& n) const { Parent::firstInc(i, d, n); while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::nextInc(i, d); } void next(Node& i) const { Parent::next(i); while (i!=INVALID && !(*_node_filter_map)[i]) Parent::next(i); } void next(Arc& i) const { Parent::next(i); while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::next(i); } void next(Edge& i) const { Parent::next(i); while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::next(i); } void nextIn(Arc& i) const { Parent::nextIn(i); while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::nextIn(i); } void nextOut(Arc& i) const { Parent::nextOut(i); while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::nextOut(i); } void nextInc(Edge& i, bool& d) const { Parent::nextInc(i, d); while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::nextInc(i, d); } void hide(const Node& n) const { _node_filter_map->set(n, false); } void hide(const Edge& e) const { _edge_filter_map->set(e, false); } void unHide(const Node& n) const { _node_filter_map->set(n, true); } void unHide(const Edge& e) const { _edge_filter_map->set(e, true); } bool hidden(const Node& n) const { return !(*_node_filter_map)[n]; } bool hidden(const Edge& e) const { return !(*_edge_filter_map)[e]; } typedef False NodeNumTag; typedef False ArcNumTag; typedef False EdgeNumTag; typedef FindArcTagIndicator FindArcTag; Arc findArc(const Node& u, const Node& v, const Arc& prev = INVALID) const { Arc arc = Parent::findArc(u, v, prev); while (arc != INVALID && !(*_edge_filter_map)[arc]) { arc = Parent::findArc(u, v, arc); } return arc; } typedef FindEdgeTagIndicator FindEdgeTag; Edge findEdge(const Node& u, const Node& v, const Edge& prev = INVALID) const { Edge edge = Parent::findEdge(u, v, prev); while (edge != INVALID && !(*_edge_filter_map)[edge]) { edge = Parent::findEdge(u, v, edge); } return edge; } template class NodeMap : public SubMapExtender > { public: typedef _Value Value; typedef SubMapExtender > MapParent; NodeMap(const Adaptor& adaptor) : MapParent(adaptor) {} NodeMap(const Adaptor& adaptor, const Value& value) : MapParent(adaptor, value) {} private: NodeMap& operator=(const NodeMap& cmap) { return operator=(cmap); } template NodeMap& operator=(const CMap& cmap) { MapParent::operator=(cmap); return *this; } }; template class ArcMap : public SubMapExtender > { public: typedef _Value Value; typedef SubMapExtender > MapParent; ArcMap(const Adaptor& adaptor) : MapParent(adaptor) {} ArcMap(const Adaptor& adaptor, const Value& value) : MapParent(adaptor, value) {} private: ArcMap& operator=(const ArcMap& cmap) { return operator=(cmap); } template ArcMap& operator=(const CMap& cmap) { MapParent::operator=(cmap); return *this; } }; template class EdgeMap : public SubMapExtender > { public: typedef _Value Value; typedef SubMapExtender > MapParent; EdgeMap(const Adaptor& adaptor) : MapParent(adaptor) {} EdgeMap(const Adaptor& adaptor, const _Value& value) : MapParent(adaptor, value) {} private: EdgeMap& operator=(const EdgeMap& cmap) { return operator=(cmap); } template EdgeMap& operator=(const CMap& cmap) { MapParent::operator=(cmap); return *this; } }; }; /// \ingroup graph_adaptors /// /// \brief A graph adaptor for hiding nodes and edges in an /// undirected graph. /// /// SubGraph hides nodes and edges in a graph. A bool node map and a /// bool edge map must be specified, which define the filters for /// nodes and edges. Just the nodes and edges with true value are /// shown in the subgraph. The SubGraph is conform to the \ref /// concepts::Graph "Graph concept". If the \c _checked parameter is /// true, then the edges incident to filtered nodes are also /// filtered out. /// /// \tparam _Graph It must be conform to the \ref /// concepts::Graph "Graph concept". The type can be specified /// to const. /// \tparam _NodeFilterMap A bool valued node map of the the adapted graph. /// \tparam _EdgeFilterMap A bool valued edge map of the the adapted graph. /// \tparam _checked If the parameter is false then the edge filtering /// is not checked with respect to node filter. Otherwise, each edge /// is automatically filtered, which is incident to a filtered node. /// /// \see FilterNodes /// \see FilterEdges template class SubGraph : public GraphAdaptorExtender< SubGraphBase<_Graph, NodeFilterMap, EdgeFilterMap, _checked> > { public: typedef _Graph Graph; typedef GraphAdaptorExtender< SubGraphBase<_Graph, NodeFilterMap, EdgeFilterMap> > Parent; typedef typename Parent::Node Node; typedef typename Parent::Edge Edge; protected: SubGraph() { } public: /// \brief Constructor /// /// Creates a subgraph for the given graph with given node and /// edge map filters. SubGraph(Graph& _graph, NodeFilterMap& node_filter_map, EdgeFilterMap& edge_filter_map) { setGraph(_graph); setNodeFilterMap(node_filter_map); setEdgeFilterMap(edge_filter_map); } /// \brief Hides the node of the graph /// /// This function hides \c n in the graph, i.e. the iteration /// jumps over it. This is done by simply setting the value of \c n /// to be false in the corresponding node-map. void hide(const Node& n) const { Parent::hide(n); } /// \brief Hides the edge of the graph /// /// This function hides \c e in the graph, i.e. the iteration /// jumps over it. This is done by simply setting the value of \c e /// to be false in the corresponding edge-map. void hide(const Edge& e) const { Parent::hide(e); } /// \brief Unhides the node of the graph /// /// The value of \c n is set to be true in the node-map which stores /// hide information. If \c n was hidden previuosly, then it is shown /// again void unHide(const Node& n) const { Parent::unHide(n); } /// \brief Unhides the edge of the graph /// /// The value of \c e is set to be true in the edge-map which stores /// hide information. If \c e was hidden previuosly, then it is shown /// again void unHide(const Edge& e) const { Parent::unHide(e); } /// \brief Returns true if \c n is hidden. /// /// Returns true if \c n is hidden. /// bool hidden(const Node& n) const { return Parent::hidden(n); } /// \brief Returns true if \c e is hidden. /// /// Returns true if \c e is hidden. /// bool hidden(const Edge& e) const { return Parent::hidden(e); } }; /// \brief Just gives back a subgraph /// /// Just gives back a subgraph template SubGraph subGraph(const Graph& graph, NodeFilterMap& nfm, ArcFilterMap& efm) { return SubGraph(graph, nfm, efm); } template SubGraph subGraph(const Graph& graph, const NodeFilterMap& nfm, ArcFilterMap& efm) { return SubGraph (graph, nfm, efm); } template SubGraph subGraph(const Graph& graph, NodeFilterMap& nfm, const ArcFilterMap& efm) { return SubGraph (graph, nfm, efm); } template SubGraph subGraph(const Graph& graph, const NodeFilterMap& nfm, const ArcFilterMap& efm) { return SubGraph (graph, nfm, efm); } /// \ingroup graph_adaptors /// /// \brief An adaptor for hiding nodes from a digraph or a graph. /// /// FilterNodes adaptor hides nodes in a graph or a digraph. A bool /// node map must be specified, which defines the filters for /// nodes. Just the unfiltered nodes and the arcs or edges incident /// to unfiltered nodes are shown in the subdigraph or subgraph. The /// FilterNodes is conform to the \ref concepts::Digraph /// "Digraph concept" or \ref concepts::Graph "Graph concept" depending /// on the \c _Digraph template parameter. If the \c _checked /// parameter is true, then the arc or edges incident to filtered nodes /// are also filtered out. /// /// \tparam _Digraph It must be conform to the \ref /// concepts::Digraph "Digraph concept" or \ref concepts::Graph /// "Graph concept". The type can be specified to be const. /// \tparam _NodeFilterMap A bool valued node map of the the adapted graph. /// \tparam _checked If the parameter is false then the arc or edge /// filtering is not checked with respect to node filter. In this /// case just isolated nodes can be filtered out from the /// graph. #ifdef DOXYGEN template, bool _checked = true> #else template, bool _checked = true, typename Enable = void> #endif class FilterNodes : public SubDigraph<_Digraph, _NodeFilterMap, ConstMap, _checked> { public: typedef _Digraph Digraph; typedef _NodeFilterMap NodeFilterMap; typedef SubDigraph, _checked> Parent; typedef typename Parent::Node Node; protected: ConstMap const_true_map; FilterNodes() : const_true_map(true) { Parent::setArcFilterMap(const_true_map); } public: /// \brief Constructor /// /// Creates an adaptor for the given digraph or graph with /// given node filter map. FilterNodes(Digraph& _digraph, NodeFilterMap& node_filter) : Parent(), const_true_map(true) { Parent::setDigraph(_digraph); Parent::setNodeFilterMap(node_filter); Parent::setArcFilterMap(const_true_map); } /// \brief Hides the node of the graph /// /// This function hides \c n in the digraph or graph, i.e. the iteration /// jumps over it. This is done by simply setting the value of \c n /// to be false in the corresponding node map. void hide(const Node& n) const { Parent::hide(n); } /// \brief Unhides the node of the graph /// /// The value of \c n is set to be true in the node-map which stores /// hide information. If \c n was hidden previuosly, then it is shown /// again void unHide(const Node& n) const { Parent::unHide(n); } /// \brief Returns true if \c n is hidden. /// /// Returns true if \c n is hidden. /// bool hidden(const Node& n) const { return Parent::hidden(n); } }; template class FilterNodes<_Graph, _NodeFilterMap, _checked, typename enable_if >::type> : public SubGraph<_Graph, _NodeFilterMap, ConstMap, _checked> { public: typedef _Graph Graph; typedef _NodeFilterMap NodeFilterMap; typedef SubGraph > Parent; typedef typename Parent::Node Node; protected: ConstMap const_true_map; FilterNodes() : const_true_map(true) { Parent::setEdgeFilterMap(const_true_map); } public: FilterNodes(Graph& _graph, NodeFilterMap& node_filter_map) : Parent(), const_true_map(true) { Parent::setGraph(_graph); Parent::setNodeFilterMap(node_filter_map); Parent::setEdgeFilterMap(const_true_map); } void hide(const Node& n) const { Parent::hide(n); } void unHide(const Node& n) const { Parent::unHide(n); } bool hidden(const Node& n) const { return Parent::hidden(n); } }; /// \brief Just gives back a FilterNodes adaptor /// /// Just gives back a FilterNodes adaptor template FilterNodes filterNodes(const Digraph& digraph, NodeFilterMap& nfm) { return FilterNodes(digraph, nfm); } template FilterNodes filterNodes(const Digraph& digraph, const NodeFilterMap& nfm) { return FilterNodes(digraph, nfm); } /// \ingroup graph_adaptors /// /// \brief An adaptor for hiding arcs from a digraph. /// /// FilterArcs adaptor hides arcs in a digraph. A bool arc map must /// be specified, which defines the filters for arcs. Just the /// unfiltered arcs are shown in the subdigraph. The FilterArcs is /// conform to the \ref concepts::Digraph "Digraph concept". /// /// \tparam _Digraph It must be conform to the \ref concepts::Digraph /// "Digraph concept". The type can be specified to be const. /// \tparam _ArcFilterMap A bool valued arc map of the the adapted /// graph. template class FilterArcs : public SubDigraph<_Digraph, ConstMap, _ArcFilterMap, false> { public: typedef _Digraph Digraph; typedef _ArcFilterMap ArcFilterMap; typedef SubDigraph, ArcFilterMap, false> Parent; typedef typename Parent::Arc Arc; protected: ConstMap const_true_map; FilterArcs() : const_true_map(true) { Parent::setNodeFilterMap(const_true_map); } public: /// \brief Constructor /// /// Creates a FilterArcs adaptor for the given graph with /// given arc map filter. FilterArcs(Digraph& digraph, ArcFilterMap& arc_filter) : Parent(), const_true_map(true) { Parent::setDigraph(digraph); Parent::setNodeFilterMap(const_true_map); Parent::setArcFilterMap(arc_filter); } /// \brief Hides the arc of the graph /// /// This function hides \c a in the graph, i.e. the iteration /// jumps over it. This is done by simply setting the value of \c a /// to be false in the corresponding arc map. void hide(const Arc& a) const { Parent::hide(a); } /// \brief Unhides the arc of the graph /// /// The value of \c a is set to be true in the arc-map which stores /// hide information. If \c a was hidden previuosly, then it is shown /// again void unHide(const Arc& a) const { Parent::unHide(a); } /// \brief Returns true if \c a is hidden. /// /// Returns true if \c a is hidden. /// bool hidden(const Arc& a) const { return Parent::hidden(a); } }; /// \brief Just gives back an FilterArcs adaptor /// /// Just gives back an FilterArcs adaptor template FilterArcs filterArcs(const Digraph& digraph, ArcFilterMap& afm) { return FilterArcs(digraph, afm); } template FilterArcs filterArcs(const Digraph& digraph, const ArcFilterMap& afm) { return FilterArcs(digraph, afm); } /// \ingroup graph_adaptors /// /// \brief An adaptor for hiding edges from a graph. /// /// FilterEdges adaptor hides edges in a digraph. A bool edge map must /// be specified, which defines the filters for edges. Just the /// unfiltered edges are shown in the subdigraph. The FilterEdges is /// conform to the \ref concepts::Graph "Graph concept". /// /// \tparam _Graph It must be conform to the \ref concepts::Graph /// "Graph concept". The type can be specified to be const. /// \tparam _EdgeFilterMap A bool valued edge map of the the adapted /// graph. template class FilterEdges : public SubGraph<_Graph, ConstMap, _EdgeFilterMap, false> { public: typedef _Graph Graph; typedef _EdgeFilterMap EdgeFilterMap; typedef SubGraph, EdgeFilterMap, false> Parent; typedef typename Parent::Edge Edge; protected: ConstMap const_true_map; FilterEdges() : const_true_map(true) { Parent::setNodeFilterMap(const_true_map); } public: /// \brief Constructor /// /// Creates a FilterEdges adaptor for the given graph with /// given edge map filters. FilterEdges(Graph& _graph, EdgeFilterMap& edge_filter_map) : Parent(), const_true_map(true) { Parent::setGraph(_graph); Parent::setNodeFilterMap(const_true_map); Parent::setEdgeFilterMap(edge_filter_map); } /// \brief Hides the edge of the graph /// /// This function hides \c e in the graph, i.e. the iteration /// jumps over it. This is done by simply setting the value of \c e /// to be false in the corresponding edge-map. void hide(const Edge& e) const { Parent::hide(e); } /// \brief Unhides the edge of the graph /// /// The value of \c e is set to be true in the edge-map which stores /// hide information. If \c e was hidden previuosly, then it is shown /// again void unHide(const Edge& e) const { Parent::unHide(e); } /// \brief Returns true if \c e is hidden. /// /// Returns true if \c e is hidden. /// bool hidden(const Edge& e) const { return Parent::hidden(e); } }; /// \brief Just gives back a FilterEdges adaptor /// /// Just gives back a FilterEdges adaptor template FilterEdges filterEdges(const Graph& graph, EdgeFilterMap& efm) { return FilterEdges(graph, efm); } template FilterEdges filterEdges(const Graph& graph, const EdgeFilterMap& efm) { return FilterEdges(graph, efm); } template class UndirectorBase { public: typedef _Digraph Digraph; typedef UndirectorBase Adaptor; typedef True UndirectedTag; typedef typename Digraph::Arc Edge; typedef typename Digraph::Node Node; class Arc : public Edge { friend class UndirectorBase; protected: bool _forward; Arc(const Edge& edge, bool forward) : Edge(edge), _forward(forward) {} public: Arc() {} Arc(Invalid) : Edge(INVALID), _forward(true) {} bool operator==(const Arc &other) const { return _forward == other._forward && static_cast(*this) == static_cast(other); } bool operator!=(const Arc &other) const { return _forward != other._forward || static_cast(*this) != static_cast(other); } bool operator<(const Arc &other) const { return _forward < other._forward || (_forward == other._forward && static_cast(*this) < static_cast(other)); } }; void first(Node& n) const { _digraph->first(n); } void next(Node& n) const { _digraph->next(n); } void first(Arc& a) const { _digraph->first(a); a._forward = true; } void next(Arc& a) const { if (a._forward) { a._forward = false; } else { _digraph->next(a); a._forward = true; } } void first(Edge& e) const { _digraph->first(e); } void next(Edge& e) const { _digraph->next(e); } void firstOut(Arc& a, const Node& n) const { _digraph->firstIn(a, n); if( static_cast(a) != INVALID ) { a._forward = false; } else { _digraph->firstOut(a, n); a._forward = true; } } void nextOut(Arc &a) const { if (!a._forward) { Node n = _digraph->target(a); _digraph->nextIn(a); if (static_cast(a) == INVALID ) { _digraph->firstOut(a, n); a._forward = true; } } else { _digraph->nextOut(a); } } void firstIn(Arc &a, const Node &n) const { _digraph->firstOut(a, n); if (static_cast(a) != INVALID ) { a._forward = false; } else { _digraph->firstIn(a, n); a._forward = true; } } void nextIn(Arc &a) const { if (!a._forward) { Node n = _digraph->source(a); _digraph->nextOut(a); if( static_cast(a) == INVALID ) { _digraph->firstIn(a, n); a._forward = true; } } else { _digraph->nextIn(a); } } void firstInc(Edge &e, bool &d, const Node &n) const { d = true; _digraph->firstOut(e, n); if (e != INVALID) return; d = false; _digraph->firstIn(e, n); } void nextInc(Edge &e, bool &d) const { if (d) { Node s = _digraph->source(e); _digraph->nextOut(e); if (e != INVALID) return; d = false; _digraph->firstIn(e, s); } else { _digraph->nextIn(e); } } Node u(const Edge& e) const { return _digraph->source(e); } Node v(const Edge& e) const { return _digraph->target(e); } Node source(const Arc &a) const { return a._forward ? _digraph->source(a) : _digraph->target(a); } Node target(const Arc &a) const { return a._forward ? _digraph->target(a) : _digraph->source(a); } static Arc direct(const Edge &e, bool d) { return Arc(e, d); } Arc direct(const Edge &e, const Node& n) const { return Arc(e, _digraph->source(e) == n); } static bool direction(const Arc &a) { return a._forward; } Node nodeFromId(int ix) const { return _digraph->nodeFromId(ix); } Arc arcFromId(int ix) const { return direct(_digraph->arcFromId(ix >> 1), bool(ix & 1)); } Edge edgeFromId(int ix) const { return _digraph->arcFromId(ix); } int id(const Node &n) const { return _digraph->id(n); } int id(const Arc &a) const { return (_digraph->id(a) << 1) | (a._forward ? 1 : 0); } int id(const Edge &e) const { return _digraph->id(e); } int maxNodeId() const { return _digraph->maxNodeId(); } int maxArcId() const { return (_digraph->maxArcId() << 1) | 1; } int maxEdgeId() const { return _digraph->maxArcId(); } Node addNode() { return _digraph->addNode(); } Edge addEdge(const Node& u, const Node& v) { return _digraph->addArc(u, v); } void erase(const Node& i) { _digraph->erase(i); } void erase(const Edge& i) { _digraph->erase(i); } void clear() { _digraph->clear(); } typedef NodeNumTagIndicator NodeNumTag; int nodeNum() const { return 2 * _digraph->arcNum(); } typedef ArcNumTagIndicator ArcNumTag; int arcNum() const { return 2 * _digraph->arcNum(); } typedef ArcNumTag EdgeNumTag; int edgeNum() const { return _digraph->arcNum(); } typedef FindArcTagIndicator FindArcTag; Arc findArc(Node s, Node t, Arc p = INVALID) const { if (p == INVALID) { Edge arc = _digraph->findArc(s, t); if (arc != INVALID) return direct(arc, true); arc = _digraph->findArc(t, s); if (arc != INVALID) return direct(arc, false); } else if (direction(p)) { Edge arc = _digraph->findArc(s, t, p); if (arc != INVALID) return direct(arc, true); arc = _digraph->findArc(t, s); if (arc != INVALID) return direct(arc, false); } else { Edge arc = _digraph->findArc(t, s, p); if (arc != INVALID) return direct(arc, false); } return INVALID; } typedef FindArcTag FindEdgeTag; Edge findEdge(Node s, Node t, Edge p = INVALID) const { if (s != t) { if (p == INVALID) { Edge arc = _digraph->findArc(s, t); if (arc != INVALID) return arc; arc = _digraph->findArc(t, s); if (arc != INVALID) return arc; } else if (_digraph->s(p) == s) { Edge arc = _digraph->findArc(s, t, p); if (arc != INVALID) return arc; arc = _digraph->findArc(t, s); if (arc != INVALID) return arc; } else { Edge arc = _digraph->findArc(t, s, p); if (arc != INVALID) return arc; } } else { return _digraph->findArc(s, t, p); } return INVALID; } private: template class ArcMapBase { private: typedef typename Digraph::template ArcMap<_Value> MapImpl; public: typedef typename MapTraits::ReferenceMapTag ReferenceMapTag; typedef _Value Value; typedef Arc Key; ArcMapBase(const Adaptor& adaptor) : _forward(*adaptor._digraph), _backward(*adaptor._digraph) {} ArcMapBase(const Adaptor& adaptor, const Value& v) : _forward(*adaptor._digraph, v), _backward(*adaptor._digraph, v) {} void set(const Arc& a, const Value& v) { if (direction(a)) { _forward.set(a, v); } else { _backward.set(a, v); } } typename MapTraits::ConstReturnValue operator[](const Arc& a) const { if (direction(a)) { return _forward[a]; } else { return _backward[a]; } } typename MapTraits::ReturnValue operator[](const Arc& a) { if (direction(a)) { return _forward[a]; } else { return _backward[a]; } } protected: MapImpl _forward, _backward; }; public: template class NodeMap : public Digraph::template NodeMap<_Value> { public: typedef _Value Value; typedef typename Digraph::template NodeMap Parent; explicit NodeMap(const Adaptor& adaptor) : Parent(*adaptor._digraph) {} NodeMap(const Adaptor& adaptor, const _Value& value) : Parent(*adaptor._digraph, value) { } private: NodeMap& operator=(const NodeMap& cmap) { return operator=(cmap); } template NodeMap& operator=(const CMap& cmap) { Parent::operator=(cmap); return *this; } }; template class ArcMap : public SubMapExtender > { public: typedef _Value Value; typedef SubMapExtender > Parent; ArcMap(const Adaptor& adaptor) : Parent(adaptor) {} ArcMap(const Adaptor& adaptor, const Value& value) : Parent(adaptor, value) {} private: ArcMap& operator=(const ArcMap& cmap) { return operator=(cmap); } template ArcMap& operator=(const CMap& cmap) { Parent::operator=(cmap); return *this; } }; template class EdgeMap : public Digraph::template ArcMap<_Value> { public: typedef _Value Value; typedef typename Digraph::template ArcMap Parent; explicit EdgeMap(const Adaptor& adaptor) : Parent(*adaptor._digraph) {} EdgeMap(const Adaptor& adaptor, const Value& value) : Parent(*adaptor._digraph, value) {} private: EdgeMap& operator=(const EdgeMap& cmap) { return operator=(cmap); } template EdgeMap& operator=(const CMap& cmap) { Parent::operator=(cmap); return *this; } }; typedef typename ItemSetTraits::ItemNotifier NodeNotifier; NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); } protected: UndirectorBase() : _digraph(0) {} Digraph* _digraph; void setDigraph(Digraph& digraph) { _digraph = &digraph; } }; /// \ingroup graph_adaptors /// /// \brief Undirect the graph /// /// This adaptor makes an undirected graph from a directed /// graph. All arcs of the underlying digraph will be showed in the /// adaptor as an edge. The Orienter adaptor is conform to the \ref /// concepts::Graph "Graph concept". /// /// \tparam _Digraph It must be conform to the \ref /// concepts::Digraph "Digraph concept". The type can be specified /// to const. template class Undirector : public GraphAdaptorExtender > { public: typedef _Digraph Digraph; typedef GraphAdaptorExtender > Parent; protected: Undirector() { } public: /// \brief Constructor /// /// Creates a undirected graph from the given digraph Undirector(_Digraph& digraph) { setDigraph(digraph); } /// \brief ArcMap combined from two original ArcMap /// /// This class adapts two original digraph ArcMap to /// get an arc map on the undirected graph. template class CombinedArcMap { public: typedef _ForwardMap ForwardMap; typedef _BackwardMap BackwardMap; typedef typename MapTraits::ReferenceMapTag ReferenceMapTag; typedef typename ForwardMap::Value Value; typedef typename Parent::Arc Key; /// \brief Constructor /// /// Constructor CombinedArcMap(ForwardMap& forward, BackwardMap& backward) : _forward(&forward), _backward(&backward) {} /// \brief Sets the value associated with a key. /// /// Sets the value associated with a key. void set(const Key& e, const Value& a) { if (Parent::direction(e)) { _forward->set(e, a); } else { _backward->set(e, a); } } /// \brief Returns the value associated with a key. /// /// Returns the value associated with a key. typename MapTraits::ConstReturnValue operator[](const Key& e) const { if (Parent::direction(e)) { return (*_forward)[e]; } else { return (*_backward)[e]; } } /// \brief Returns the value associated with a key. /// /// Returns the value associated with a key. typename MapTraits::ReturnValue operator[](const Key& e) { if (Parent::direction(e)) { return (*_forward)[e]; } else { return (*_backward)[e]; } } protected: ForwardMap* _forward; BackwardMap* _backward; }; /// \brief Just gives back a combined arc map /// /// Just gives back a combined arc map template static CombinedArcMap combinedArcMap(ForwardMap& forward, BackwardMap& backward) { return CombinedArcMap(forward, backward); } template static CombinedArcMap combinedArcMap(const ForwardMap& forward, BackwardMap& backward) { return CombinedArcMap(forward, backward); } template static CombinedArcMap combinedArcMap(ForwardMap& forward, const BackwardMap& backward) { return CombinedArcMap(forward, backward); } template static CombinedArcMap combinedArcMap(const ForwardMap& forward, const BackwardMap& backward) { return CombinedArcMap(forward, backward); } }; /// \brief Just gives back an undirected view of the given digraph /// /// Just gives back an undirected view of the given digraph template Undirector undirector(const Digraph& digraph) { return Undirector(digraph); } template class OrienterBase { public: typedef _Graph Graph; typedef _DirectionMap DirectionMap; typedef typename Graph::Node Node; typedef typename Graph::Edge Arc; void reverseArc(const Arc& arc) { _direction->set(arc, !(*_direction)[arc]); } void first(Node& i) const { _graph->first(i); } void first(Arc& i) const { _graph->first(i); } void firstIn(Arc& i, const Node& n) const { bool d = true; _graph->firstInc(i, d, n); while (i != INVALID && d == (*_direction)[i]) _graph->nextInc(i, d); } void firstOut(Arc& i, const Node& n ) const { bool d = true; _graph->firstInc(i, d, n); while (i != INVALID && d != (*_direction)[i]) _graph->nextInc(i, d); } void next(Node& i) const { _graph->next(i); } void next(Arc& i) const { _graph->next(i); } void nextIn(Arc& i) const { bool d = !(*_direction)[i]; _graph->nextInc(i, d); while (i != INVALID && d == (*_direction)[i]) _graph->nextInc(i, d); } void nextOut(Arc& i) const { bool d = (*_direction)[i]; _graph->nextInc(i, d); while (i != INVALID && d != (*_direction)[i]) _graph->nextInc(i, d); } Node source(const Arc& e) const { return (*_direction)[e] ? _graph->u(e) : _graph->v(e); } Node target(const Arc& e) const { return (*_direction)[e] ? _graph->v(e) : _graph->u(e); } typedef NodeNumTagIndicator NodeNumTag; int nodeNum() const { return _graph->nodeNum(); } typedef EdgeNumTagIndicator ArcNumTag; int arcNum() const { return _graph->edgeNum(); } typedef FindEdgeTagIndicator FindArcTag; Arc findArc(const Node& u, const Node& v, const Arc& prev = INVALID) const { Arc arc = prev; bool d = arc == INVALID ? true : (*_direction)[arc]; if (d) { arc = _graph->findEdge(u, v, arc); while (arc != INVALID && !(*_direction)[arc]) { _graph->findEdge(u, v, arc); } if (arc != INVALID) return arc; } _graph->findEdge(v, u, arc); while (arc != INVALID && (*_direction)[arc]) { _graph->findEdge(u, v, arc); } return arc; } Node addNode() { return Node(_graph->addNode()); } Arc addArc(const Node& u, const Node& v) { Arc arc = _graph->addArc(u, v); _direction->set(arc, _graph->source(arc) == u); return arc; } void erase(const Node& i) { _graph->erase(i); } void erase(const Arc& i) { _graph->erase(i); } void clear() { _graph->clear(); } int id(const Node& v) const { return _graph->id(v); } int id(const Arc& e) const { return _graph->id(e); } Node nodeFromId(int idx) const { return _graph->nodeFromId(idx); } Arc arcFromId(int idx) const { return _graph->edgeFromId(idx); } int maxNodeId() const { return _graph->maxNodeId(); } int maxArcId() const { return _graph->maxEdgeId(); } typedef typename ItemSetTraits::ItemNotifier NodeNotifier; NodeNotifier& notifier(Node) const { return _graph->notifier(Node()); } typedef typename ItemSetTraits::ItemNotifier ArcNotifier; ArcNotifier& notifier(Arc) const { return _graph->notifier(Arc()); } template class NodeMap : public _Graph::template NodeMap<_Value> { public: typedef typename _Graph::template NodeMap<_Value> Parent; explicit NodeMap(const OrienterBase& adapter) : Parent(*adapter._graph) {} NodeMap(const OrienterBase& adapter, const _Value& value) : Parent(*adapter._graph, value) {} private: NodeMap& operator=(const NodeMap& cmap) { return operator=(cmap); } template NodeMap& operator=(const CMap& cmap) { Parent::operator=(cmap); return *this; } }; template class ArcMap : public _Graph::template EdgeMap<_Value> { public: typedef typename Graph::template EdgeMap<_Value> Parent; explicit ArcMap(const OrienterBase& adapter) : Parent(*adapter._graph) { } ArcMap(const OrienterBase& adapter, const _Value& value) : Parent(*adapter._graph, value) { } private: ArcMap& operator=(const ArcMap& cmap) { return operator=(cmap); } template ArcMap& operator=(const CMap& cmap) { Parent::operator=(cmap); return *this; } }; protected: Graph* _graph; DirectionMap* _direction; void setDirectionMap(DirectionMap& direction) { _direction = &direction; } void setGraph(Graph& graph) { _graph = &graph; } }; /// \ingroup graph_adaptors /// /// \brief Orients the edges of the graph to get a digraph /// /// This adaptor orients each edge in the undirected graph. The /// direction of the arcs stored in an edge node map. The arcs can /// be easily reverted by the \c reverseArc() member function in the /// adaptor. The Orienter adaptor is conform to the \ref /// concepts::Digraph "Digraph concept". /// /// \tparam _Graph It must be conform to the \ref concepts::Graph /// "Graph concept". The type can be specified to be const. /// \tparam _DirectionMap A bool valued edge map of the the adapted /// graph. /// /// \sa orienter template > class Orienter : public DigraphAdaptorExtender > { public: typedef _Graph Graph; typedef DigraphAdaptorExtender< OrienterBase<_Graph, DirectionMap> > Parent; typedef typename Parent::Arc Arc; protected: Orienter() { } public: /// \brief Constructor of the adaptor /// /// Constructor of the adaptor Orienter(Graph& graph, DirectionMap& direction) { setGraph(graph); setDirectionMap(direction); } /// \brief Reverse arc /// /// It reverse the given arc. It simply negate the direction in the map. void reverseArc(const Arc& a) { Parent::reverseArc(a); } }; /// \brief Just gives back a Orienter /// /// Just gives back a Orienter template Orienter orienter(const Graph& graph, DirectionMap& dm) { return Orienter(graph, dm); } template Orienter orienter(const Graph& graph, const DirectionMap& dm) { return Orienter(graph, dm); } namespace _adaptor_bits { template, typename _FlowMap = _CapacityMap, typename _Tolerance = Tolerance > class ResForwardFilter { public: typedef _Digraph Digraph; typedef _CapacityMap CapacityMap; typedef _FlowMap FlowMap; typedef _Tolerance Tolerance; typedef typename Digraph::Arc Key; typedef bool Value; private: const CapacityMap* _capacity; const FlowMap* _flow; Tolerance _tolerance; public: ResForwardFilter(const CapacityMap& capacity, const FlowMap& flow, const Tolerance& tolerance = Tolerance()) : _capacity(&capacity), _flow(&flow), _tolerance(tolerance) { } bool operator[](const typename Digraph::Arc& a) const { return _tolerance.positive((*_capacity)[a] - (*_flow)[a]); } }; template, typename _FlowMap = _CapacityMap, typename _Tolerance = Tolerance > class ResBackwardFilter { public: typedef _Digraph Digraph; typedef _CapacityMap CapacityMap; typedef _FlowMap FlowMap; typedef _Tolerance Tolerance; typedef typename Digraph::Arc Key; typedef bool Value; private: const CapacityMap* _capacity; const FlowMap* _flow; Tolerance _tolerance; public: ResBackwardFilter(const CapacityMap& capacity, const FlowMap& flow, const Tolerance& tolerance = Tolerance()) : _capacity(&capacity), _flow(&flow), _tolerance(tolerance) { } bool operator[](const typename Digraph::Arc& a) const { return _tolerance.positive((*_flow)[a]); } }; } /// \ingroup graph_adaptors /// /// \brief An adaptor for composing the residual graph for directed /// flow and circulation problems. /// /// An adaptor for composing the residual graph for directed flow and /// circulation problems. Let \f$ G=(V, A) \f$ be a directed graph /// and let \f$ F \f$ be a number type. Let moreover \f$ f,c:A\to F \f$, /// be functions on the arc-set. /// /// Then Residual implements the digraph structure with /// node-set \f$ V \f$ and arc-set \f$ A_{forward}\cup A_{backward} \f$, /// where \f$ A_{forward}=\{uv : uv\in A, f(uv)0\} \f$, i.e. the so /// called residual graph. When we take the union /// \f$ A_{forward}\cup A_{backward} \f$, multiplicities are counted, /// i.e. if an arc is in both \f$ A_{forward} \f$ and /// \f$ A_{backward} \f$, then in the adaptor it appears in both /// orientation. /// /// \tparam _Digraph It must be conform to the \ref concepts::Digraph /// "Digraph concept". The type is implicitly const. /// \tparam _CapacityMap An arc map of some numeric type, it defines /// the capacities in the flow problem. The map is implicitly const. /// \tparam _FlowMap An arc map of some numeric type, it defines /// the capacities in the flow problem. /// \tparam _Tolerance Handler for inexact computation. template, typename _FlowMap = _CapacityMap, typename _Tolerance = Tolerance > class Residual : public FilterArcs< Undirector, typename Undirector::template CombinedArcMap< _adaptor_bits::ResForwardFilter, _adaptor_bits::ResBackwardFilter > > { public: typedef _Digraph Digraph; typedef _CapacityMap CapacityMap; typedef _FlowMap FlowMap; typedef _Tolerance Tolerance; typedef typename CapacityMap::Value Value; typedef Residual Adaptor; protected: typedef Undirector Undirected; typedef _adaptor_bits::ResForwardFilter ForwardFilter; typedef _adaptor_bits::ResBackwardFilter BackwardFilter; typedef typename Undirected:: template CombinedArcMap ArcFilter; typedef FilterArcs Parent; const CapacityMap* _capacity; FlowMap* _flow; Undirected _graph; ForwardFilter _forward_filter; BackwardFilter _backward_filter; ArcFilter _arc_filter; public: /// \brief Constructor of the residual digraph. /// /// Constructor of the residual graph. The parameters are the digraph, /// the flow map, the capacity map and a tolerance object. Residual(const Digraph& digraph, const CapacityMap& capacity, FlowMap& flow, const Tolerance& tolerance = Tolerance()) : Parent(), _capacity(&capacity), _flow(&flow), _graph(digraph), _forward_filter(capacity, flow, tolerance), _backward_filter(capacity, flow, tolerance), _arc_filter(_forward_filter, _backward_filter) { Parent::setDigraph(_graph); Parent::setArcFilterMap(_arc_filter); } typedef typename Parent::Arc Arc; /// \brief Gives back the residual capacity of the arc. /// /// Gives back the residual capacity of the arc. Value residualCapacity(const Arc& a) const { if (Undirected::direction(a)) { return (*_capacity)[a] - (*_flow)[a]; } else { return (*_flow)[a]; } } /// \brief Augment on the given arc in the residual graph. /// /// Augment on the given arc in the residual graph. It increase /// or decrease the flow on the original arc depend on the direction /// of the residual arc. void augment(const Arc& a, const Value& v) const { if (Undirected::direction(a)) { _flow->set(a, (*_flow)[a] + v); } else { _flow->set(a, (*_flow)[a] - v); } } /// \brief Returns the direction of the arc. /// /// Returns true when the arc is same oriented as the original arc. static bool forward(const Arc& a) { return Undirected::direction(a); } /// \brief Returns the direction of the arc. /// /// Returns true when the arc is opposite oriented as the original arc. static bool backward(const Arc& a) { return !Undirected::direction(a); } /// \brief Gives back the forward oriented residual arc. /// /// Gives back the forward oriented residual arc. static Arc forward(const typename Digraph::Arc& a) { return Undirected::direct(a, true); } /// \brief Gives back the backward oriented residual arc. /// /// Gives back the backward oriented residual arc. static Arc backward(const typename Digraph::Arc& a) { return Undirected::direct(a, false); } /// \brief Residual capacity map. /// /// In generic residual graph the residual capacity can be obtained /// as a map. class ResidualCapacity { protected: const Adaptor* _adaptor; public: /// The Key type typedef Arc Key; /// The Value type typedef typename _CapacityMap::Value Value; /// Constructor ResidualCapacity(const Adaptor& adaptor) : _adaptor(&adaptor) {} /// \e Value operator[](const Arc& a) const { return _adaptor->residualCapacity(a); } }; }; template class SplitNodesBase { public: typedef _Digraph Digraph; typedef DigraphAdaptorBase Parent; typedef SplitNodesBase Adaptor; typedef typename Digraph::Node DigraphNode; typedef typename Digraph::Arc DigraphArc; class Node; class Arc; private: template class NodeMapBase; template class ArcMapBase; public: class Node : public DigraphNode { friend class SplitNodesBase; template friend class NodeMapBase; private: bool _in; Node(DigraphNode node, bool in) : DigraphNode(node), _in(in) {} public: Node() {} Node(Invalid) : DigraphNode(INVALID), _in(true) {} bool operator==(const Node& node) const { return DigraphNode::operator==(node) && _in == node._in; } bool operator!=(const Node& node) const { return !(*this == node); } bool operator<(const Node& node) const { return DigraphNode::operator<(node) || (DigraphNode::operator==(node) && _in < node._in); } }; class Arc { friend class SplitNodesBase; template friend class ArcMapBase; private: typedef BiVariant ArcImpl; explicit Arc(const DigraphArc& arc) : _item(arc) {} explicit Arc(const DigraphNode& node) : _item(node) {} ArcImpl _item; public: Arc() {} Arc(Invalid) : _item(DigraphArc(INVALID)) {} bool operator==(const Arc& arc) const { if (_item.firstState()) { if (arc._item.firstState()) { return _item.first() == arc._item.first(); } } else { if (arc._item.secondState()) { return _item.second() == arc._item.second(); } } return false; } bool operator!=(const Arc& arc) const { return !(*this == arc); } bool operator<(const Arc& arc) const { if (_item.firstState()) { if (arc._item.firstState()) { return _item.first() < arc._item.first(); } return false; } else { if (arc._item.secondState()) { return _item.second() < arc._item.second(); } return true; } } operator DigraphArc() const { return _item.first(); } operator DigraphNode() const { return _item.second(); } }; void first(Node& n) const { _digraph->first(n); n._in = true; } void next(Node& n) const { if (n._in) { n._in = false; } else { n._in = true; _digraph->next(n); } } void first(Arc& e) const { e._item.setSecond(); _digraph->first(e._item.second()); if (e._item.second() == INVALID) { e._item.setFirst(); _digraph->first(e._item.first()); } } void next(Arc& e) const { if (e._item.secondState()) { _digraph->next(e._item.second()); if (e._item.second() == INVALID) { e._item.setFirst(); _digraph->first(e._item.first()); } } else { _digraph->next(e._item.first()); } } void firstOut(Arc& e, const Node& n) const { if (n._in) { e._item.setSecond(n); } else { e._item.setFirst(); _digraph->firstOut(e._item.first(), n); } } void nextOut(Arc& e) const { if (!e._item.firstState()) { e._item.setFirst(INVALID); } else { _digraph->nextOut(e._item.first()); } } void firstIn(Arc& e, const Node& n) const { if (!n._in) { e._item.setSecond(n); } else { e._item.setFirst(); _digraph->firstIn(e._item.first(), n); } } void nextIn(Arc& e) const { if (!e._item.firstState()) { e._item.setFirst(INVALID); } else { _digraph->nextIn(e._item.first()); } } Node source(const Arc& e) const { if (e._item.firstState()) { return Node(_digraph->source(e._item.first()), false); } else { return Node(e._item.second(), true); } } Node target(const Arc& e) const { if (e._item.firstState()) { return Node(_digraph->target(e._item.first()), true); } else { return Node(e._item.second(), false); } } int id(const Node& n) const { return (_digraph->id(n) << 1) | (n._in ? 0 : 1); } Node nodeFromId(int ix) const { return Node(_digraph->nodeFromId(ix >> 1), (ix & 1) == 0); } int maxNodeId() const { return 2 * _digraph->maxNodeId() + 1; } int id(const Arc& e) const { if (e._item.firstState()) { return _digraph->id(e._item.first()) << 1; } else { return (_digraph->id(e._item.second()) << 1) | 1; } } Arc arcFromId(int ix) const { if ((ix & 1) == 0) { return Arc(_digraph->arcFromId(ix >> 1)); } else { return Arc(_digraph->nodeFromId(ix >> 1)); } } int maxArcId() const { return std::max(_digraph->maxNodeId() << 1, (_digraph->maxArcId() << 1) | 1); } static bool inNode(const Node& n) { return n._in; } static bool outNode(const Node& n) { return !n._in; } static bool origArc(const Arc& e) { return e._item.firstState(); } static bool bindArc(const Arc& e) { return e._item.secondState(); } static Node inNode(const DigraphNode& n) { return Node(n, true); } static Node outNode(const DigraphNode& n) { return Node(n, false); } static Arc arc(const DigraphNode& n) { return Arc(n); } static Arc arc(const DigraphArc& e) { return Arc(e); } typedef True NodeNumTag; int nodeNum() const { return 2 * countNodes(*_digraph); } typedef True ArcNumTag; int arcNum() const { return countArcs(*_digraph) + countNodes(*_digraph); } typedef True FindArcTag; Arc findArc(const Node& u, const Node& v, const Arc& prev = INVALID) const { if (inNode(u)) { if (outNode(v)) { if (static_cast(u) == static_cast(v) && prev == INVALID) { return Arc(u); } } } else { if (inNode(v)) { return Arc(::lemon::findArc(*_digraph, u, v, prev)); } } return INVALID; } private: template class NodeMapBase : public MapTraits > { typedef typename Parent::template NodeMap<_Value> NodeImpl; public: typedef Node Key; typedef _Value Value; NodeMapBase(const Adaptor& adaptor) : _in_map(*adaptor._digraph), _out_map(*adaptor._digraph) {} NodeMapBase(const Adaptor& adaptor, const Value& value) : _in_map(*adaptor._digraph, value), _out_map(*adaptor._digraph, value) {} void set(const Node& key, const Value& val) { if (Adaptor::inNode(key)) { _in_map.set(key, val); } else {_out_map.set(key, val); } } typename MapTraits::ReturnValue operator[](const Node& key) { if (Adaptor::inNode(key)) { return _in_map[key]; } else { return _out_map[key]; } } typename MapTraits::ConstReturnValue operator[](const Node& key) const { if (Adaptor::inNode(key)) { return _in_map[key]; } else { return _out_map[key]; } } private: NodeImpl _in_map, _out_map; }; template class ArcMapBase : public MapTraits > { typedef typename Parent::template ArcMap<_Value> ArcImpl; typedef typename Parent::template NodeMap<_Value> NodeImpl; public: typedef Arc Key; typedef _Value Value; ArcMapBase(const Adaptor& adaptor) : _arc_map(*adaptor._digraph), _node_map(*adaptor._digraph) {} ArcMapBase(const Adaptor& adaptor, const Value& value) : _arc_map(*adaptor._digraph, value), _node_map(*adaptor._digraph, value) {} void set(const Arc& key, const Value& val) { if (Adaptor::origArc(key)) { _arc_map.set(key._item.first(), val); } else { _node_map.set(key._item.second(), val); } } typename MapTraits::ReturnValue operator[](const Arc& key) { if (Adaptor::origArc(key)) { return _arc_map[key._item.first()]; } else { return _node_map[key._item.second()]; } } typename MapTraits::ConstReturnValue operator[](const Arc& key) const { if (Adaptor::origArc(key)) { return _arc_map[key._item.first()]; } else { return _node_map[key._item.second()]; } } private: ArcImpl _arc_map; NodeImpl _node_map; }; public: template class NodeMap : public SubMapExtender > { public: typedef _Value Value; typedef SubMapExtender > Parent; NodeMap(const Adaptor& adaptor) : Parent(adaptor) {} NodeMap(const Adaptor& adaptor, const Value& value) : Parent(adaptor, value) {} private: NodeMap& operator=(const NodeMap& cmap) { return operator=(cmap); } template NodeMap& operator=(const CMap& cmap) { Parent::operator=(cmap); return *this; } }; template class ArcMap : public SubMapExtender > { public: typedef _Value Value; typedef SubMapExtender > Parent; ArcMap(const Adaptor& adaptor) : Parent(adaptor) {} ArcMap(const Adaptor& adaptor, const Value& value) : Parent(adaptor, value) {} private: ArcMap& operator=(const ArcMap& cmap) { return operator=(cmap); } template ArcMap& operator=(const CMap& cmap) { Parent::operator=(cmap); return *this; } }; protected: SplitNodesBase() : _digraph(0) {} Digraph* _digraph; void setDigraph(Digraph& digraph) { _digraph = &digraph; } }; /// \ingroup graph_adaptors /// /// \brief Split the nodes of a directed graph /// /// The SplitNodes adaptor splits each node into an in-node and an /// out-node. Formaly, the adaptor replaces each \f$ u \f$ node in /// the digraph with two nodes(namely node \f$ u_{in} \f$ and node /// \f$ u_{out} \f$). If there is a \f$ (v, u) \f$ arc in the /// original digraph the new target of the arc will be \f$ u_{in} \f$ /// and similarly the source of the original \f$ (u, v) \f$ arc /// will be \f$ u_{out} \f$. The adaptor will add for each node in /// the original digraph an additional arc which connects /// \f$ (u_{in}, u_{out}) \f$. /// /// The aim of this class is to run algorithm with node costs if the /// algorithm can use directly just arc costs. In this case we should use /// a \c SplitNodes and set the node cost of the graph to the /// bind arc in the adapted graph. /// /// \tparam _Digraph It must be conform to the \ref concepts::Digraph /// "Digraph concept". The type can be specified to be const. template class SplitNodes : public DigraphAdaptorExtender > { public: typedef _Digraph Digraph; typedef DigraphAdaptorExtender > Parent; typedef typename Digraph::Node DigraphNode; typedef typename Digraph::Arc DigraphArc; typedef typename Parent::Node Node; typedef typename Parent::Arc Arc; /// \brief Constructor of the adaptor. /// /// Constructor of the adaptor. SplitNodes(const Digraph& g) { Parent::setDigraph(g); } /// \brief Returns true when the node is in-node. /// /// Returns true when the node is in-node. static bool inNode(const Node& n) { return Parent::inNode(n); } /// \brief Returns true when the node is out-node. /// /// Returns true when the node is out-node. static bool outNode(const Node& n) { return Parent::outNode(n); } /// \brief Returns true when the arc is arc in the original digraph. /// /// Returns true when the arc is arc in the original digraph. static bool origArc(const Arc& a) { return Parent::origArc(a); } /// \brief Returns true when the arc binds an in-node and an out-node. /// /// Returns true when the arc binds an in-node and an out-node. static bool bindArc(const Arc& a) { return Parent::bindArc(a); } /// \brief Gives back the in-node created from the \c node. /// /// Gives back the in-node created from the \c node. static Node inNode(const DigraphNode& n) { return Parent::inNode(n); } /// \brief Gives back the out-node created from the \c node. /// /// Gives back the out-node created from the \c node. static Node outNode(const DigraphNode& n) { return Parent::outNode(n); } /// \brief Gives back the arc binds the two part of the node. /// /// Gives back the arc binds the two part of the node. static Arc arc(const DigraphNode& n) { return Parent::arc(n); } /// \brief Gives back the arc of the original arc. /// /// Gives back the arc of the original arc. static Arc arc(const DigraphArc& a) { return Parent::arc(a); } /// \brief NodeMap combined from two original NodeMap /// /// This class adapt two of the original digraph NodeMap to /// get a node map on the adapted digraph. template class CombinedNodeMap { public: typedef Node Key; typedef typename InNodeMap::Value Value; /// \brief Constructor /// /// Constructor. CombinedNodeMap(InNodeMap& in_map, OutNodeMap& out_map) : _in_map(in_map), _out_map(out_map) {} /// \brief The subscript operator. /// /// The subscript operator. Value& operator[](const Key& key) { if (Parent::inNode(key)) { return _in_map[key]; } else { return _out_map[key]; } } /// \brief The const subscript operator. /// /// The const subscript operator. Value operator[](const Key& key) const { if (Parent::inNode(key)) { return _in_map[key]; } else { return _out_map[key]; } } /// \brief The setter function of the map. /// /// The setter function of the map. void set(const Key& key, const Value& value) { if (Parent::inNode(key)) { _in_map.set(key, value); } else { _out_map.set(key, value); } } private: InNodeMap& _in_map; OutNodeMap& _out_map; }; /// \brief Just gives back a combined node map /// /// Just gives back a combined node map template static CombinedNodeMap combinedNodeMap(InNodeMap& in_map, OutNodeMap& out_map) { return CombinedNodeMap(in_map, out_map); } template static CombinedNodeMap combinedNodeMap(const InNodeMap& in_map, OutNodeMap& out_map) { return CombinedNodeMap(in_map, out_map); } template static CombinedNodeMap combinedNodeMap(InNodeMap& in_map, const OutNodeMap& out_map) { return CombinedNodeMap(in_map, out_map); } template static CombinedNodeMap combinedNodeMap(const InNodeMap& in_map, const OutNodeMap& out_map) { return CombinedNodeMap(in_map, out_map); } /// \brief ArcMap combined from an original ArcMap and a NodeMap /// /// This class adapt an original ArcMap and a NodeMap to get an /// arc map on the adapted digraph template class CombinedArcMap { public: typedef Arc Key; typedef typename DigraphArcMap::Value Value; /// \brief Constructor /// /// Constructor. CombinedArcMap(DigraphArcMap& arc_map, DigraphNodeMap& node_map) : _arc_map(arc_map), _node_map(node_map) {} /// \brief The subscript operator. /// /// The subscript operator. void set(const Arc& arc, const Value& val) { if (Parent::origArc(arc)) { _arc_map.set(arc, val); } else { _node_map.set(arc, val); } } /// \brief The const subscript operator. /// /// The const subscript operator. Value operator[](const Key& arc) const { if (Parent::origArc(arc)) { return _arc_map[arc]; } else { return _node_map[arc]; } } /// \brief The const subscript operator. /// /// The const subscript operator. Value& operator[](const Key& arc) { if (Parent::origArc(arc)) { return _arc_map[arc]; } else { return _node_map[arc]; } } private: DigraphArcMap& _arc_map; DigraphNodeMap& _node_map; }; /// \brief Just gives back a combined arc map /// /// Just gives back a combined arc map template static CombinedArcMap combinedArcMap(DigraphArcMap& arc_map, DigraphNodeMap& node_map) { return CombinedArcMap(arc_map, node_map); } template static CombinedArcMap combinedArcMap(const DigraphArcMap& arc_map, DigraphNodeMap& node_map) { return CombinedArcMap(arc_map, node_map); } template static CombinedArcMap combinedArcMap(DigraphArcMap& arc_map, const DigraphNodeMap& node_map) { return CombinedArcMap(arc_map, node_map); } template static CombinedArcMap combinedArcMap(const DigraphArcMap& arc_map, const DigraphNodeMap& node_map) { return CombinedArcMap(arc_map, node_map); } }; /// \brief Just gives back a node splitter /// /// Just gives back a node splitter template SplitNodes splitNodes(const Digraph& digraph) { return SplitNodes(digraph); } } //namespace lemon #endif //LEMON_ADAPTORS_H