1 | /* -*- mode: C++; indent-tabs-mode: nil; -*- |
---|
2 | * |
---|
3 | * This file is a part of LEMON, a generic C++ optimization library. |
---|
4 | * |
---|
5 | * Copyright (C) 2003-2010 |
---|
6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
---|
8 | * |
---|
9 | * Permission to use, modify and distribute this software is granted |
---|
10 | * provided that this copyright notice appears in all copies. For |
---|
11 | * precise terms see the accompanying LICENSE file. |
---|
12 | * |
---|
13 | * This software is provided "AS IS" with no warranty of any kind, |
---|
14 | * express or implied, and with no claim as to its suitability for any |
---|
15 | * purpose. |
---|
16 | * |
---|
17 | */ |
---|
18 | |
---|
19 | #ifndef LEMON_BELLMAN_FORD_H |
---|
20 | #define LEMON_BELLMAN_FORD_H |
---|
21 | |
---|
22 | /// \ingroup shortest_path |
---|
23 | /// \file |
---|
24 | /// \brief Bellman-Ford algorithm. |
---|
25 | |
---|
26 | #include <lemon/list_graph.h> |
---|
27 | #include <lemon/bits/path_dump.h> |
---|
28 | #include <lemon/core.h> |
---|
29 | #include <lemon/error.h> |
---|
30 | #include <lemon/maps.h> |
---|
31 | #include <lemon/tolerance.h> |
---|
32 | #include <lemon/path.h> |
---|
33 | |
---|
34 | #include <limits> |
---|
35 | |
---|
36 | namespace lemon { |
---|
37 | |
---|
38 | /// \brief Default operation traits for the BellmanFord algorithm class. |
---|
39 | /// |
---|
40 | /// This operation traits class defines all computational operations |
---|
41 | /// and constants that are used in the Bellman-Ford algorithm. |
---|
42 | /// The default implementation is based on the \c numeric_limits class. |
---|
43 | /// If the numeric type does not have infinity value, then the maximum |
---|
44 | /// value is used as extremal infinity value. |
---|
45 | /// |
---|
46 | /// \see BellmanFordToleranceOperationTraits |
---|
47 | template < |
---|
48 | typename V, |
---|
49 | bool has_inf = std::numeric_limits<V>::has_infinity> |
---|
50 | struct BellmanFordDefaultOperationTraits { |
---|
51 | /// \brief Value type for the algorithm. |
---|
52 | typedef V Value; |
---|
53 | /// \brief Gives back the zero value of the type. |
---|
54 | static Value zero() { |
---|
55 | return static_cast<Value>(0); |
---|
56 | } |
---|
57 | /// \brief Gives back the positive infinity value of the type. |
---|
58 | static Value infinity() { |
---|
59 | return std::numeric_limits<Value>::infinity(); |
---|
60 | } |
---|
61 | /// \brief Gives back the sum of the given two elements. |
---|
62 | static Value plus(const Value& left, const Value& right) { |
---|
63 | return left + right; |
---|
64 | } |
---|
65 | /// \brief Gives back \c true only if the first value is less than |
---|
66 | /// the second. |
---|
67 | static bool less(const Value& left, const Value& right) { |
---|
68 | return left < right; |
---|
69 | } |
---|
70 | }; |
---|
71 | |
---|
72 | template <typename V> |
---|
73 | struct BellmanFordDefaultOperationTraits<V, false> { |
---|
74 | typedef V Value; |
---|
75 | static Value zero() { |
---|
76 | return static_cast<Value>(0); |
---|
77 | } |
---|
78 | static Value infinity() { |
---|
79 | return std::numeric_limits<Value>::max(); |
---|
80 | } |
---|
81 | static Value plus(const Value& left, const Value& right) { |
---|
82 | if (left == infinity() || right == infinity()) return infinity(); |
---|
83 | return left + right; |
---|
84 | } |
---|
85 | static bool less(const Value& left, const Value& right) { |
---|
86 | return left < right; |
---|
87 | } |
---|
88 | }; |
---|
89 | |
---|
90 | /// \brief Operation traits for the BellmanFord algorithm class |
---|
91 | /// using tolerance. |
---|
92 | /// |
---|
93 | /// This operation traits class defines all computational operations |
---|
94 | /// and constants that are used in the Bellman-Ford algorithm. |
---|
95 | /// The only difference between this implementation and |
---|
96 | /// \ref BellmanFordDefaultOperationTraits is that this class uses |
---|
97 | /// the \ref Tolerance "tolerance technique" in its \ref less() |
---|
98 | /// function. |
---|
99 | /// |
---|
100 | /// \tparam V The value type. |
---|
101 | /// \tparam eps The epsilon value for the \ref less() function. |
---|
102 | /// By default, it is the epsilon value used by \ref Tolerance |
---|
103 | /// "Tolerance<V>". |
---|
104 | /// |
---|
105 | /// \see BellmanFordDefaultOperationTraits |
---|
106 | #ifdef DOXYGEN |
---|
107 | template <typename V, V eps> |
---|
108 | #else |
---|
109 | template < |
---|
110 | typename V, |
---|
111 | V eps = Tolerance<V>::def_epsilon> |
---|
112 | #endif |
---|
113 | struct BellmanFordToleranceOperationTraits { |
---|
114 | /// \brief Value type for the algorithm. |
---|
115 | typedef V Value; |
---|
116 | /// \brief Gives back the zero value of the type. |
---|
117 | static Value zero() { |
---|
118 | return static_cast<Value>(0); |
---|
119 | } |
---|
120 | /// \brief Gives back the positive infinity value of the type. |
---|
121 | static Value infinity() { |
---|
122 | return std::numeric_limits<Value>::infinity(); |
---|
123 | } |
---|
124 | /// \brief Gives back the sum of the given two elements. |
---|
125 | static Value plus(const Value& left, const Value& right) { |
---|
126 | return left + right; |
---|
127 | } |
---|
128 | /// \brief Gives back \c true only if the first value is less than |
---|
129 | /// the second. |
---|
130 | static bool less(const Value& left, const Value& right) { |
---|
131 | return left + eps < right; |
---|
132 | } |
---|
133 | }; |
---|
134 | |
---|
135 | /// \brief Default traits class of BellmanFord class. |
---|
136 | /// |
---|
137 | /// Default traits class of BellmanFord class. |
---|
138 | /// \param GR The type of the digraph. |
---|
139 | /// \param LEN The type of the length map. |
---|
140 | template<typename GR, typename LEN> |
---|
141 | struct BellmanFordDefaultTraits { |
---|
142 | /// The type of the digraph the algorithm runs on. |
---|
143 | typedef GR Digraph; |
---|
144 | |
---|
145 | /// \brief The type of the map that stores the arc lengths. |
---|
146 | /// |
---|
147 | /// The type of the map that stores the arc lengths. |
---|
148 | /// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
---|
149 | typedef LEN LengthMap; |
---|
150 | |
---|
151 | /// The type of the arc lengths. |
---|
152 | typedef typename LEN::Value Value; |
---|
153 | |
---|
154 | /// \brief Operation traits for Bellman-Ford algorithm. |
---|
155 | /// |
---|
156 | /// It defines the used operations and the infinity value for the |
---|
157 | /// given \c Value type. |
---|
158 | /// \see BellmanFordDefaultOperationTraits, |
---|
159 | /// BellmanFordToleranceOperationTraits |
---|
160 | typedef BellmanFordDefaultOperationTraits<Value> OperationTraits; |
---|
161 | |
---|
162 | /// \brief The type of the map that stores the last arcs of the |
---|
163 | /// shortest paths. |
---|
164 | /// |
---|
165 | /// The type of the map that stores the last |
---|
166 | /// arcs of the shortest paths. |
---|
167 | /// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
---|
168 | typedef typename GR::template NodeMap<typename GR::Arc> PredMap; |
---|
169 | |
---|
170 | /// \brief Instantiates a \c PredMap. |
---|
171 | /// |
---|
172 | /// This function instantiates a \ref PredMap. |
---|
173 | /// \param g is the digraph to which we would like to define the |
---|
174 | /// \ref PredMap. |
---|
175 | static PredMap *createPredMap(const GR& g) { |
---|
176 | return new PredMap(g); |
---|
177 | } |
---|
178 | |
---|
179 | /// \brief The type of the map that stores the distances of the nodes. |
---|
180 | /// |
---|
181 | /// The type of the map that stores the distances of the nodes. |
---|
182 | /// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
---|
183 | typedef typename GR::template NodeMap<typename LEN::Value> DistMap; |
---|
184 | |
---|
185 | /// \brief Instantiates a \c DistMap. |
---|
186 | /// |
---|
187 | /// This function instantiates a \ref DistMap. |
---|
188 | /// \param g is the digraph to which we would like to define the |
---|
189 | /// \ref DistMap. |
---|
190 | static DistMap *createDistMap(const GR& g) { |
---|
191 | return new DistMap(g); |
---|
192 | } |
---|
193 | |
---|
194 | }; |
---|
195 | |
---|
196 | /// \brief %BellmanFord algorithm class. |
---|
197 | /// |
---|
198 | /// \ingroup shortest_path |
---|
199 | /// This class provides an efficient implementation of the Bellman-Ford |
---|
200 | /// algorithm. The maximum time complexity of the algorithm is |
---|
201 | /// <tt>O(ne)</tt>. |
---|
202 | /// |
---|
203 | /// The Bellman-Ford algorithm solves the single-source shortest path |
---|
204 | /// problem when the arcs can have negative lengths, but the digraph |
---|
205 | /// should not contain directed cycles with negative total length. |
---|
206 | /// If all arc costs are non-negative, consider to use the Dijkstra |
---|
207 | /// algorithm instead, since it is more efficient. |
---|
208 | /// |
---|
209 | /// The arc lengths are passed to the algorithm using a |
---|
210 | /// \ref concepts::ReadMap "ReadMap", so it is easy to change it to any |
---|
211 | /// kind of length. The type of the length values is determined by the |
---|
212 | /// \ref concepts::ReadMap::Value "Value" type of the length map. |
---|
213 | /// |
---|
214 | /// There is also a \ref bellmanFord() "function-type interface" for the |
---|
215 | /// Bellman-Ford algorithm, which is convenient in the simplier cases and |
---|
216 | /// it can be used easier. |
---|
217 | /// |
---|
218 | /// \tparam GR The type of the digraph the algorithm runs on. |
---|
219 | /// The default type is \ref ListDigraph. |
---|
220 | /// \tparam LEN A \ref concepts::ReadMap "readable" arc map that specifies |
---|
221 | /// the lengths of the arcs. The default map type is |
---|
222 | /// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
---|
223 | /// \tparam TR The traits class that defines various types used by the |
---|
224 | /// algorithm. By default, it is \ref BellmanFordDefaultTraits |
---|
225 | /// "BellmanFordDefaultTraits<GR, LEN>". |
---|
226 | /// In most cases, this parameter should not be set directly, |
---|
227 | /// consider to use the named template parameters instead. |
---|
228 | #ifdef DOXYGEN |
---|
229 | template <typename GR, typename LEN, typename TR> |
---|
230 | #else |
---|
231 | template <typename GR=ListDigraph, |
---|
232 | typename LEN=typename GR::template ArcMap<int>, |
---|
233 | typename TR=BellmanFordDefaultTraits<GR,LEN> > |
---|
234 | #endif |
---|
235 | class BellmanFord { |
---|
236 | public: |
---|
237 | |
---|
238 | ///The type of the underlying digraph. |
---|
239 | typedef typename TR::Digraph Digraph; |
---|
240 | |
---|
241 | /// \brief The type of the arc lengths. |
---|
242 | typedef typename TR::LengthMap::Value Value; |
---|
243 | /// \brief The type of the map that stores the arc lengths. |
---|
244 | typedef typename TR::LengthMap LengthMap; |
---|
245 | /// \brief The type of the map that stores the last |
---|
246 | /// arcs of the shortest paths. |
---|
247 | typedef typename TR::PredMap PredMap; |
---|
248 | /// \brief The type of the map that stores the distances of the nodes. |
---|
249 | typedef typename TR::DistMap DistMap; |
---|
250 | /// The type of the paths. |
---|
251 | typedef PredMapPath<Digraph, PredMap> Path; |
---|
252 | ///\brief The \ref BellmanFordDefaultOperationTraits |
---|
253 | /// "operation traits class" of the algorithm. |
---|
254 | typedef typename TR::OperationTraits OperationTraits; |
---|
255 | |
---|
256 | ///The \ref BellmanFordDefaultTraits "traits class" of the algorithm. |
---|
257 | typedef TR Traits; |
---|
258 | |
---|
259 | private: |
---|
260 | |
---|
261 | typedef typename Digraph::Node Node; |
---|
262 | typedef typename Digraph::NodeIt NodeIt; |
---|
263 | typedef typename Digraph::Arc Arc; |
---|
264 | typedef typename Digraph::OutArcIt OutArcIt; |
---|
265 | |
---|
266 | // Pointer to the underlying digraph. |
---|
267 | const Digraph *_gr; |
---|
268 | // Pointer to the length map |
---|
269 | const LengthMap *_length; |
---|
270 | // Pointer to the map of predecessors arcs. |
---|
271 | PredMap *_pred; |
---|
272 | // Indicates if _pred is locally allocated (true) or not. |
---|
273 | bool _local_pred; |
---|
274 | // Pointer to the map of distances. |
---|
275 | DistMap *_dist; |
---|
276 | // Indicates if _dist is locally allocated (true) or not. |
---|
277 | bool _local_dist; |
---|
278 | |
---|
279 | typedef typename Digraph::template NodeMap<bool> MaskMap; |
---|
280 | MaskMap *_mask; |
---|
281 | |
---|
282 | std::vector<Node> _process; |
---|
283 | |
---|
284 | // Creates the maps if necessary. |
---|
285 | void create_maps() { |
---|
286 | if(!_pred) { |
---|
287 | _local_pred = true; |
---|
288 | _pred = Traits::createPredMap(*_gr); |
---|
289 | } |
---|
290 | if(!_dist) { |
---|
291 | _local_dist = true; |
---|
292 | _dist = Traits::createDistMap(*_gr); |
---|
293 | } |
---|
294 | if(!_mask) { |
---|
295 | _mask = new MaskMap(*_gr); |
---|
296 | } |
---|
297 | } |
---|
298 | |
---|
299 | public : |
---|
300 | |
---|
301 | typedef BellmanFord Create; |
---|
302 | |
---|
303 | /// \name Named Template Parameters |
---|
304 | |
---|
305 | ///@{ |
---|
306 | |
---|
307 | template <class T> |
---|
308 | struct SetPredMapTraits : public Traits { |
---|
309 | typedef T PredMap; |
---|
310 | static PredMap *createPredMap(const Digraph&) { |
---|
311 | LEMON_ASSERT(false, "PredMap is not initialized"); |
---|
312 | return 0; // ignore warnings |
---|
313 | } |
---|
314 | }; |
---|
315 | |
---|
316 | /// \brief \ref named-templ-param "Named parameter" for setting |
---|
317 | /// \c PredMap type. |
---|
318 | /// |
---|
319 | /// \ref named-templ-param "Named parameter" for setting |
---|
320 | /// \c PredMap type. |
---|
321 | /// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
---|
322 | template <class T> |
---|
323 | struct SetPredMap |
---|
324 | : public BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > { |
---|
325 | typedef BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > Create; |
---|
326 | }; |
---|
327 | |
---|
328 | template <class T> |
---|
329 | struct SetDistMapTraits : public Traits { |
---|
330 | typedef T DistMap; |
---|
331 | static DistMap *createDistMap(const Digraph&) { |
---|
332 | LEMON_ASSERT(false, "DistMap is not initialized"); |
---|
333 | return 0; // ignore warnings |
---|
334 | } |
---|
335 | }; |
---|
336 | |
---|
337 | /// \brief \ref named-templ-param "Named parameter" for setting |
---|
338 | /// \c DistMap type. |
---|
339 | /// |
---|
340 | /// \ref named-templ-param "Named parameter" for setting |
---|
341 | /// \c DistMap type. |
---|
342 | /// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
---|
343 | template <class T> |
---|
344 | struct SetDistMap |
---|
345 | : public BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > { |
---|
346 | typedef BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > Create; |
---|
347 | }; |
---|
348 | |
---|
349 | template <class T> |
---|
350 | struct SetOperationTraitsTraits : public Traits { |
---|
351 | typedef T OperationTraits; |
---|
352 | }; |
---|
353 | |
---|
354 | /// \brief \ref named-templ-param "Named parameter" for setting |
---|
355 | /// \c OperationTraits type. |
---|
356 | /// |
---|
357 | /// \ref named-templ-param "Named parameter" for setting |
---|
358 | /// \c OperationTraits type. |
---|
359 | /// For more information, see \ref BellmanFordDefaultOperationTraits. |
---|
360 | template <class T> |
---|
361 | struct SetOperationTraits |
---|
362 | : public BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > { |
---|
363 | typedef BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > |
---|
364 | Create; |
---|
365 | }; |
---|
366 | |
---|
367 | ///@} |
---|
368 | |
---|
369 | protected: |
---|
370 | |
---|
371 | BellmanFord() {} |
---|
372 | |
---|
373 | public: |
---|
374 | |
---|
375 | /// \brief Constructor. |
---|
376 | /// |
---|
377 | /// Constructor. |
---|
378 | /// \param g The digraph the algorithm runs on. |
---|
379 | /// \param length The length map used by the algorithm. |
---|
380 | BellmanFord(const Digraph& g, const LengthMap& length) : |
---|
381 | _gr(&g), _length(&length), |
---|
382 | _pred(0), _local_pred(false), |
---|
383 | _dist(0), _local_dist(false), _mask(0) {} |
---|
384 | |
---|
385 | ///Destructor. |
---|
386 | ~BellmanFord() { |
---|
387 | if(_local_pred) delete _pred; |
---|
388 | if(_local_dist) delete _dist; |
---|
389 | if(_mask) delete _mask; |
---|
390 | } |
---|
391 | |
---|
392 | /// \brief Sets the length map. |
---|
393 | /// |
---|
394 | /// Sets the length map. |
---|
395 | /// \return <tt>(*this)</tt> |
---|
396 | BellmanFord &lengthMap(const LengthMap &map) { |
---|
397 | _length = ↦ |
---|
398 | return *this; |
---|
399 | } |
---|
400 | |
---|
401 | /// \brief Sets the map that stores the predecessor arcs. |
---|
402 | /// |
---|
403 | /// Sets the map that stores the predecessor arcs. |
---|
404 | /// If you don't use this function before calling \ref run() |
---|
405 | /// or \ref init(), an instance will be allocated automatically. |
---|
406 | /// The destructor deallocates this automatically allocated map, |
---|
407 | /// of course. |
---|
408 | /// \return <tt>(*this)</tt> |
---|
409 | BellmanFord &predMap(PredMap &map) { |
---|
410 | if(_local_pred) { |
---|
411 | delete _pred; |
---|
412 | _local_pred=false; |
---|
413 | } |
---|
414 | _pred = ↦ |
---|
415 | return *this; |
---|
416 | } |
---|
417 | |
---|
418 | /// \brief Sets the map that stores the distances of the nodes. |
---|
419 | /// |
---|
420 | /// Sets the map that stores the distances of the nodes calculated |
---|
421 | /// by the algorithm. |
---|
422 | /// If you don't use this function before calling \ref run() |
---|
423 | /// or \ref init(), an instance will be allocated automatically. |
---|
424 | /// The destructor deallocates this automatically allocated map, |
---|
425 | /// of course. |
---|
426 | /// \return <tt>(*this)</tt> |
---|
427 | BellmanFord &distMap(DistMap &map) { |
---|
428 | if(_local_dist) { |
---|
429 | delete _dist; |
---|
430 | _local_dist=false; |
---|
431 | } |
---|
432 | _dist = ↦ |
---|
433 | return *this; |
---|
434 | } |
---|
435 | |
---|
436 | /// \name Execution Control |
---|
437 | /// The simplest way to execute the Bellman-Ford algorithm is to use |
---|
438 | /// one of the member functions called \ref run().\n |
---|
439 | /// If you need better control on the execution, you have to call |
---|
440 | /// \ref init() first, then you can add several source nodes |
---|
441 | /// with \ref addSource(). Finally the actual path computation can be |
---|
442 | /// performed with \ref start(), \ref checkedStart() or |
---|
443 | /// \ref limitedStart(). |
---|
444 | |
---|
445 | ///@{ |
---|
446 | |
---|
447 | /// \brief Initializes the internal data structures. |
---|
448 | /// |
---|
449 | /// Initializes the internal data structures. The optional parameter |
---|
450 | /// is the initial distance of each node. |
---|
451 | void init(const Value value = OperationTraits::infinity()) { |
---|
452 | create_maps(); |
---|
453 | for (NodeIt it(*_gr); it != INVALID; ++it) { |
---|
454 | _pred->set(it, INVALID); |
---|
455 | _dist->set(it, value); |
---|
456 | } |
---|
457 | _process.clear(); |
---|
458 | if (OperationTraits::less(value, OperationTraits::infinity())) { |
---|
459 | for (NodeIt it(*_gr); it != INVALID; ++it) { |
---|
460 | _process.push_back(it); |
---|
461 | _mask->set(it, true); |
---|
462 | } |
---|
463 | } else { |
---|
464 | for (NodeIt it(*_gr); it != INVALID; ++it) { |
---|
465 | _mask->set(it, false); |
---|
466 | } |
---|
467 | } |
---|
468 | } |
---|
469 | |
---|
470 | /// \brief Adds a new source node. |
---|
471 | /// |
---|
472 | /// This function adds a new source node. The optional second parameter |
---|
473 | /// is the initial distance of the node. |
---|
474 | void addSource(Node source, Value dst = OperationTraits::zero()) { |
---|
475 | _dist->set(source, dst); |
---|
476 | if (!(*_mask)[source]) { |
---|
477 | _process.push_back(source); |
---|
478 | _mask->set(source, true); |
---|
479 | } |
---|
480 | } |
---|
481 | |
---|
482 | /// \brief Executes one round from the Bellman-Ford algorithm. |
---|
483 | /// |
---|
484 | /// If the algoritm calculated the distances in the previous round |
---|
485 | /// exactly for the paths of at most \c k arcs, then this function |
---|
486 | /// will calculate the distances exactly for the paths of at most |
---|
487 | /// <tt>k+1</tt> arcs. Performing \c k iterations using this function |
---|
488 | /// calculates the shortest path distances exactly for the paths |
---|
489 | /// consisting of at most \c k arcs. |
---|
490 | /// |
---|
491 | /// \warning The paths with limited arc number cannot be retrieved |
---|
492 | /// easily with \ref path() or \ref predArc() functions. If you also |
---|
493 | /// need the shortest paths and not only the distances, you should |
---|
494 | /// store the \ref predMap() "predecessor map" after each iteration |
---|
495 | /// and build the path manually. |
---|
496 | /// |
---|
497 | /// \return \c true when the algorithm have not found more shorter |
---|
498 | /// paths. |
---|
499 | /// |
---|
500 | /// \see ActiveIt |
---|
501 | bool processNextRound() { |
---|
502 | for (int i = 0; i < int(_process.size()); ++i) { |
---|
503 | _mask->set(_process[i], false); |
---|
504 | } |
---|
505 | std::vector<Node> nextProcess; |
---|
506 | std::vector<Value> values(_process.size()); |
---|
507 | for (int i = 0; i < int(_process.size()); ++i) { |
---|
508 | values[i] = (*_dist)[_process[i]]; |
---|
509 | } |
---|
510 | for (int i = 0; i < int(_process.size()); ++i) { |
---|
511 | for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) { |
---|
512 | Node target = _gr->target(it); |
---|
513 | Value relaxed = OperationTraits::plus(values[i], (*_length)[it]); |
---|
514 | if (OperationTraits::less(relaxed, (*_dist)[target])) { |
---|
515 | _pred->set(target, it); |
---|
516 | _dist->set(target, relaxed); |
---|
517 | if (!(*_mask)[target]) { |
---|
518 | _mask->set(target, true); |
---|
519 | nextProcess.push_back(target); |
---|
520 | } |
---|
521 | } |
---|
522 | } |
---|
523 | } |
---|
524 | _process.swap(nextProcess); |
---|
525 | return _process.empty(); |
---|
526 | } |
---|
527 | |
---|
528 | /// \brief Executes one weak round from the Bellman-Ford algorithm. |
---|
529 | /// |
---|
530 | /// If the algorithm calculated the distances in the previous round |
---|
531 | /// at least for the paths of at most \c k arcs, then this function |
---|
532 | /// will calculate the distances at least for the paths of at most |
---|
533 | /// <tt>k+1</tt> arcs. |
---|
534 | /// This function does not make it possible to calculate the shortest |
---|
535 | /// path distances exactly for paths consisting of at most \c k arcs, |
---|
536 | /// this is why it is called weak round. |
---|
537 | /// |
---|
538 | /// \return \c true when the algorithm have not found more shorter |
---|
539 | /// paths. |
---|
540 | /// |
---|
541 | /// \see ActiveIt |
---|
542 | bool processNextWeakRound() { |
---|
543 | for (int i = 0; i < int(_process.size()); ++i) { |
---|
544 | _mask->set(_process[i], false); |
---|
545 | } |
---|
546 | std::vector<Node> nextProcess; |
---|
547 | for (int i = 0; i < int(_process.size()); ++i) { |
---|
548 | for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) { |
---|
549 | Node target = _gr->target(it); |
---|
550 | Value relaxed = |
---|
551 | OperationTraits::plus((*_dist)[_process[i]], (*_length)[it]); |
---|
552 | if (OperationTraits::less(relaxed, (*_dist)[target])) { |
---|
553 | _pred->set(target, it); |
---|
554 | _dist->set(target, relaxed); |
---|
555 | if (!(*_mask)[target]) { |
---|
556 | _mask->set(target, true); |
---|
557 | nextProcess.push_back(target); |
---|
558 | } |
---|
559 | } |
---|
560 | } |
---|
561 | } |
---|
562 | _process.swap(nextProcess); |
---|
563 | return _process.empty(); |
---|
564 | } |
---|
565 | |
---|
566 | /// \brief Executes the algorithm. |
---|
567 | /// |
---|
568 | /// Executes the algorithm. |
---|
569 | /// |
---|
570 | /// This method runs the Bellman-Ford algorithm from the root node(s) |
---|
571 | /// in order to compute the shortest path to each node. |
---|
572 | /// |
---|
573 | /// The algorithm computes |
---|
574 | /// - the shortest path tree (forest), |
---|
575 | /// - the distance of each node from the root(s). |
---|
576 | /// |
---|
577 | /// \pre init() must be called and at least one root node should be |
---|
578 | /// added with addSource() before using this function. |
---|
579 | void start() { |
---|
580 | int num = countNodes(*_gr) - 1; |
---|
581 | for (int i = 0; i < num; ++i) { |
---|
582 | if (processNextWeakRound()) break; |
---|
583 | } |
---|
584 | } |
---|
585 | |
---|
586 | /// \brief Executes the algorithm and checks the negative cycles. |
---|
587 | /// |
---|
588 | /// Executes the algorithm and checks the negative cycles. |
---|
589 | /// |
---|
590 | /// This method runs the Bellman-Ford algorithm from the root node(s) |
---|
591 | /// in order to compute the shortest path to each node and also checks |
---|
592 | /// if the digraph contains cycles with negative total length. |
---|
593 | /// |
---|
594 | /// The algorithm computes |
---|
595 | /// - the shortest path tree (forest), |
---|
596 | /// - the distance of each node from the root(s). |
---|
597 | /// |
---|
598 | /// \return \c false if there is a negative cycle in the digraph. |
---|
599 | /// |
---|
600 | /// \pre init() must be called and at least one root node should be |
---|
601 | /// added with addSource() before using this function. |
---|
602 | bool checkedStart() { |
---|
603 | int num = countNodes(*_gr); |
---|
604 | for (int i = 0; i < num; ++i) { |
---|
605 | if (processNextWeakRound()) return true; |
---|
606 | } |
---|
607 | return _process.empty(); |
---|
608 | } |
---|
609 | |
---|
610 | /// \brief Executes the algorithm with arc number limit. |
---|
611 | /// |
---|
612 | /// Executes the algorithm with arc number limit. |
---|
613 | /// |
---|
614 | /// This method runs the Bellman-Ford algorithm from the root node(s) |
---|
615 | /// in order to compute the shortest path distance for each node |
---|
616 | /// using only the paths consisting of at most \c num arcs. |
---|
617 | /// |
---|
618 | /// The algorithm computes |
---|
619 | /// - the limited distance of each node from the root(s), |
---|
620 | /// - the predecessor arc for each node. |
---|
621 | /// |
---|
622 | /// \warning The paths with limited arc number cannot be retrieved |
---|
623 | /// easily with \ref path() or \ref predArc() functions. If you also |
---|
624 | /// need the shortest paths and not only the distances, you should |
---|
625 | /// store the \ref predMap() "predecessor map" after each iteration |
---|
626 | /// and build the path manually. |
---|
627 | /// |
---|
628 | /// \pre init() must be called and at least one root node should be |
---|
629 | /// added with addSource() before using this function. |
---|
630 | void limitedStart(int num) { |
---|
631 | for (int i = 0; i < num; ++i) { |
---|
632 | if (processNextRound()) break; |
---|
633 | } |
---|
634 | } |
---|
635 | |
---|
636 | /// \brief Runs the algorithm from the given root node. |
---|
637 | /// |
---|
638 | /// This method runs the Bellman-Ford algorithm from the given root |
---|
639 | /// node \c s in order to compute the shortest path to each node. |
---|
640 | /// |
---|
641 | /// The algorithm computes |
---|
642 | /// - the shortest path tree (forest), |
---|
643 | /// - the distance of each node from the root(s). |
---|
644 | /// |
---|
645 | /// \note bf.run(s) is just a shortcut of the following code. |
---|
646 | /// \code |
---|
647 | /// bf.init(); |
---|
648 | /// bf.addSource(s); |
---|
649 | /// bf.start(); |
---|
650 | /// \endcode |
---|
651 | void run(Node s) { |
---|
652 | init(); |
---|
653 | addSource(s); |
---|
654 | start(); |
---|
655 | } |
---|
656 | |
---|
657 | /// \brief Runs the algorithm from the given root node with arc |
---|
658 | /// number limit. |
---|
659 | /// |
---|
660 | /// This method runs the Bellman-Ford algorithm from the given root |
---|
661 | /// node \c s in order to compute the shortest path distance for each |
---|
662 | /// node using only the paths consisting of at most \c num arcs. |
---|
663 | /// |
---|
664 | /// The algorithm computes |
---|
665 | /// - the limited distance of each node from the root(s), |
---|
666 | /// - the predecessor arc for each node. |
---|
667 | /// |
---|
668 | /// \warning The paths with limited arc number cannot be retrieved |
---|
669 | /// easily with \ref path() or \ref predArc() functions. If you also |
---|
670 | /// need the shortest paths and not only the distances, you should |
---|
671 | /// store the \ref predMap() "predecessor map" after each iteration |
---|
672 | /// and build the path manually. |
---|
673 | /// |
---|
674 | /// \note bf.run(s, num) is just a shortcut of the following code. |
---|
675 | /// \code |
---|
676 | /// bf.init(); |
---|
677 | /// bf.addSource(s); |
---|
678 | /// bf.limitedStart(num); |
---|
679 | /// \endcode |
---|
680 | void run(Node s, int num) { |
---|
681 | init(); |
---|
682 | addSource(s); |
---|
683 | limitedStart(num); |
---|
684 | } |
---|
685 | |
---|
686 | ///@} |
---|
687 | |
---|
688 | /// \brief LEMON iterator for getting the active nodes. |
---|
689 | /// |
---|
690 | /// This class provides a common style LEMON iterator that traverses |
---|
691 | /// the active nodes of the Bellman-Ford algorithm after the last |
---|
692 | /// phase. These nodes should be checked in the next phase to |
---|
693 | /// find augmenting arcs outgoing from them. |
---|
694 | class ActiveIt { |
---|
695 | public: |
---|
696 | |
---|
697 | /// \brief Constructor. |
---|
698 | /// |
---|
699 | /// Constructor for getting the active nodes of the given BellmanFord |
---|
700 | /// instance. |
---|
701 | ActiveIt(const BellmanFord& algorithm) : _algorithm(&algorithm) |
---|
702 | { |
---|
703 | _index = _algorithm->_process.size() - 1; |
---|
704 | } |
---|
705 | |
---|
706 | /// \brief Invalid constructor. |
---|
707 | /// |
---|
708 | /// Invalid constructor. |
---|
709 | ActiveIt(Invalid) : _algorithm(0), _index(-1) {} |
---|
710 | |
---|
711 | /// \brief Conversion to \c Node. |
---|
712 | /// |
---|
713 | /// Conversion to \c Node. |
---|
714 | operator Node() const { |
---|
715 | return _index >= 0 ? _algorithm->_process[_index] : INVALID; |
---|
716 | } |
---|
717 | |
---|
718 | /// \brief Increment operator. |
---|
719 | /// |
---|
720 | /// Increment operator. |
---|
721 | ActiveIt& operator++() { |
---|
722 | --_index; |
---|
723 | return *this; |
---|
724 | } |
---|
725 | |
---|
726 | bool operator==(const ActiveIt& it) const { |
---|
727 | return static_cast<Node>(*this) == static_cast<Node>(it); |
---|
728 | } |
---|
729 | bool operator!=(const ActiveIt& it) const { |
---|
730 | return static_cast<Node>(*this) != static_cast<Node>(it); |
---|
731 | } |
---|
732 | bool operator<(const ActiveIt& it) const { |
---|
733 | return static_cast<Node>(*this) < static_cast<Node>(it); |
---|
734 | } |
---|
735 | |
---|
736 | private: |
---|
737 | const BellmanFord* _algorithm; |
---|
738 | int _index; |
---|
739 | }; |
---|
740 | |
---|
741 | /// \name Query Functions |
---|
742 | /// The result of the Bellman-Ford algorithm can be obtained using these |
---|
743 | /// functions.\n |
---|
744 | /// Either \ref run() or \ref init() should be called before using them. |
---|
745 | |
---|
746 | ///@{ |
---|
747 | |
---|
748 | /// \brief The shortest path to the given node. |
---|
749 | /// |
---|
750 | /// Gives back the shortest path to the given node from the root(s). |
---|
751 | /// |
---|
752 | /// \warning \c t should be reached from the root(s). |
---|
753 | /// |
---|
754 | /// \pre Either \ref run() or \ref init() must be called before |
---|
755 | /// using this function. |
---|
756 | Path path(Node t) const |
---|
757 | { |
---|
758 | return Path(*_gr, *_pred, t); |
---|
759 | } |
---|
760 | |
---|
761 | /// \brief The distance of the given node from the root(s). |
---|
762 | /// |
---|
763 | /// Returns the distance of the given node from the root(s). |
---|
764 | /// |
---|
765 | /// \warning If node \c v is not reached from the root(s), then |
---|
766 | /// the return value of this function is undefined. |
---|
767 | /// |
---|
768 | /// \pre Either \ref run() or \ref init() must be called before |
---|
769 | /// using this function. |
---|
770 | Value dist(Node v) const { return (*_dist)[v]; } |
---|
771 | |
---|
772 | /// \brief Returns the 'previous arc' of the shortest path tree for |
---|
773 | /// the given node. |
---|
774 | /// |
---|
775 | /// This function returns the 'previous arc' of the shortest path |
---|
776 | /// tree for node \c v, i.e. it returns the last arc of a |
---|
777 | /// shortest path from a root to \c v. It is \c INVALID if \c v |
---|
778 | /// is not reached from the root(s) or if \c v is a root. |
---|
779 | /// |
---|
780 | /// The shortest path tree used here is equal to the shortest path |
---|
781 | /// tree used in \ref predNode() and \ref predMap(). |
---|
782 | /// |
---|
783 | /// \pre Either \ref run() or \ref init() must be called before |
---|
784 | /// using this function. |
---|
785 | Arc predArc(Node v) const { return (*_pred)[v]; } |
---|
786 | |
---|
787 | /// \brief Returns the 'previous node' of the shortest path tree for |
---|
788 | /// the given node. |
---|
789 | /// |
---|
790 | /// This function returns the 'previous node' of the shortest path |
---|
791 | /// tree for node \c v, i.e. it returns the last but one node of |
---|
792 | /// a shortest path from a root to \c v. It is \c INVALID if \c v |
---|
793 | /// is not reached from the root(s) or if \c v is a root. |
---|
794 | /// |
---|
795 | /// The shortest path tree used here is equal to the shortest path |
---|
796 | /// tree used in \ref predArc() and \ref predMap(). |
---|
797 | /// |
---|
798 | /// \pre Either \ref run() or \ref init() must be called before |
---|
799 | /// using this function. |
---|
800 | Node predNode(Node v) const { |
---|
801 | return (*_pred)[v] == INVALID ? INVALID : _gr->source((*_pred)[v]); |
---|
802 | } |
---|
803 | |
---|
804 | /// \brief Returns a const reference to the node map that stores the |
---|
805 | /// distances of the nodes. |
---|
806 | /// |
---|
807 | /// Returns a const reference to the node map that stores the distances |
---|
808 | /// of the nodes calculated by the algorithm. |
---|
809 | /// |
---|
810 | /// \pre Either \ref run() or \ref init() must be called before |
---|
811 | /// using this function. |
---|
812 | const DistMap &distMap() const { return *_dist;} |
---|
813 | |
---|
814 | /// \brief Returns a const reference to the node map that stores the |
---|
815 | /// predecessor arcs. |
---|
816 | /// |
---|
817 | /// Returns a const reference to the node map that stores the predecessor |
---|
818 | /// arcs, which form the shortest path tree (forest). |
---|
819 | /// |
---|
820 | /// \pre Either \ref run() or \ref init() must be called before |
---|
821 | /// using this function. |
---|
822 | const PredMap &predMap() const { return *_pred; } |
---|
823 | |
---|
824 | /// \brief Checks if a node is reached from the root(s). |
---|
825 | /// |
---|
826 | /// Returns \c true if \c v is reached from the root(s). |
---|
827 | /// |
---|
828 | /// \pre Either \ref run() or \ref init() must be called before |
---|
829 | /// using this function. |
---|
830 | bool reached(Node v) const { |
---|
831 | return (*_dist)[v] != OperationTraits::infinity(); |
---|
832 | } |
---|
833 | |
---|
834 | /// \brief Gives back a negative cycle. |
---|
835 | /// |
---|
836 | /// This function gives back a directed cycle with negative total |
---|
837 | /// length if the algorithm has already found one. |
---|
838 | /// Otherwise it gives back an empty path. |
---|
839 | lemon::Path<Digraph> negativeCycle() const { |
---|
840 | typename Digraph::template NodeMap<int> state(*_gr, -1); |
---|
841 | lemon::Path<Digraph> cycle; |
---|
842 | for (int i = 0; i < int(_process.size()); ++i) { |
---|
843 | if (state[_process[i]] != -1) continue; |
---|
844 | for (Node v = _process[i]; (*_pred)[v] != INVALID; |
---|
845 | v = _gr->source((*_pred)[v])) { |
---|
846 | if (state[v] == i) { |
---|
847 | cycle.addFront((*_pred)[v]); |
---|
848 | for (Node u = _gr->source((*_pred)[v]); u != v; |
---|
849 | u = _gr->source((*_pred)[u])) { |
---|
850 | cycle.addFront((*_pred)[u]); |
---|
851 | } |
---|
852 | return cycle; |
---|
853 | } |
---|
854 | else if (state[v] >= 0) { |
---|
855 | break; |
---|
856 | } |
---|
857 | state[v] = i; |
---|
858 | } |
---|
859 | } |
---|
860 | return cycle; |
---|
861 | } |
---|
862 | |
---|
863 | ///@} |
---|
864 | }; |
---|
865 | |
---|
866 | /// \brief Default traits class of bellmanFord() function. |
---|
867 | /// |
---|
868 | /// Default traits class of bellmanFord() function. |
---|
869 | /// \tparam GR The type of the digraph. |
---|
870 | /// \tparam LEN The type of the length map. |
---|
871 | template <typename GR, typename LEN> |
---|
872 | struct BellmanFordWizardDefaultTraits { |
---|
873 | /// The type of the digraph the algorithm runs on. |
---|
874 | typedef GR Digraph; |
---|
875 | |
---|
876 | /// \brief The type of the map that stores the arc lengths. |
---|
877 | /// |
---|
878 | /// The type of the map that stores the arc lengths. |
---|
879 | /// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
---|
880 | typedef LEN LengthMap; |
---|
881 | |
---|
882 | /// The type of the arc lengths. |
---|
883 | typedef typename LEN::Value Value; |
---|
884 | |
---|
885 | /// \brief Operation traits for Bellman-Ford algorithm. |
---|
886 | /// |
---|
887 | /// It defines the used operations and the infinity value for the |
---|
888 | /// given \c Value type. |
---|
889 | /// \see BellmanFordDefaultOperationTraits, |
---|
890 | /// BellmanFordToleranceOperationTraits |
---|
891 | typedef BellmanFordDefaultOperationTraits<Value> OperationTraits; |
---|
892 | |
---|
893 | /// \brief The type of the map that stores the last |
---|
894 | /// arcs of the shortest paths. |
---|
895 | /// |
---|
896 | /// The type of the map that stores the last arcs of the shortest paths. |
---|
897 | /// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
---|
898 | typedef typename GR::template NodeMap<typename GR::Arc> PredMap; |
---|
899 | |
---|
900 | /// \brief Instantiates a \c PredMap. |
---|
901 | /// |
---|
902 | /// This function instantiates a \ref PredMap. |
---|
903 | /// \param g is the digraph to which we would like to define the |
---|
904 | /// \ref PredMap. |
---|
905 | static PredMap *createPredMap(const GR &g) { |
---|
906 | return new PredMap(g); |
---|
907 | } |
---|
908 | |
---|
909 | /// \brief The type of the map that stores the distances of the nodes. |
---|
910 | /// |
---|
911 | /// The type of the map that stores the distances of the nodes. |
---|
912 | /// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
---|
913 | typedef typename GR::template NodeMap<Value> DistMap; |
---|
914 | |
---|
915 | /// \brief Instantiates a \c DistMap. |
---|
916 | /// |
---|
917 | /// This function instantiates a \ref DistMap. |
---|
918 | /// \param g is the digraph to which we would like to define the |
---|
919 | /// \ref DistMap. |
---|
920 | static DistMap *createDistMap(const GR &g) { |
---|
921 | return new DistMap(g); |
---|
922 | } |
---|
923 | |
---|
924 | ///The type of the shortest paths. |
---|
925 | |
---|
926 | ///The type of the shortest paths. |
---|
927 | ///It must meet the \ref concepts::Path "Path" concept. |
---|
928 | typedef lemon::Path<Digraph> Path; |
---|
929 | }; |
---|
930 | |
---|
931 | /// \brief Default traits class used by BellmanFordWizard. |
---|
932 | /// |
---|
933 | /// Default traits class used by BellmanFordWizard. |
---|
934 | /// \tparam GR The type of the digraph. |
---|
935 | /// \tparam LEN The type of the length map. |
---|
936 | template <typename GR, typename LEN> |
---|
937 | class BellmanFordWizardBase |
---|
938 | : public BellmanFordWizardDefaultTraits<GR, LEN> { |
---|
939 | |
---|
940 | typedef BellmanFordWizardDefaultTraits<GR, LEN> Base; |
---|
941 | protected: |
---|
942 | // Type of the nodes in the digraph. |
---|
943 | typedef typename Base::Digraph::Node Node; |
---|
944 | |
---|
945 | // Pointer to the underlying digraph. |
---|
946 | void *_graph; |
---|
947 | // Pointer to the length map |
---|
948 | void *_length; |
---|
949 | // Pointer to the map of predecessors arcs. |
---|
950 | void *_pred; |
---|
951 | // Pointer to the map of distances. |
---|
952 | void *_dist; |
---|
953 | //Pointer to the shortest path to the target node. |
---|
954 | void *_path; |
---|
955 | //Pointer to the distance of the target node. |
---|
956 | void *_di; |
---|
957 | |
---|
958 | public: |
---|
959 | /// Constructor. |
---|
960 | |
---|
961 | /// This constructor does not require parameters, it initiates |
---|
962 | /// all of the attributes to default values \c 0. |
---|
963 | BellmanFordWizardBase() : |
---|
964 | _graph(0), _length(0), _pred(0), _dist(0), _path(0), _di(0) {} |
---|
965 | |
---|
966 | /// Constructor. |
---|
967 | |
---|
968 | /// This constructor requires two parameters, |
---|
969 | /// others are initiated to \c 0. |
---|
970 | /// \param gr The digraph the algorithm runs on. |
---|
971 | /// \param len The length map. |
---|
972 | BellmanFordWizardBase(const GR& gr, |
---|
973 | const LEN& len) : |
---|
974 | _graph(reinterpret_cast<void*>(const_cast<GR*>(&gr))), |
---|
975 | _length(reinterpret_cast<void*>(const_cast<LEN*>(&len))), |
---|
976 | _pred(0), _dist(0), _path(0), _di(0) {} |
---|
977 | |
---|
978 | }; |
---|
979 | |
---|
980 | /// \brief Auxiliary class for the function-type interface of the |
---|
981 | /// \ref BellmanFord "Bellman-Ford" algorithm. |
---|
982 | /// |
---|
983 | /// This auxiliary class is created to implement the |
---|
984 | /// \ref bellmanFord() "function-type interface" of the |
---|
985 | /// \ref BellmanFord "Bellman-Ford" algorithm. |
---|
986 | /// It does not have own \ref run() method, it uses the |
---|
987 | /// functions and features of the plain \ref BellmanFord. |
---|
988 | /// |
---|
989 | /// This class should only be used through the \ref bellmanFord() |
---|
990 | /// function, which makes it easier to use the algorithm. |
---|
991 | /// |
---|
992 | /// \tparam TR The traits class that defines various types used by the |
---|
993 | /// algorithm. |
---|
994 | template<class TR> |
---|
995 | class BellmanFordWizard : public TR { |
---|
996 | typedef TR Base; |
---|
997 | |
---|
998 | typedef typename TR::Digraph Digraph; |
---|
999 | |
---|
1000 | typedef typename Digraph::Node Node; |
---|
1001 | typedef typename Digraph::NodeIt NodeIt; |
---|
1002 | typedef typename Digraph::Arc Arc; |
---|
1003 | typedef typename Digraph::OutArcIt ArcIt; |
---|
1004 | |
---|
1005 | typedef typename TR::LengthMap LengthMap; |
---|
1006 | typedef typename LengthMap::Value Value; |
---|
1007 | typedef typename TR::PredMap PredMap; |
---|
1008 | typedef typename TR::DistMap DistMap; |
---|
1009 | typedef typename TR::Path Path; |
---|
1010 | |
---|
1011 | public: |
---|
1012 | /// Constructor. |
---|
1013 | BellmanFordWizard() : TR() {} |
---|
1014 | |
---|
1015 | /// \brief Constructor that requires parameters. |
---|
1016 | /// |
---|
1017 | /// Constructor that requires parameters. |
---|
1018 | /// These parameters will be the default values for the traits class. |
---|
1019 | /// \param gr The digraph the algorithm runs on. |
---|
1020 | /// \param len The length map. |
---|
1021 | BellmanFordWizard(const Digraph& gr, const LengthMap& len) |
---|
1022 | : TR(gr, len) {} |
---|
1023 | |
---|
1024 | /// \brief Copy constructor |
---|
1025 | BellmanFordWizard(const TR &b) : TR(b) {} |
---|
1026 | |
---|
1027 | ~BellmanFordWizard() {} |
---|
1028 | |
---|
1029 | /// \brief Runs the Bellman-Ford algorithm from the given source node. |
---|
1030 | /// |
---|
1031 | /// This method runs the Bellman-Ford algorithm from the given source |
---|
1032 | /// node in order to compute the shortest path to each node. |
---|
1033 | void run(Node s) { |
---|
1034 | BellmanFord<Digraph,LengthMap,TR> |
---|
1035 | bf(*reinterpret_cast<const Digraph*>(Base::_graph), |
---|
1036 | *reinterpret_cast<const LengthMap*>(Base::_length)); |
---|
1037 | if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
---|
1038 | if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
---|
1039 | bf.run(s); |
---|
1040 | } |
---|
1041 | |
---|
1042 | /// \brief Runs the Bellman-Ford algorithm to find the shortest path |
---|
1043 | /// between \c s and \c t. |
---|
1044 | /// |
---|
1045 | /// This method runs the Bellman-Ford algorithm from node \c s |
---|
1046 | /// in order to compute the shortest path to node \c t. |
---|
1047 | /// Actually, it computes the shortest path to each node, but using |
---|
1048 | /// this function you can retrieve the distance and the shortest path |
---|
1049 | /// for a single target node easier. |
---|
1050 | /// |
---|
1051 | /// \return \c true if \c t is reachable form \c s. |
---|
1052 | bool run(Node s, Node t) { |
---|
1053 | BellmanFord<Digraph,LengthMap,TR> |
---|
1054 | bf(*reinterpret_cast<const Digraph*>(Base::_graph), |
---|
1055 | *reinterpret_cast<const LengthMap*>(Base::_length)); |
---|
1056 | if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
---|
1057 | if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
---|
1058 | bf.run(s); |
---|
1059 | if (Base::_path) *reinterpret_cast<Path*>(Base::_path) = bf.path(t); |
---|
1060 | if (Base::_di) *reinterpret_cast<Value*>(Base::_di) = bf.dist(t); |
---|
1061 | return bf.reached(t); |
---|
1062 | } |
---|
1063 | |
---|
1064 | template<class T> |
---|
1065 | struct SetPredMapBase : public Base { |
---|
1066 | typedef T PredMap; |
---|
1067 | static PredMap *createPredMap(const Digraph &) { return 0; }; |
---|
1068 | SetPredMapBase(const TR &b) : TR(b) {} |
---|
1069 | }; |
---|
1070 | |
---|
1071 | /// \brief \ref named-templ-param "Named parameter" for setting |
---|
1072 | /// the predecessor map. |
---|
1073 | /// |
---|
1074 | /// \ref named-templ-param "Named parameter" for setting |
---|
1075 | /// the map that stores the predecessor arcs of the nodes. |
---|
1076 | template<class T> |
---|
1077 | BellmanFordWizard<SetPredMapBase<T> > predMap(const T &t) { |
---|
1078 | Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
---|
1079 | return BellmanFordWizard<SetPredMapBase<T> >(*this); |
---|
1080 | } |
---|
1081 | |
---|
1082 | template<class T> |
---|
1083 | struct SetDistMapBase : public Base { |
---|
1084 | typedef T DistMap; |
---|
1085 | static DistMap *createDistMap(const Digraph &) { return 0; }; |
---|
1086 | SetDistMapBase(const TR &b) : TR(b) {} |
---|
1087 | }; |
---|
1088 | |
---|
1089 | /// \brief \ref named-templ-param "Named parameter" for setting |
---|
1090 | /// the distance map. |
---|
1091 | /// |
---|
1092 | /// \ref named-templ-param "Named parameter" for setting |
---|
1093 | /// the map that stores the distances of the nodes calculated |
---|
1094 | /// by the algorithm. |
---|
1095 | template<class T> |
---|
1096 | BellmanFordWizard<SetDistMapBase<T> > distMap(const T &t) { |
---|
1097 | Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
---|
1098 | return BellmanFordWizard<SetDistMapBase<T> >(*this); |
---|
1099 | } |
---|
1100 | |
---|
1101 | template<class T> |
---|
1102 | struct SetPathBase : public Base { |
---|
1103 | typedef T Path; |
---|
1104 | SetPathBase(const TR &b) : TR(b) {} |
---|
1105 | }; |
---|
1106 | |
---|
1107 | /// \brief \ref named-func-param "Named parameter" for getting |
---|
1108 | /// the shortest path to the target node. |
---|
1109 | /// |
---|
1110 | /// \ref named-func-param "Named parameter" for getting |
---|
1111 | /// the shortest path to the target node. |
---|
1112 | template<class T> |
---|
1113 | BellmanFordWizard<SetPathBase<T> > path(const T &t) |
---|
1114 | { |
---|
1115 | Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t)); |
---|
1116 | return BellmanFordWizard<SetPathBase<T> >(*this); |
---|
1117 | } |
---|
1118 | |
---|
1119 | /// \brief \ref named-func-param "Named parameter" for getting |
---|
1120 | /// the distance of the target node. |
---|
1121 | /// |
---|
1122 | /// \ref named-func-param "Named parameter" for getting |
---|
1123 | /// the distance of the target node. |
---|
1124 | BellmanFordWizard dist(const Value &d) |
---|
1125 | { |
---|
1126 | Base::_di=reinterpret_cast<void*>(const_cast<Value*>(&d)); |
---|
1127 | return *this; |
---|
1128 | } |
---|
1129 | |
---|
1130 | }; |
---|
1131 | |
---|
1132 | /// \brief Function type interface for the \ref BellmanFord "Bellman-Ford" |
---|
1133 | /// algorithm. |
---|
1134 | /// |
---|
1135 | /// \ingroup shortest_path |
---|
1136 | /// Function type interface for the \ref BellmanFord "Bellman-Ford" |
---|
1137 | /// algorithm. |
---|
1138 | /// |
---|
1139 | /// This function also has several \ref named-templ-func-param |
---|
1140 | /// "named parameters", they are declared as the members of class |
---|
1141 | /// \ref BellmanFordWizard. |
---|
1142 | /// The following examples show how to use these parameters. |
---|
1143 | /// \code |
---|
1144 | /// // Compute shortest path from node s to each node |
---|
1145 | /// bellmanFord(g,length).predMap(preds).distMap(dists).run(s); |
---|
1146 | /// |
---|
1147 | /// // Compute shortest path from s to t |
---|
1148 | /// bool reached = bellmanFord(g,length).path(p).dist(d).run(s,t); |
---|
1149 | /// \endcode |
---|
1150 | /// \warning Don't forget to put the \ref BellmanFordWizard::run() "run()" |
---|
1151 | /// to the end of the parameter list. |
---|
1152 | /// \sa BellmanFordWizard |
---|
1153 | /// \sa BellmanFord |
---|
1154 | template<typename GR, typename LEN> |
---|
1155 | BellmanFordWizard<BellmanFordWizardBase<GR,LEN> > |
---|
1156 | bellmanFord(const GR& digraph, |
---|
1157 | const LEN& length) |
---|
1158 | { |
---|
1159 | return BellmanFordWizard<BellmanFordWizardBase<GR,LEN> >(digraph, length); |
---|
1160 | } |
---|
1161 | |
---|
1162 | } //END OF NAMESPACE LEMON |
---|
1163 | |
---|
1164 | #endif |
---|
1165 | |
---|