/* -*- mode: C++; indent-tabs-mode: nil; -*- * * This file is a part of LEMON, a generic C++ optimization library. * * Copyright (C) 2003-2010 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport * (Egervary Research Group on Combinatorial Optimization, EGRES). * * Permission to use, modify and distribute this software is granted * provided that this copyright notice appears in all copies. For * precise terms see the accompanying LICENSE file. * * This software is provided "AS IS" with no warranty of any kind, * express or implied, and with no claim as to its suitability for any * purpose. * */ #ifndef LEMON_BITS_ARRAY_MAP_H #define LEMON_BITS_ARRAY_MAP_H #include #include #include #include #include // \ingroup graphbits // \file // \brief Graph map based on the array storage. namespace lemon { // \ingroup graphbits // // \brief Graph map based on the array storage. // // The ArrayMap template class is graph map structure that automatically // updates the map when a key is added to or erased from the graph. // This map uses the allocators to implement the container functionality. // // The template parameters are the Graph, the current Item type and // the Value type of the map. template class ArrayMap : public ItemSetTraits<_Graph, _Item>::ItemNotifier::ObserverBase { public: // The graph type. typedef _Graph GraphType; // The item type. typedef _Item Item; // The reference map tag. typedef True ReferenceMapTag; // The key type of the map. typedef _Item Key; // The value type of the map. typedef _Value Value; // The const reference type of the map. typedef const _Value& ConstReference; // The reference type of the map. typedef _Value& Reference; // The map type. typedef ArrayMap Map; // The notifier type. typedef typename ItemSetTraits<_Graph, _Item>::ItemNotifier Notifier; private: // The MapBase of the Map which imlements the core regisitry function. typedef typename Notifier::ObserverBase Parent; typedef std::allocator Allocator; public: // \brief Graph initialized map constructor. // // Graph initialized map constructor. explicit ArrayMap(const GraphType& graph) { Parent::attach(graph.notifier(Item())); allocate_memory(); Notifier* nf = Parent::notifier(); Item it; for (nf->first(it); it != INVALID; nf->next(it)) { int id = nf->id(it);; allocator.construct(&(values[id]), Value()); } } // \brief Constructor to use default value to initialize the map. // // It constructs a map and initialize all of the the map. ArrayMap(const GraphType& graph, const Value& value) { Parent::attach(graph.notifier(Item())); allocate_memory(); Notifier* nf = Parent::notifier(); Item it; for (nf->first(it); it != INVALID; nf->next(it)) { int id = nf->id(it);; allocator.construct(&(values[id]), value); } } private: // \brief Constructor to copy a map of the same map type. // // Constructor to copy a map of the same map type. ArrayMap(const ArrayMap& copy) : Parent() { if (copy.attached()) { attach(*copy.notifier()); } capacity = copy.capacity; if (capacity == 0) return; values = allocator.allocate(capacity); Notifier* nf = Parent::notifier(); Item it; for (nf->first(it); it != INVALID; nf->next(it)) { int id = nf->id(it);; allocator.construct(&(values[id]), copy.values[id]); } } // \brief Assign operator. // // This operator assigns for each item in the map the // value mapped to the same item in the copied map. // The parameter map should be indiced with the same // itemset because this assign operator does not change // the container of the map. ArrayMap& operator=(const ArrayMap& cmap) { return operator=(cmap); } // \brief Template assign operator. // // The given parameter should conform to the ReadMap // concecpt and could be indiced by the current item set of // the NodeMap. In this case the value for each item // is assigned by the value of the given ReadMap. template ArrayMap& operator=(const CMap& cmap) { checkConcept, CMap>(); const typename Parent::Notifier* nf = Parent::notifier(); Item it; for (nf->first(it); it != INVALID; nf->next(it)) { set(it, cmap[it]); } return *this; } public: // \brief The destructor of the map. // // The destructor of the map. virtual ~ArrayMap() { if (attached()) { clear(); detach(); } } protected: using Parent::attach; using Parent::detach; using Parent::attached; public: // \brief The subscript operator. // // The subscript operator. The map can be subscripted by the // actual keys of the graph. Value& operator[](const Key& key) { int id = Parent::notifier()->id(key); return values[id]; } // \brief The const subscript operator. // // The const subscript operator. The map can be subscripted by the // actual keys of the graph. const Value& operator[](const Key& key) const { int id = Parent::notifier()->id(key); return values[id]; } // \brief Setter function of the map. // // Setter function of the map. Equivalent with map[key] = val. // This is a compatibility feature with the not dereferable maps. void set(const Key& key, const Value& val) { (*this)[key] = val; } protected: // \brief Adds a new key to the map. // // It adds a new key to the map. It is called by the observer notifier // and it overrides the add() member function of the observer base. virtual void add(const Key& key) { Notifier* nf = Parent::notifier(); int id = nf->id(key); if (id >= capacity) { int new_capacity = (capacity == 0 ? 1 : capacity); while (new_capacity <= id) { new_capacity <<= 1; } Value* new_values = allocator.allocate(new_capacity); Item it; for (nf->first(it); it != INVALID; nf->next(it)) { int jd = nf->id(it);; if (id != jd) { allocator.construct(&(new_values[jd]), values[jd]); allocator.destroy(&(values[jd])); } } if (capacity != 0) allocator.deallocate(values, capacity); values = new_values; capacity = new_capacity; } allocator.construct(&(values[id]), Value()); } // \brief Adds more new keys to the map. // // It adds more new keys to the map. It is called by the observer notifier // and it overrides the add() member function of the observer base. virtual void add(const std::vector& keys) { Notifier* nf = Parent::notifier(); int max_id = -1; for (int i = 0; i < int(keys.size()); ++i) { int id = nf->id(keys[i]); if (id > max_id) { max_id = id; } } if (max_id >= capacity) { int new_capacity = (capacity == 0 ? 1 : capacity); while (new_capacity <= max_id) { new_capacity <<= 1; } Value* new_values = allocator.allocate(new_capacity); Item it; for (nf->first(it); it != INVALID; nf->next(it)) { int id = nf->id(it); bool found = false; for (int i = 0; i < int(keys.size()); ++i) { int jd = nf->id(keys[i]); if (id == jd) { found = true; break; } } if (found) continue; allocator.construct(&(new_values[id]), values[id]); allocator.destroy(&(values[id])); } if (capacity != 0) allocator.deallocate(values, capacity); values = new_values; capacity = new_capacity; } for (int i = 0; i < int(keys.size()); ++i) { int id = nf->id(keys[i]); allocator.construct(&(values[id]), Value()); } } // \brief Erase a key from the map. // // Erase a key from the map. It is called by the observer notifier // and it overrides the erase() member function of the observer base. virtual void erase(const Key& key) { int id = Parent::notifier()->id(key); allocator.destroy(&(values[id])); } // \brief Erase more keys from the map. // // Erase more keys from the map. It is called by the observer notifier // and it overrides the erase() member function of the observer base. virtual void erase(const std::vector& keys) { for (int i = 0; i < int(keys.size()); ++i) { int id = Parent::notifier()->id(keys[i]); allocator.destroy(&(values[id])); } } // \brief Builds the map. // // It builds the map. It is called by the observer notifier // and it overrides the build() member function of the observer base. virtual void build() { Notifier* nf = Parent::notifier(); allocate_memory(); Item it; for (nf->first(it); it != INVALID; nf->next(it)) { int id = nf->id(it);; allocator.construct(&(values[id]), Value()); } } // \brief Clear the map. // // It erase all items from the map. It is called by the observer notifier // and it overrides the clear() member function of the observer base. virtual void clear() { Notifier* nf = Parent::notifier(); if (capacity != 0) { Item it; for (nf->first(it); it != INVALID; nf->next(it)) { int id = nf->id(it); allocator.destroy(&(values[id])); } allocator.deallocate(values, capacity); capacity = 0; } } private: void allocate_memory() { int max_id = Parent::notifier()->maxId(); if (max_id == -1) { capacity = 0; values = 0; return; } capacity = 1; while (capacity <= max_id) { capacity <<= 1; } values = allocator.allocate(capacity); } int capacity; Value* values; Allocator allocator; }; } #endif