[209] | 1 | /* -*- mode: C++; indent-tabs-mode: nil; -*- |
---|
[128] | 2 | * |
---|
[209] | 3 | * This file is a part of LEMON, a generic C++ optimization library. |
---|
[128] | 4 | * |
---|
[440] | 5 | * Copyright (C) 2003-2009 |
---|
[128] | 6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
| 7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
---|
| 8 | * |
---|
| 9 | * Permission to use, modify and distribute this software is granted |
---|
| 10 | * provided that this copyright notice appears in all copies. For |
---|
| 11 | * precise terms see the accompanying LICENSE file. |
---|
| 12 | * |
---|
| 13 | * This software is provided "AS IS" with no warranty of any kind, |
---|
| 14 | * express or implied, and with no claim as to its suitability for any |
---|
| 15 | * purpose. |
---|
| 16 | * |
---|
| 17 | */ |
---|
| 18 | |
---|
| 19 | #ifndef LEMON_BEZIER_H |
---|
| 20 | #define LEMON_BEZIER_H |
---|
| 21 | |
---|
[314] | 22 | //\ingroup misc |
---|
| 23 | //\file |
---|
| 24 | //\brief Classes to compute with Bezier curves. |
---|
| 25 | // |
---|
| 26 | //Up to now this file is used internally by \ref graph_to_eps.h |
---|
[128] | 27 | |
---|
| 28 | #include<lemon/dim2.h> |
---|
| 29 | |
---|
| 30 | namespace lemon { |
---|
| 31 | namespace dim2 { |
---|
| 32 | |
---|
| 33 | class BezierBase { |
---|
| 34 | public: |
---|
[184] | 35 | typedef lemon::dim2::Point<double> Point; |
---|
[128] | 36 | protected: |
---|
| 37 | static Point conv(Point x,Point y,double t) {return (1-t)*x+t*y;} |
---|
| 38 | }; |
---|
| 39 | |
---|
| 40 | class Bezier1 : public BezierBase |
---|
| 41 | { |
---|
| 42 | public: |
---|
| 43 | Point p1,p2; |
---|
| 44 | |
---|
| 45 | Bezier1() {} |
---|
| 46 | Bezier1(Point _p1, Point _p2) :p1(_p1), p2(_p2) {} |
---|
[209] | 47 | |
---|
[128] | 48 | Point operator()(double t) const |
---|
| 49 | { |
---|
| 50 | // return conv(conv(p1,p2,t),conv(p2,p3,t),t); |
---|
| 51 | return conv(p1,p2,t); |
---|
| 52 | } |
---|
| 53 | Bezier1 before(double t) const |
---|
| 54 | { |
---|
| 55 | return Bezier1(p1,conv(p1,p2,t)); |
---|
| 56 | } |
---|
[209] | 57 | |
---|
[128] | 58 | Bezier1 after(double t) const |
---|
| 59 | { |
---|
| 60 | return Bezier1(conv(p1,p2,t),p2); |
---|
| 61 | } |
---|
| 62 | |
---|
| 63 | Bezier1 revert() const { return Bezier1(p2,p1);} |
---|
| 64 | Bezier1 operator()(double a,double b) const { return before(b).after(a/b); } |
---|
| 65 | Point grad() const { return p2-p1; } |
---|
| 66 | Point norm() const { return rot90(p2-p1); } |
---|
| 67 | Point grad(double) const { return grad(); } |
---|
| 68 | Point norm(double t) const { return rot90(grad(t)); } |
---|
| 69 | }; |
---|
| 70 | |
---|
| 71 | class Bezier2 : public BezierBase |
---|
| 72 | { |
---|
| 73 | public: |
---|
| 74 | Point p1,p2,p3; |
---|
| 75 | |
---|
| 76 | Bezier2() {} |
---|
| 77 | Bezier2(Point _p1, Point _p2, Point _p3) :p1(_p1), p2(_p2), p3(_p3) {} |
---|
| 78 | Bezier2(const Bezier1 &b) : p1(b.p1), p2(conv(b.p1,b.p2,.5)), p3(b.p2) {} |
---|
| 79 | Point operator()(double t) const |
---|
| 80 | { |
---|
| 81 | // return conv(conv(p1,p2,t),conv(p2,p3,t),t); |
---|
| 82 | return ((1-t)*(1-t))*p1+(2*(1-t)*t)*p2+(t*t)*p3; |
---|
| 83 | } |
---|
| 84 | Bezier2 before(double t) const |
---|
| 85 | { |
---|
| 86 | Point q(conv(p1,p2,t)); |
---|
| 87 | Point r(conv(p2,p3,t)); |
---|
| 88 | return Bezier2(p1,q,conv(q,r,t)); |
---|
| 89 | } |
---|
[209] | 90 | |
---|
[128] | 91 | Bezier2 after(double t) const |
---|
| 92 | { |
---|
| 93 | Point q(conv(p1,p2,t)); |
---|
| 94 | Point r(conv(p2,p3,t)); |
---|
| 95 | return Bezier2(conv(q,r,t),r,p3); |
---|
| 96 | } |
---|
| 97 | Bezier2 revert() const { return Bezier2(p3,p2,p1);} |
---|
| 98 | Bezier2 operator()(double a,double b) const { return before(b).after(a/b); } |
---|
| 99 | Bezier1 grad() const { return Bezier1(2.0*(p2-p1),2.0*(p3-p2)); } |
---|
| 100 | Bezier1 norm() const { return Bezier1(2.0*rot90(p2-p1),2.0*rot90(p3-p2)); } |
---|
| 101 | Point grad(double t) const { return grad()(t); } |
---|
| 102 | Point norm(double t) const { return rot90(grad(t)); } |
---|
| 103 | }; |
---|
| 104 | |
---|
| 105 | class Bezier3 : public BezierBase |
---|
| 106 | { |
---|
| 107 | public: |
---|
| 108 | Point p1,p2,p3,p4; |
---|
| 109 | |
---|
| 110 | Bezier3() {} |
---|
| 111 | Bezier3(Point _p1, Point _p2, Point _p3, Point _p4) |
---|
| 112 | : p1(_p1), p2(_p2), p3(_p3), p4(_p4) {} |
---|
[209] | 113 | Bezier3(const Bezier1 &b) : p1(b.p1), p2(conv(b.p1,b.p2,1.0/3.0)), |
---|
| 114 | p3(conv(b.p1,b.p2,2.0/3.0)), p4(b.p2) {} |
---|
[128] | 115 | Bezier3(const Bezier2 &b) : p1(b.p1), p2(conv(b.p1,b.p2,2.0/3.0)), |
---|
[209] | 116 | p3(conv(b.p2,b.p3,1.0/3.0)), p4(b.p3) {} |
---|
| 117 | |
---|
| 118 | Point operator()(double t) const |
---|
[128] | 119 | { |
---|
| 120 | // return Bezier2(conv(p1,p2,t),conv(p2,p3,t),conv(p3,p4,t))(t); |
---|
| 121 | return ((1-t)*(1-t)*(1-t))*p1+(3*t*(1-t)*(1-t))*p2+ |
---|
[209] | 122 | (3*t*t*(1-t))*p3+(t*t*t)*p4; |
---|
[128] | 123 | } |
---|
| 124 | Bezier3 before(double t) const |
---|
| 125 | { |
---|
| 126 | Point p(conv(p1,p2,t)); |
---|
| 127 | Point q(conv(p2,p3,t)); |
---|
| 128 | Point r(conv(p3,p4,t)); |
---|
| 129 | Point a(conv(p,q,t)); |
---|
| 130 | Point b(conv(q,r,t)); |
---|
| 131 | Point c(conv(a,b,t)); |
---|
| 132 | return Bezier3(p1,p,a,c); |
---|
| 133 | } |
---|
[209] | 134 | |
---|
[128] | 135 | Bezier3 after(double t) const |
---|
| 136 | { |
---|
| 137 | Point p(conv(p1,p2,t)); |
---|
| 138 | Point q(conv(p2,p3,t)); |
---|
| 139 | Point r(conv(p3,p4,t)); |
---|
| 140 | Point a(conv(p,q,t)); |
---|
| 141 | Point b(conv(q,r,t)); |
---|
| 142 | Point c(conv(a,b,t)); |
---|
| 143 | return Bezier3(c,b,r,p4); |
---|
| 144 | } |
---|
| 145 | Bezier3 revert() const { return Bezier3(p4,p3,p2,p1);} |
---|
| 146 | Bezier3 operator()(double a,double b) const { return before(b).after(a/b); } |
---|
| 147 | Bezier2 grad() const { return Bezier2(3.0*(p2-p1),3.0*(p3-p2),3.0*(p4-p3)); } |
---|
| 148 | Bezier2 norm() const { return Bezier2(3.0*rot90(p2-p1), |
---|
[209] | 149 | 3.0*rot90(p3-p2), |
---|
| 150 | 3.0*rot90(p4-p3)); } |
---|
[128] | 151 | Point grad(double t) const { return grad()(t); } |
---|
| 152 | Point norm(double t) const { return rot90(grad(t)); } |
---|
| 153 | |
---|
| 154 | template<class R,class F,class S,class D> |
---|
[209] | 155 | R recSplit(F &_f,const S &_s,D _d) const |
---|
[128] | 156 | { |
---|
| 157 | const Point a=(p1+p2)/2; |
---|
| 158 | const Point b=(p2+p3)/2; |
---|
| 159 | const Point c=(p3+p4)/2; |
---|
| 160 | const Point d=(a+b)/2; |
---|
| 161 | const Point e=(b+c)/2; |
---|
[963] | 162 | // const Point f=(d+e)/2; |
---|
[128] | 163 | R f1=_f(Bezier3(p1,a,d,e),_d); |
---|
| 164 | R f2=_f(Bezier3(e,d,c,p4),_d); |
---|
| 165 | return _s(f1,f2); |
---|
| 166 | } |
---|
[209] | 167 | |
---|
[128] | 168 | }; |
---|
| 169 | |
---|
| 170 | |
---|
| 171 | } //END OF NAMESPACE dim2 |
---|
| 172 | } //END OF NAMESPACE lemon |
---|
| 173 | |
---|
| 174 | #endif // LEMON_BEZIER_H |
---|