/* -*- mode: C++; indent-tabs-mode: nil; -*- * * This file is a part of LEMON, a generic C++ optimization library. * * Copyright (C) 2003-2008 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport * (Egervary Research Group on Combinatorial Optimization, EGRES). * * Permission to use, modify and distribute this software is granted * provided that this copyright notice appears in all copies. For * precise terms see the accompanying LICENSE file. * * This software is provided "AS IS" with no warranty of any kind, * express or implied, and with no claim as to its suitability for any * purpose. * */ #ifndef LEMON_DIJKSTRA_H #define LEMON_DIJKSTRA_H ///\ingroup shortest_path ///\file ///\brief Dijkstra algorithm. #include #include #include #include #include #include #include #include namespace lemon { /// \brief Default operation traits for the Dijkstra algorithm class. /// /// This operation traits class defines all computational operations and /// constants which are used in the Dijkstra algorithm. template struct DijkstraDefaultOperationTraits { /// \brief Gives back the zero value of the type. static Value zero() { return static_cast(0); } /// \brief Gives back the sum of the given two elements. static Value plus(const Value& left, const Value& right) { return left + right; } /// \brief Gives back true only if the first value is less than the second. static bool less(const Value& left, const Value& right) { return left < right; } }; ///Default traits class of Dijkstra class. ///Default traits class of Dijkstra class. ///\tparam GR The type of the digraph. ///\tparam LM The type of the length map. template struct DijkstraDefaultTraits { ///The type of the digraph the algorithm runs on. typedef GR Digraph; ///The type of the map that stores the arc lengths. ///The type of the map that stores the arc lengths. ///It must meet the \ref concepts::ReadMap "ReadMap" concept. typedef LM LengthMap; ///The type of the length of the arcs. typedef typename LM::Value Value; /// Operation traits for Dijkstra algorithm. /// This class defines the operations that are used in the algorithm. /// \see DijkstraDefaultOperationTraits typedef DijkstraDefaultOperationTraits OperationTraits; /// The cross reference type used by the heap. /// The cross reference type used by the heap. /// Usually it is \c Digraph::NodeMap. typedef typename Digraph::template NodeMap HeapCrossRef; ///Instantiates a \ref HeapCrossRef. ///This function instantiates a \ref HeapCrossRef. /// \param g is the digraph, to which we would like to define the /// \ref HeapCrossRef. static HeapCrossRef *createHeapCrossRef(const Digraph &g) { return new HeapCrossRef(g); } ///The heap type used by the Dijkstra algorithm. ///The heap type used by the Dijkstra algorithm. /// ///\sa BinHeap ///\sa Dijkstra typedef BinHeap > Heap; ///Instantiates a \ref Heap. ///This function instantiates a \ref Heap. static Heap *createHeap(HeapCrossRef& r) { return new Heap(r); } ///\brief The type of the map that stores the predecessor ///arcs of the shortest paths. /// ///The type of the map that stores the predecessor ///arcs of the shortest paths. ///It must meet the \ref concepts::WriteMap "WriteMap" concept. typedef typename Digraph::template NodeMap PredMap; ///Instantiates a PredMap. ///This function instantiates a PredMap. ///\param g is the digraph, to which we would like to define the ///PredMap. static PredMap *createPredMap(const Digraph &g) { return new PredMap(g); } ///The type of the map that indicates which nodes are processed. ///The type of the map that indicates which nodes are processed. ///It must meet the \ref concepts::WriteMap "WriteMap" concept. ///By default it is a NullMap. typedef NullMap ProcessedMap; ///Instantiates a ProcessedMap. ///This function instantiates a ProcessedMap. ///\param g is the digraph, to which ///we would like to define the ProcessedMap #ifdef DOXYGEN static ProcessedMap *createProcessedMap(const Digraph &g) #else static ProcessedMap *createProcessedMap(const Digraph &) #endif { return new ProcessedMap(); } ///The type of the map that stores the distances of the nodes. ///The type of the map that stores the distances of the nodes. ///It must meet the \ref concepts::WriteMap "WriteMap" concept. typedef typename Digraph::template NodeMap DistMap; ///Instantiates a DistMap. ///This function instantiates a DistMap. ///\param g is the digraph, to which we would like to define ///the DistMap static DistMap *createDistMap(const Digraph &g) { return new DistMap(g); } }; ///%Dijkstra algorithm class. /// \ingroup shortest_path ///This class provides an efficient implementation of the %Dijkstra algorithm. /// ///The arc lengths are passed to the algorithm using a ///\ref concepts::ReadMap "ReadMap", ///so it is easy to change it to any kind of length. ///The type of the length is determined by the ///\ref concepts::ReadMap::Value "Value" of the length map. ///It is also possible to change the underlying priority heap. /// ///There is also a \ref dijkstra() "function-type interface" for the ///%Dijkstra algorithm, which is convenient in the simplier cases and ///it can be used easier. /// ///\tparam GR The type of the digraph the algorithm runs on. ///The default value is \ref ListDigraph. ///The value of GR is not used directly by \ref Dijkstra, it is only ///passed to \ref DijkstraDefaultTraits. ///\tparam LM A readable arc map that determines the lengths of the ///arcs. It is read once for each arc, so the map may involve in ///relatively time consuming process to compute the arc lengths if ///it is necessary. The default map type is \ref ///concepts::Digraph::ArcMap "Digraph::ArcMap". ///The value of LM is not used directly by \ref Dijkstra, it is only ///passed to \ref DijkstraDefaultTraits. ///\tparam TR Traits class to set various data types used by the algorithm. ///The default traits class is \ref DijkstraDefaultTraits ///"DijkstraDefaultTraits". See \ref DijkstraDefaultTraits ///for the documentation of a Dijkstra traits class. #ifdef DOXYGEN template #else template , typename TR=DijkstraDefaultTraits > #endif class Dijkstra { public: ///The type of the digraph the algorithm runs on. typedef typename TR::Digraph Digraph; ///The type of the length of the arcs. typedef typename TR::LengthMap::Value Value; ///The type of the map that stores the arc lengths. typedef typename TR::LengthMap LengthMap; ///\brief The type of the map that stores the predecessor arcs of the ///shortest paths. typedef typename TR::PredMap PredMap; ///The type of the map that stores the distances of the nodes. typedef typename TR::DistMap DistMap; ///The type of the map that indicates which nodes are processed. typedef typename TR::ProcessedMap ProcessedMap; ///The type of the paths. typedef PredMapPath Path; ///The cross reference type used for the current heap. typedef typename TR::HeapCrossRef HeapCrossRef; ///The heap type used by the algorithm. typedef typename TR::Heap Heap; ///The operation traits class. typedef typename TR::OperationTraits OperationTraits; ///The traits class. typedef TR Traits; private: typedef typename Digraph::Node Node; typedef typename Digraph::NodeIt NodeIt; typedef typename Digraph::Arc Arc; typedef typename Digraph::OutArcIt OutArcIt; //Pointer to the underlying digraph. const Digraph *G; //Pointer to the length map. const LengthMap *length; //Pointer to the map of predecessors arcs. PredMap *_pred; //Indicates if _pred is locally allocated (true) or not. bool local_pred; //Pointer to the map of distances. DistMap *_dist; //Indicates if _dist is locally allocated (true) or not. bool local_dist; //Pointer to the map of processed status of the nodes. ProcessedMap *_processed; //Indicates if _processed is locally allocated (true) or not. bool local_processed; //Pointer to the heap cross references. HeapCrossRef *_heap_cross_ref; //Indicates if _heap_cross_ref is locally allocated (true) or not. bool local_heap_cross_ref; //Pointer to the heap. Heap *_heap; //Indicates if _heap is locally allocated (true) or not. bool local_heap; //Creates the maps if necessary. void create_maps() { if(!_pred) { local_pred = true; _pred = Traits::createPredMap(*G); } if(!_dist) { local_dist = true; _dist = Traits::createDistMap(*G); } if(!_processed) { local_processed = true; _processed = Traits::createProcessedMap(*G); } if (!_heap_cross_ref) { local_heap_cross_ref = true; _heap_cross_ref = Traits::createHeapCrossRef(*G); } if (!_heap) { local_heap = true; _heap = Traits::createHeap(*_heap_cross_ref); } } public: typedef Dijkstra Create; ///\name Named template parameters ///@{ template struct SetPredMapTraits : public Traits { typedef T PredMap; static PredMap *createPredMap(const Digraph &) { LEMON_ASSERT(false, "PredMap is not initialized"); return 0; // ignore warnings } }; ///\brief \ref named-templ-param "Named parameter" for setting ///PredMap type. /// ///\ref named-templ-param "Named parameter" for setting ///PredMap type. template struct SetPredMap : public Dijkstra< Digraph, LengthMap, SetPredMapTraits > { typedef Dijkstra< Digraph, LengthMap, SetPredMapTraits > Create; }; template struct SetDistMapTraits : public Traits { typedef T DistMap; static DistMap *createDistMap(const Digraph &) { LEMON_ASSERT(false, "DistMap is not initialized"); return 0; // ignore warnings } }; ///\brief \ref named-templ-param "Named parameter" for setting ///DistMap type. /// ///\ref named-templ-param "Named parameter" for setting ///DistMap type. template struct SetDistMap : public Dijkstra< Digraph, LengthMap, SetDistMapTraits > { typedef Dijkstra< Digraph, LengthMap, SetDistMapTraits > Create; }; template struct SetProcessedMapTraits : public Traits { typedef T ProcessedMap; static ProcessedMap *createProcessedMap(const Digraph &) { LEMON_ASSERT(false, "ProcessedMap is not initialized"); return 0; // ignore warnings } }; ///\brief \ref named-templ-param "Named parameter" for setting ///ProcessedMap type. /// ///\ref named-templ-param "Named parameter" for setting ///ProcessedMap type. template struct SetProcessedMap : public Dijkstra< Digraph, LengthMap, SetProcessedMapTraits > { typedef Dijkstra< Digraph, LengthMap, SetProcessedMapTraits > Create; }; struct SetStandardProcessedMapTraits : public Traits { typedef typename Digraph::template NodeMap ProcessedMap; static ProcessedMap *createProcessedMap(const Digraph &g) { return new ProcessedMap(g); } }; ///\brief \ref named-templ-param "Named parameter" for setting ///ProcessedMap type to be Digraph::NodeMap. /// ///\ref named-templ-param "Named parameter" for setting ///ProcessedMap type to be Digraph::NodeMap. ///If you don't set it explicitly, it will be automatically allocated. struct SetStandardProcessedMap : public Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits > { typedef Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits > Create; }; template struct SetHeapTraits : public Traits { typedef CR HeapCrossRef; typedef H Heap; static HeapCrossRef *createHeapCrossRef(const Digraph &) { LEMON_ASSERT(false, "HeapCrossRef is not initialized"); return 0; // ignore warnings } static Heap *createHeap(HeapCrossRef &) { LEMON_ASSERT(false, "Heap is not initialized"); return 0; // ignore warnings } }; ///\brief \ref named-templ-param "Named parameter" for setting ///heap and cross reference type /// ///\ref named-templ-param "Named parameter" for setting heap and cross ///reference type. template > struct SetHeap : public Dijkstra< Digraph, LengthMap, SetHeapTraits > { typedef Dijkstra< Digraph, LengthMap, SetHeapTraits > Create; }; template struct SetStandardHeapTraits : public Traits { typedef CR HeapCrossRef; typedef H Heap; static HeapCrossRef *createHeapCrossRef(const Digraph &G) { return new HeapCrossRef(G); } static Heap *createHeap(HeapCrossRef &R) { return new Heap(R); } }; ///\brief \ref named-templ-param "Named parameter" for setting ///heap and cross reference type with automatic allocation /// ///\ref named-templ-param "Named parameter" for setting heap and cross ///reference type. It can allocate the heap and the cross reference ///object if the cross reference's constructor waits for the digraph as ///parameter and the heap's constructor waits for the cross reference. template > struct SetStandardHeap : public Dijkstra< Digraph, LengthMap, SetStandardHeapTraits > { typedef Dijkstra< Digraph, LengthMap, SetStandardHeapTraits > Create; }; template struct SetOperationTraitsTraits : public Traits { typedef T OperationTraits; }; /// \brief \ref named-templ-param "Named parameter" for setting ///\c OperationTraits type /// ///\ref named-templ-param "Named parameter" for setting ///\ref OperationTraits type. template struct SetOperationTraits : public Dijkstra > { typedef Dijkstra > Create; }; ///@} protected: Dijkstra() {} public: ///Constructor. ///Constructor. ///\param _g The digraph the algorithm runs on. ///\param _length The length map used by the algorithm. Dijkstra(const Digraph& _g, const LengthMap& _length) : G(&_g), length(&_length), _pred(NULL), local_pred(false), _dist(NULL), local_dist(false), _processed(NULL), local_processed(false), _heap_cross_ref(NULL), local_heap_cross_ref(false), _heap(NULL), local_heap(false) { } ///Destructor. ~Dijkstra() { if(local_pred) delete _pred; if(local_dist) delete _dist; if(local_processed) delete _processed; if(local_heap_cross_ref) delete _heap_cross_ref; if(local_heap) delete _heap; } ///Sets the length map. ///Sets the length map. ///\return (*this) Dijkstra &lengthMap(const LengthMap &m) { length = &m; return *this; } ///Sets the map that stores the predecessor arcs. ///Sets the map that stores the predecessor arcs. ///If you don't use this function before calling \ref run(), ///it will allocate one. The destructor deallocates this ///automatically allocated map, of course. ///\return (*this) Dijkstra &predMap(PredMap &m) { if(local_pred) { delete _pred; local_pred=false; } _pred = &m; return *this; } ///Sets the map that indicates which nodes are processed. ///Sets the map that indicates which nodes are processed. ///If you don't use this function before calling \ref run(), ///it will allocate one. The destructor deallocates this ///automatically allocated map, of course. ///\return (*this) Dijkstra &processedMap(ProcessedMap &m) { if(local_processed) { delete _processed; local_processed=false; } _processed = &m; return *this; } ///Sets the map that stores the distances of the nodes. ///Sets the map that stores the distances of the nodes calculated by the ///algorithm. ///If you don't use this function before calling \ref run(), ///it will allocate one. The destructor deallocates this ///automatically allocated map, of course. ///\return (*this) Dijkstra &distMap(DistMap &m) { if(local_dist) { delete _dist; local_dist=false; } _dist = &m; return *this; } ///Sets the heap and the cross reference used by algorithm. ///Sets the heap and the cross reference used by algorithm. ///If you don't use this function before calling \ref run(), ///it will allocate one. The destructor deallocates this ///automatically allocated heap and cross reference, of course. ///\return (*this) Dijkstra &heap(Heap& hp, HeapCrossRef &cr) { if(local_heap_cross_ref) { delete _heap_cross_ref; local_heap_cross_ref=false; } _heap_cross_ref = &cr; if(local_heap) { delete _heap; local_heap=false; } _heap = &hp; return *this; } private: void finalizeNodeData(Node v,Value dst) { _processed->set(v,true); _dist->set(v, dst); } public: ///\name Execution control ///The simplest way to execute the algorithm is to use one of the ///member functions called \ref lemon::Dijkstra::run() "run()". ///\n ///If you need more control on the execution, first you must call ///\ref lemon::Dijkstra::init() "init()", then you can add several ///source nodes with \ref lemon::Dijkstra::addSource() "addSource()". ///Finally \ref lemon::Dijkstra::start() "start()" will perform the ///actual path computation. ///@{ ///Initializes the internal data structures. ///Initializes the internal data structures. /// void init() { create_maps(); _heap->clear(); for ( NodeIt u(*G) ; u!=INVALID ; ++u ) { _pred->set(u,INVALID); _processed->set(u,false); _heap_cross_ref->set(u,Heap::PRE_HEAP); } } ///Adds a new source node. ///Adds a new source node to the priority heap. ///The optional second parameter is the initial distance of the node. /// ///The function checks if the node has already been added to the heap and ///it is pushed to the heap only if either it was not in the heap ///or the shortest path found till then is shorter than \c dst. void addSource(Node s,Value dst=OperationTraits::zero()) { if(_heap->state(s) != Heap::IN_HEAP) { _heap->push(s,dst); } else if(OperationTraits::less((*_heap)[s], dst)) { _heap->set(s,dst); _pred->set(s,INVALID); } } ///Processes the next node in the priority heap ///Processes the next node in the priority heap. /// ///\return The processed node. /// ///\warning The priority heap must not be empty. Node processNextNode() { Node v=_heap->top(); Value oldvalue=_heap->prio(); _heap->pop(); finalizeNodeData(v,oldvalue); for(OutArcIt e(*G,v); e!=INVALID; ++e) { Node w=G->target(e); switch(_heap->state(w)) { case Heap::PRE_HEAP: _heap->push(w,OperationTraits::plus(oldvalue, (*length)[e])); _pred->set(w,e); break; case Heap::IN_HEAP: { Value newvalue = OperationTraits::plus(oldvalue, (*length)[e]); if ( OperationTraits::less(newvalue, (*_heap)[w]) ) { _heap->decrease(w, newvalue); _pred->set(w,e); } } break; case Heap::POST_HEAP: break; } } return v; } ///The next node to be processed. ///Returns the next node to be processed or \c INVALID if the ///priority heap is empty. Node nextNode() const { return !_heap->empty()?_heap->top():INVALID; } ///\brief Returns \c false if there are nodes ///to be processed. /// ///Returns \c false if there are nodes ///to be processed in the priority heap. bool emptyQueue() const { return _heap->empty(); } ///Returns the number of the nodes to be processed in the priority heap ///Returns the number of the nodes to be processed in the priority heap. /// int queueSize() const { return _heap->size(); } ///Executes the algorithm. ///Executes the algorithm. /// ///This method runs the %Dijkstra algorithm from the root node(s) ///in order to compute the shortest path to each node. /// ///The algorithm computes ///- the shortest path tree (forest), ///- the distance of each node from the root(s). /// ///\pre init() must be called and at least one root node should be ///added with addSource() before using this function. /// ///\note d.start() is just a shortcut of the following code. ///\code /// while ( !d.emptyQueue() ) { /// d.processNextNode(); /// } ///\endcode void start() { while ( !emptyQueue() ) processNextNode(); } ///Executes the algorithm until the given target node is processed. ///Executes the algorithm until the given target node is processed. /// ///This method runs the %Dijkstra algorithm from the root node(s) ///in order to compute the shortest path to \c t. /// ///The algorithm computes ///- the shortest path to \c t, ///- the distance of \c t from the root(s). /// ///\pre init() must be called and at least one root node should be ///added with addSource() before using this function. void start(Node t) { while ( !_heap->empty() && _heap->top()!=t ) processNextNode(); if ( !_heap->empty() ) { finalizeNodeData(_heap->top(),_heap->prio()); _heap->pop(); } } ///Executes the algorithm until a condition is met. ///Executes the algorithm until a condition is met. /// ///This method runs the %Dijkstra algorithm from the root node(s) in ///order to compute the shortest path to a node \c v with /// nm[v] true, if such a node can be found. /// ///\param nm A \c bool (or convertible) node map. The algorithm ///will stop when it reaches a node \c v with nm[v] true. /// ///\return The reached node \c v with nm[v] true or ///\c INVALID if no such node was found. /// ///\pre init() must be called and at least one root node should be ///added with addSource() before using this function. template Node start(const NodeBoolMap &nm) { while ( !_heap->empty() && !nm[_heap->top()] ) processNextNode(); if ( _heap->empty() ) return INVALID; finalizeNodeData(_heap->top(),_heap->prio()); return _heap->top(); } ///Runs the algorithm from the given source node. ///This method runs the %Dijkstra algorithm from node \c s ///in order to compute the shortest path to each node. /// ///The algorithm computes ///- the shortest path tree, ///- the distance of each node from the root. /// ///\note d.run(s) is just a shortcut of the following code. ///\code /// d.init(); /// d.addSource(s); /// d.start(); ///\endcode void run(Node s) { init(); addSource(s); start(); } ///Finds the shortest path between \c s and \c t. ///This method runs the %Dijkstra algorithm from node \c s ///in order to compute the shortest path to node \c t ///(it stops searching when \c t is processed). /// ///\return \c true if \c t is reachable form \c s. /// ///\note Apart from the return value, d.run(s,t) is just a ///shortcut of the following code. ///\code /// d.init(); /// d.addSource(s); /// d.start(t); ///\endcode bool run(Node s,Node t) { init(); addSource(s); start(t); return (*_heap_cross_ref)[t] == Heap::POST_HEAP; } ///@} ///\name Query Functions ///The result of the %Dijkstra algorithm can be obtained using these ///functions.\n ///Either \ref lemon::Dijkstra::run() "run()" or ///\ref lemon::Dijkstra::start() "start()" must be called before ///using them. ///@{ ///The shortest path to a node. ///Returns the shortest path to a node. /// ///\warning \c t should be reachable from the root(s). /// ///\pre Either \ref run() or \ref start() must be called before ///using this function. Path path(Node t) const { return Path(*G, *_pred, t); } ///The distance of a node from the root(s). ///Returns the distance of a node from the root(s). /// ///\warning If node \c v is not reachable from the root(s), then ///the return value of this function is undefined. /// ///\pre Either \ref run() or \ref start() must be called before ///using this function. Value dist(Node v) const { return (*_dist)[v]; } ///Returns the 'previous arc' of the shortest path tree for a node. ///This function returns the 'previous arc' of the shortest path ///tree for the node \c v, i.e. it returns the last arc of a ///shortest path from the root(s) to \c v. It is \c INVALID if \c v ///is not reachable from the root(s) or if \c v is a root. /// ///The shortest path tree used here is equal to the shortest path ///tree used in \ref predNode(). /// ///\pre Either \ref run() or \ref start() must be called before ///using this function. Arc predArc(Node v) const { return (*_pred)[v]; } ///Returns the 'previous node' of the shortest path tree for a node. ///This function returns the 'previous node' of the shortest path ///tree for the node \c v, i.e. it returns the last but one node ///from a shortest path from the root(s) to \c v. It is \c INVALID ///if \c v is not reachable from the root(s) or if \c v is a root. /// ///The shortest path tree used here is equal to the shortest path ///tree used in \ref predArc(). /// ///\pre Either \ref run() or \ref start() must be called before ///using this function. Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID: G->source((*_pred)[v]); } ///\brief Returns a const reference to the node map that stores the ///distances of the nodes. /// ///Returns a const reference to the node map that stores the distances ///of the nodes calculated by the algorithm. /// ///\pre Either \ref run() or \ref init() ///must be called before using this function. const DistMap &distMap() const { return *_dist;} ///\brief Returns a const reference to the node map that stores the ///predecessor arcs. /// ///Returns a const reference to the node map that stores the predecessor ///arcs, which form the shortest path tree. /// ///\pre Either \ref run() or \ref init() ///must be called before using this function. const PredMap &predMap() const { return *_pred;} ///Checks if a node is reachable from the root(s). ///Returns \c true if \c v is reachable from the root(s). ///\pre Either \ref run() or \ref start() ///must be called before using this function. bool reached(Node v) const { return (*_heap_cross_ref)[v] != Heap::PRE_HEAP; } ///Checks if a node is processed. ///Returns \c true if \c v is processed, i.e. the shortest ///path to \c v has already found. ///\pre Either \ref run() or \ref init() ///must be called before using this function. bool processed(Node v) const { return (*_heap_cross_ref)[v] == Heap::POST_HEAP; } ///The current distance of a node from the root(s). ///Returns the current distance of a node from the root(s). ///It may be decreased in the following processes. ///\pre Either \ref run() or \ref init() ///must be called before using this function and ///node \c v must be reached but not necessarily processed. Value currentDist(Node v) const { return processed(v) ? (*_dist)[v] : (*_heap)[v]; } ///@} }; ///Default traits class of dijkstra() function. ///Default traits class of dijkstra() function. ///\tparam GR The type of the digraph. ///\tparam LM The type of the length map. template struct DijkstraWizardDefaultTraits { ///The type of the digraph the algorithm runs on. typedef GR Digraph; ///The type of the map that stores the arc lengths. ///The type of the map that stores the arc lengths. ///It must meet the \ref concepts::ReadMap "ReadMap" concept. typedef LM LengthMap; ///The type of the length of the arcs. typedef typename LM::Value Value; /// Operation traits for Dijkstra algorithm. /// This class defines the operations that are used in the algorithm. /// \see DijkstraDefaultOperationTraits typedef DijkstraDefaultOperationTraits OperationTraits; /// The cross reference type used by the heap. /// The cross reference type used by the heap. /// Usually it is \c Digraph::NodeMap. typedef typename Digraph::template NodeMap HeapCrossRef; ///Instantiates a \ref HeapCrossRef. ///This function instantiates a \ref HeapCrossRef. /// \param g is the digraph, to which we would like to define the /// HeapCrossRef. static HeapCrossRef *createHeapCrossRef(const Digraph &g) { return new HeapCrossRef(g); } ///The heap type used by the Dijkstra algorithm. ///The heap type used by the Dijkstra algorithm. /// ///\sa BinHeap ///\sa Dijkstra typedef BinHeap, std::less > Heap; ///Instantiates a \ref Heap. ///This function instantiates a \ref Heap. /// \param r is the HeapCrossRef which is used. static Heap *createHeap(HeapCrossRef& r) { return new Heap(r); } ///\brief The type of the map that stores the predecessor ///arcs of the shortest paths. /// ///The type of the map that stores the predecessor ///arcs of the shortest paths. ///It must meet the \ref concepts::WriteMap "WriteMap" concept. typedef typename Digraph::template NodeMap PredMap; ///Instantiates a PredMap. ///This function instantiates a PredMap. ///\param g is the digraph, to which we would like to define the ///PredMap. static PredMap *createPredMap(const Digraph &g) { return new PredMap(g); } ///The type of the map that indicates which nodes are processed. ///The type of the map that indicates which nodes are processed. ///It must meet the \ref concepts::WriteMap "WriteMap" concept. ///By default it is a NullMap. typedef NullMap ProcessedMap; ///Instantiates a ProcessedMap. ///This function instantiates a ProcessedMap. ///\param g is the digraph, to which ///we would like to define the ProcessedMap. #ifdef DOXYGEN static ProcessedMap *createProcessedMap(const Digraph &g) #else static ProcessedMap *createProcessedMap(const Digraph &) #endif { return new ProcessedMap(); } ///The type of the map that stores the distances of the nodes. ///The type of the map that stores the distances of the nodes. ///It must meet the \ref concepts::WriteMap "WriteMap" concept. typedef typename Digraph::template NodeMap DistMap; ///Instantiates a DistMap. ///This function instantiates a DistMap. ///\param g is the digraph, to which we would like to define ///the DistMap static DistMap *createDistMap(const Digraph &g) { return new DistMap(g); } ///The type of the shortest paths. ///The type of the shortest paths. ///It must meet the \ref concepts::Path "Path" concept. typedef lemon::Path Path; }; /// Default traits class used by DijkstraWizard /// To make it easier to use Dijkstra algorithm /// we have created a wizard class. /// This \ref DijkstraWizard class needs default traits, /// as well as the \ref Dijkstra class. /// The \ref DijkstraWizardBase is a class to be the default traits of the /// \ref DijkstraWizard class. template class DijkstraWizardBase : public DijkstraWizardDefaultTraits { typedef DijkstraWizardDefaultTraits Base; protected: //The type of the nodes in the digraph. typedef typename Base::Digraph::Node Node; //Pointer to the digraph the algorithm runs on. void *_g; //Pointer to the length map. void *_length; //Pointer to the map of processed nodes. void *_processed; //Pointer to the map of predecessors arcs. void *_pred; //Pointer to the map of distances. void *_dist; //Pointer to the shortest path to the target node. void *_path; //Pointer to the distance of the target node. void *_di; public: /// Constructor. /// This constructor does not require parameters, therefore it initiates /// all of the attributes to \c 0. DijkstraWizardBase() : _g(0), _length(0), _processed(0), _pred(0), _dist(0), _path(0), _di(0) {} /// Constructor. /// This constructor requires two parameters, /// others are initiated to \c 0. /// \param g The digraph the algorithm runs on. /// \param l The length map. DijkstraWizardBase(const GR &g,const LM &l) : _g(reinterpret_cast(const_cast(&g))), _length(reinterpret_cast(const_cast(&l))), _processed(0), _pred(0), _dist(0), _path(0), _di(0) {} }; /// Auxiliary class for the function-type interface of Dijkstra algorithm. /// This auxiliary class is created to implement the /// \ref dijkstra() "function-type interface" of \ref Dijkstra algorithm. /// It does not have own \ref run() method, it uses the functions /// and features of the plain \ref Dijkstra. /// /// This class should only be used through the \ref dijkstra() function, /// which makes it easier to use the algorithm. template class DijkstraWizard : public TR { typedef TR Base; ///The type of the digraph the algorithm runs on. typedef typename TR::Digraph Digraph; typedef typename Digraph::Node Node; typedef typename Digraph::NodeIt NodeIt; typedef typename Digraph::Arc Arc; typedef typename Digraph::OutArcIt OutArcIt; ///The type of the map that stores the arc lengths. typedef typename TR::LengthMap LengthMap; ///The type of the length of the arcs. typedef typename LengthMap::Value Value; ///\brief The type of the map that stores the predecessor ///arcs of the shortest paths. typedef typename TR::PredMap PredMap; ///The type of the map that stores the distances of the nodes. typedef typename TR::DistMap DistMap; ///The type of the map that indicates which nodes are processed. typedef typename TR::ProcessedMap ProcessedMap; ///The type of the shortest paths typedef typename TR::Path Path; ///The heap type used by the dijkstra algorithm. typedef typename TR::Heap Heap; public: /// Constructor. DijkstraWizard() : TR() {} /// Constructor that requires parameters. /// Constructor that requires parameters. /// These parameters will be the default values for the traits class. /// \param g The digraph the algorithm runs on. /// \param l The length map. DijkstraWizard(const Digraph &g, const LengthMap &l) : TR(g,l) {} ///Copy constructor DijkstraWizard(const TR &b) : TR(b) {} ~DijkstraWizard() {} ///Runs Dijkstra algorithm from the given source node. ///This method runs %Dijkstra algorithm from the given source node ///in order to compute the shortest path to each node. void run(Node s) { Dijkstra dijk(*reinterpret_cast(Base::_g), *reinterpret_cast(Base::_length)); if (Base::_pred) dijk.predMap(*reinterpret_cast(Base::_pred)); if (Base::_dist) dijk.distMap(*reinterpret_cast(Base::_dist)); if (Base::_processed) dijk.processedMap(*reinterpret_cast(Base::_processed)); dijk.run(s); } ///Finds the shortest path between \c s and \c t. ///This method runs the %Dijkstra algorithm from node \c s ///in order to compute the shortest path to node \c t ///(it stops searching when \c t is processed). /// ///\return \c true if \c t is reachable form \c s. bool run(Node s, Node t) { Dijkstra dijk(*reinterpret_cast(Base::_g), *reinterpret_cast(Base::_length)); if (Base::_pred) dijk.predMap(*reinterpret_cast(Base::_pred)); if (Base::_dist) dijk.distMap(*reinterpret_cast(Base::_dist)); if (Base::_processed) dijk.processedMap(*reinterpret_cast(Base::_processed)); dijk.run(s,t); if (Base::_path) *reinterpret_cast(Base::_path) = dijk.path(t); if (Base::_di) *reinterpret_cast(Base::_di) = dijk.dist(t); return dijk.reached(t); } template struct SetPredMapBase : public Base { typedef T PredMap; static PredMap *createPredMap(const Digraph &) { return 0; }; SetPredMapBase(const TR &b) : TR(b) {} }; ///\brief \ref named-func-param "Named parameter" ///for setting PredMap object. /// ///\ref named-func-param "Named parameter" ///for setting PredMap object. template DijkstraWizard > predMap(const T &t) { Base::_pred=reinterpret_cast(const_cast(&t)); return DijkstraWizard >(*this); } template struct SetDistMapBase : public Base { typedef T DistMap; static DistMap *createDistMap(const Digraph &) { return 0; }; SetDistMapBase(const TR &b) : TR(b) {} }; ///\brief \ref named-func-param "Named parameter" ///for setting DistMap object. /// ///\ref named-func-param "Named parameter" ///for setting DistMap object. template DijkstraWizard > distMap(const T &t) { Base::_dist=reinterpret_cast(const_cast(&t)); return DijkstraWizard >(*this); } template struct SetProcessedMapBase : public Base { typedef T ProcessedMap; static ProcessedMap *createProcessedMap(const Digraph &) { return 0; }; SetProcessedMapBase(const TR &b) : TR(b) {} }; ///\brief \ref named-func-param "Named parameter" ///for setting ProcessedMap object. /// /// \ref named-func-param "Named parameter" ///for setting ProcessedMap object. template DijkstraWizard > processedMap(const T &t) { Base::_processed=reinterpret_cast(const_cast(&t)); return DijkstraWizard >(*this); } template struct SetPathBase : public Base { typedef T Path; SetPathBase(const TR &b) : TR(b) {} }; ///\brief \ref named-func-param "Named parameter" ///for getting the shortest path to the target node. /// ///\ref named-func-param "Named parameter" ///for getting the shortest path to the target node. template DijkstraWizard > path(const T &t) { Base::_path=reinterpret_cast(const_cast(&t)); return DijkstraWizard >(*this); } ///\brief \ref named-func-param "Named parameter" ///for getting the distance of the target node. /// ///\ref named-func-param "Named parameter" ///for getting the distance of the target node. DijkstraWizard dist(const Value &d) { Base::_di=reinterpret_cast(const_cast(&d)); return *this; } }; ///Function-type interface for Dijkstra algorithm. /// \ingroup shortest_path ///Function-type interface for Dijkstra algorithm. /// ///This function also has several \ref named-func-param "named parameters", ///they are declared as the members of class \ref DijkstraWizard. ///The following examples show how to use these parameters. ///\code /// // Compute shortest path from node s to each node /// dijkstra(g,length).predMap(preds).distMap(dists).run(s); /// /// // Compute shortest path from s to t /// bool reached = dijkstra(g,length).path(p).dist(d).run(s,t); ///\endcode ///\warning Don't forget to put the \ref DijkstraWizard::run() "run()" ///to the end of the parameter list. ///\sa DijkstraWizard ///\sa Dijkstra template DijkstraWizard > dijkstra(const GR &digraph, const LM &length) { return DijkstraWizard >(digraph,length); } } //END OF NAMESPACE LEMON #endif