/* -*- mode: C++; indent-tabs-mode: nil; -*- * * This file is a part of LEMON, a generic C++ optimization library. * * Copyright (C) 2003-2009 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport * (Egervary Research Group on Combinatorial Optimization, EGRES). * * Permission to use, modify and distribute this software is granted * provided that this copyright notice appears in all copies. For * precise terms see the accompanying LICENSE file. * * This software is provided "AS IS" with no warranty of any kind, * express or implied, and with no claim as to its suitability for any * purpose. * */ #ifndef LEMON_FIB_HEAP_H #define LEMON_FIB_HEAP_H ///\file ///\ingroup auxdat ///\brief Fibonacci Heap implementation. #include #include #include namespace lemon { /// \ingroup auxdat /// ///\brief Fibonacci Heap. /// ///This class implements the \e Fibonacci \e heap data structure. A \e heap ///is a data structure for storing items with specified values called \e ///priorities in such a way that finding the item with minimum priority is ///efficient. \c CMP specifies the ordering of the priorities. In a heap ///one can change the priority of an item, add or erase an item, etc. /// ///The methods \ref increase and \ref erase are not efficient in a Fibonacci ///heap. In case of many calls to these operations, it is better to use a ///\ref BinHeap "binary heap". /// ///\param PRIO Type of the priority of the items. ///\param IM A read and writable Item int map, used internally ///to handle the cross references. ///\param CMP A class for the ordering of the priorities. The ///default is \c std::less. /// ///\sa BinHeap ///\sa Dijkstra #ifdef DOXYGEN template #else template > #endif class FibHeap { public: ///\e typedef IM ItemIntMap; ///\e typedef PRIO Prio; ///\e typedef typename ItemIntMap::Key Item; ///\e typedef std::pair Pair; ///\e typedef CMP Compare; private: class Store; std::vector _data; int _minimum; ItemIntMap &_iim; Compare _comp; int _num; public: /// \brief Type to represent the items states. /// /// Each Item element have a state associated to it. It may be "in heap", /// "pre heap" or "post heap". The latter two are indifferent from the /// heap's point of view, but may be useful to the user. /// /// The item-int map must be initialized in such way that it assigns /// \c PRE_HEAP (-1) to any element to be put in the heap. enum State { IN_HEAP = 0, ///< = 0. PRE_HEAP = -1, ///< = -1. POST_HEAP = -2 ///< = -2. }; /// \brief The constructor /// /// \c map should be given to the constructor, since it is /// used internally to handle the cross references. explicit FibHeap(ItemIntMap &map) : _minimum(0), _iim(map), _num() {} /// \brief The constructor /// /// \c map should be given to the constructor, since it is used /// internally to handle the cross references. \c comp is an /// object for ordering of the priorities. FibHeap(ItemIntMap &map, const Compare &comp) : _minimum(0), _iim(map), _comp(comp), _num() {} /// \brief The number of items stored in the heap. /// /// Returns the number of items stored in the heap. int size() const { return _num; } /// \brief Checks if the heap stores no items. /// /// Returns \c true if and only if the heap stores no items. bool empty() const { return _num==0; } /// \brief Make empty this heap. /// /// Make empty this heap. It does not change the cross reference /// map. If you want to reuse a heap what is not surely empty you /// should first clear the heap and after that you should set the /// cross reference map for each item to \c PRE_HEAP. void clear() { _data.clear(); _minimum = 0; _num = 0; } /// \brief \c item gets to the heap with priority \c value independently /// if \c item was already there. /// /// This method calls \ref push(\c item, \c value) if \c item is not /// stored in the heap and it calls \ref decrease(\c item, \c value) or /// \ref increase(\c item, \c value) otherwise. void set (const Item& item, const Prio& value) { int i=_iim[item]; if ( i >= 0 && _data[i].in ) { if ( _comp(value, _data[i].prio) ) decrease(item, value); if ( _comp(_data[i].prio, value) ) increase(item, value); } else push(item, value); } /// \brief Adds \c item to the heap with priority \c value. /// /// Adds \c item to the heap with priority \c value. /// \pre \c item must not be stored in the heap. void push (const Item& item, const Prio& value) { int i=_iim[item]; if ( i < 0 ) { int s=_data.size(); _iim.set( item, s ); Store st; st.name=item; _data.push_back(st); i=s; } else { _data[i].parent=_data[i].child=-1; _data[i].degree=0; _data[i].in=true; _data[i].marked=false; } if ( _num ) { _data[_data[_minimum].right_neighbor].left_neighbor=i; _data[i].right_neighbor=_data[_minimum].right_neighbor; _data[_minimum].right_neighbor=i; _data[i].left_neighbor=_minimum; if ( _comp( value, _data[_minimum].prio) ) _minimum=i; } else { _data[i].right_neighbor=_data[i].left_neighbor=i; _minimum=i; } _data[i].prio=value; ++_num; } /// \brief Returns the item with minimum priority relative to \c Compare. /// /// This method returns the item with minimum priority relative to \c /// Compare. /// \pre The heap must be nonempty. Item top() const { return _data[_minimum].name; } /// \brief Returns the minimum priority relative to \c Compare. /// /// It returns the minimum priority relative to \c Compare. /// \pre The heap must be nonempty. const Prio& prio() const { return _data[_minimum].prio; } /// \brief Returns the priority of \c item. /// /// It returns the priority of \c item. /// \pre \c item must be in the heap. const Prio& operator[](const Item& item) const { return _data[_iim[item]].prio; } /// \brief Deletes the item with minimum priority relative to \c Compare. /// /// This method deletes the item with minimum priority relative to \c /// Compare from the heap. /// \pre The heap must be non-empty. void pop() { /*The first case is that there are only one root.*/ if ( _data[_minimum].left_neighbor==_minimum ) { _data[_minimum].in=false; if ( _data[_minimum].degree!=0 ) { makeroot(_data[_minimum].child); _minimum=_data[_minimum].child; balance(); } } else { int right=_data[_minimum].right_neighbor; unlace(_minimum); _data[_minimum].in=false; if ( _data[_minimum].degree > 0 ) { int left=_data[_minimum].left_neighbor; int child=_data[_minimum].child; int last_child=_data[child].left_neighbor; makeroot(child); _data[left].right_neighbor=child; _data[child].left_neighbor=left; _data[right].left_neighbor=last_child; _data[last_child].right_neighbor=right; } _minimum=right; balance(); } // the case where there are more roots --_num; } /// \brief Deletes \c item from the heap. /// /// This method deletes \c item from the heap, if \c item was already /// stored in the heap. It is quite inefficient in Fibonacci heaps. void erase (const Item& item) { int i=_iim[item]; if ( i >= 0 && _data[i].in ) { if ( _data[i].parent!=-1 ) { int p=_data[i].parent; cut(i,p); cascade(p); } _minimum=i; //As if its prio would be -infinity pop(); } } /// \brief Decreases the priority of \c item to \c value. /// /// This method decreases the priority of \c item to \c value. /// \pre \c item must be stored in the heap with priority at least \c /// value relative to \c Compare. void decrease (Item item, const Prio& value) { int i=_iim[item]; _data[i].prio=value; int p=_data[i].parent; if ( p!=-1 && _comp(value, _data[p].prio) ) { cut(i,p); cascade(p); } if ( _comp(value, _data[_minimum].prio) ) _minimum=i; } /// \brief Increases the priority of \c item to \c value. /// /// This method sets the priority of \c item to \c value. Though /// there is no precondition on the priority of \c item, this /// method should be used only if it is indeed necessary to increase /// (relative to \c Compare) the priority of \c item, because this /// method is inefficient. void increase (Item item, const Prio& value) { erase(item); push(item, value); } /// \brief Returns if \c item is in, has already been in, or has never /// been in the heap. /// /// This method returns PRE_HEAP if \c item has never been in the /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP /// otherwise. In the latter case it is possible that \c item will /// get back to the heap again. State state(const Item &item) const { int i=_iim[item]; if( i>=0 ) { if ( _data[i].in ) i=0; else i=-2; } return State(i); } /// \brief Sets the state of the \c item in the heap. /// /// Sets the state of the \c item in the heap. It can be used to /// manually clear the heap when it is important to achive the /// better time _complexity. /// \param i The item. /// \param st The state. It should not be \c IN_HEAP. void state(const Item& i, State st) { switch (st) { case POST_HEAP: case PRE_HEAP: if (state(i) == IN_HEAP) { erase(i); } _iim[i] = st; break; case IN_HEAP: break; } } private: void balance() { int maxdeg=int( std::floor( 2.08*log(double(_data.size()))))+1; std::vector A(maxdeg,-1); /* *Recall that now minimum does not point to the minimum prio element. *We set minimum to this during balance(). */ int anchor=_data[_minimum].left_neighbor; int next=_minimum; bool end=false; do { int active=next; if ( anchor==active ) end=true; int d=_data[active].degree; next=_data[active].right_neighbor; while (A[d]!=-1) { if( _comp(_data[active].prio, _data[A[d]].prio) ) { fuse(active,A[d]); } else { fuse(A[d],active); active=A[d]; } A[d]=-1; ++d; } A[d]=active; } while ( !end ); while ( _data[_minimum].parent >=0 ) _minimum=_data[_minimum].parent; int s=_minimum; int m=_minimum; do { if ( _comp(_data[s].prio, _data[_minimum].prio) ) _minimum=s; s=_data[s].right_neighbor; } while ( s != m ); } void makeroot(int c) { int s=c; do { _data[s].parent=-1; s=_data[s].right_neighbor; } while ( s != c ); } void cut(int a, int b) { /* *Replacing a from the children of b. */ --_data[b].degree; if ( _data[b].degree !=0 ) { int child=_data[b].child; if ( child==a ) _data[b].child=_data[child].right_neighbor; unlace(a); } /*Lacing a to the roots.*/ int right=_data[_minimum].right_neighbor; _data[_minimum].right_neighbor=a; _data[a].left_neighbor=_minimum; _data[a].right_neighbor=right; _data[right].left_neighbor=a; _data[a].parent=-1; _data[a].marked=false; } void cascade(int a) { if ( _data[a].parent!=-1 ) { int p=_data[a].parent; if ( _data[a].marked==false ) _data[a].marked=true; else { cut(a,p); cascade(p); } } } void fuse(int a, int b) { unlace(b); /*Lacing b under a.*/ _data[b].parent=a; if (_data[a].degree==0) { _data[b].left_neighbor=b; _data[b].right_neighbor=b; _data[a].child=b; } else { int child=_data[a].child; int last_child=_data[child].left_neighbor; _data[child].left_neighbor=b; _data[b].right_neighbor=child; _data[last_child].right_neighbor=b; _data[b].left_neighbor=last_child; } ++_data[a].degree; _data[b].marked=false; } /* *It is invoked only if a has siblings. */ void unlace(int a) { int leftn=_data[a].left_neighbor; int rightn=_data[a].right_neighbor; _data[leftn].right_neighbor=rightn; _data[rightn].left_neighbor=leftn; } class Store { friend class FibHeap; Item name; int parent; int left_neighbor; int right_neighbor; int child; int degree; bool marked; bool in; Prio prio; Store() : parent(-1), child(-1), degree(), marked(false), in(true) {} }; }; } //namespace lemon #endif //LEMON_FIB_HEAP_H