/* -*- C++ -*- * * This file is a part of LEMON, a generic C++ optimization library * * Copyright (C) 2003-2008 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport * (Egervary Research Group on Combinatorial Optimization, EGRES). * * Permission to use, modify and distribute this software is granted * provided that this copyright notice appears in all copies. For * precise terms see the accompanying LICENSE file. * * This software is provided "AS IS" with no warranty of any kind, * express or implied, and with no claim as to its suitability for any * purpose. * */ #ifndef LEMON_FOURARY_HEAP_H #define LEMON_FOURARY_HEAP_H ///\ingroup auxdat ///\file ///\brief 4ary Heap implementation. #include #include #include #include namespace lemon { ///\ingroup auxdat /// ///\brief A 4ary Heap implementation. /// ///This class implements the \e 4ary \e heap data structure. A \e heap ///is a data structure for storing items with specified values called \e ///priorities in such a way that finding the item with minimum priority is ///efficient. \c Compare specifies the ordering of the priorities. In a heap ///one can change the priority of an item, add or erase an item, etc. /// ///\param _Prio Type of the priority of the items. ///\param _ItemIntMap A read and writable Item int map, used internally ///to handle the cross references. ///\param _Compare A class for the ordering of the priorities. The ///default is \c std::less<_Prio>. /// ///\sa FibHeap ///\sa Dijkstra ///\author Dorian Batha template > class FouraryHeap { public: ///\e typedef _ItemIntMap ItemIntMap; ///\e typedef _Prio Prio; ///\e typedef typename ItemIntMap::Key Item; ///\e typedef std::pair Pair; ///\e typedef _Compare Compare; /// \brief Type to represent the items states. /// /// Each Item element have a state associated to it. It may be "in heap", /// "pre heap" or "post heap". The latter two are indifferent from the /// heap's point of view, but may be useful to the user. /// /// The ItemIntMap \e should be initialized in such way that it maps /// PRE_HEAP (-1) to any element to be put in the heap... enum State { IN_HEAP = 0, PRE_HEAP = -1, POST_HEAP = -2 }; private: std::vector data; Compare comp; ItemIntMap &iim; public: /// \brief The constructor. /// /// The constructor. /// \param _iim should be given to the constructor, since it is used /// internally to handle the cross references. The value of the map /// should be PRE_HEAP (-1) for each element. explicit FouraryHeap(ItemIntMap &_iim) : iim(_iim) {} /// \brief The constructor. /// /// The constructor. /// \param _iim should be given to the constructor, since it is used /// internally to handle the cross references. The value of the map /// should be PRE_HEAP (-1) for each element. /// /// \param _comp The comparator function object. FouraryHeap(ItemIntMap &_iim, const Compare &_comp) : iim(_iim), comp(_comp) {} /// The number of items stored in the heap. /// /// \brief Returns the number of items stored in the heap. int size() const { return data.size(); } /// \brief Checks if the heap stores no items. /// /// Returns \c true if and only if the heap stores no items. bool empty() const { return data.empty(); } /// \brief Make empty this heap. /// /// Make empty this heap. It does not change the cross reference map. /// If you want to reuse what is not surely empty you should first clear /// the heap and after that you should set the cross reference map for /// each item to \c PRE_HEAP. void clear() { data.clear(); } private: static int parent(int i) { return (i-1)/4; } static int firstChild(int i) { return 4*i+1; } bool less(const Pair &p1, const Pair &p2) const { return comp(p1.second, p2.second); } int find_min(const int child, const int length) { int min=child; if( child+30 && less(p,data[par]) ) { move(data[par],hole); hole = par; par = parent(hole); } move(p, hole); } void bubble_down(int hole, Pair p, int length) { int child = firstChild(hole); while( child1 ) { child = find_min(child,length); if( !less(data[child], p) ) goto ok; move(data[child], hole); hole = child; child = firstChild(hole); } ok: move(p, hole); } void move(const Pair &p, int i) { data[i] = p; iim.set(p.first, i); } public: /// \brief Insert a pair of item and priority into the heap. /// /// Adds \c p.first to the heap with priority \c p.second. /// \param p The pair to insert. void push(const Pair &p) { int n = data.size(); data.resize(n+1); bubble_up(n, p); } /// \brief Insert an item into the heap with the given heap. /// /// Adds \c i to the heap with priority \c p. /// \param i The item to insert. /// \param p The priority of the item. void push(const Item &i, const Prio &p) { push(Pair(i,p)); } /// \brief Returns the item with minimum priority relative to \c Compare. /// /// This method returns the item with minimum priority relative to \c /// Compare. /// \pre The heap must be nonempty. Item top() const { return data[0].first; } /// \brief Returns the minimum priority relative to \c Compare. /// /// It returns the minimum priority relative to \c Compare. /// \pre The heap must be nonempty. Prio prio() const { return data[0].second; } /// \brief Deletes the item with minimum priority relative to \c Compare. /// /// This method deletes the item with minimum priority relative to \c /// Compare from the heap. /// \pre The heap must be non-empty. void pop() { int n = data.size()-1; iim.set(data[0].first, POST_HEAP); if (n>0) bubble_down(0, data[n], n); data.pop_back(); } /// \brief Deletes \c i from the heap. /// /// This method deletes item \c i from the heap. /// \param i The item to erase. /// \pre The item should be in the heap. void erase(const Item &i) { int h = iim[i]; int n = data.size()-1; iim.set(data[h].first, POST_HEAP); if( h=0) s=0; return State(s); } /// \brief Sets the state of the \c item in the heap. /// /// Sets the state of the \c item in the heap. It can be used to /// manually clear the heap when it is important to achive the /// better time complexity. /// \param i The item. /// \param st The state. It should not be \c IN_HEAP. void state(const Item& i, State st) { switch (st) { case POST_HEAP: case PRE_HEAP: if (state(i) == IN_HEAP) erase(i); iim[i] = st; break; case IN_HEAP: break; } } /// \brief Replaces an item in the heap. /// /// The \c i item is replaced with \c j item. The \c i item should /// be in the heap, while the \c j should be out of the heap. The /// \c i item will out of the heap and \c j will be in the heap /// with the same prioriority as prevoiusly the \c i item. void replace(const Item& i, const Item& j) { int idx = iim[i]; iim.set(i, iim[j]); iim.set(j, idx); data[idx].first = j; } }; // class FouraryHeap } // namespace lemon #endif // LEMON_FOURARY_HEAP_H