/* -*- C++ -*- * * This file is a part of LEMON, a generic C++ optimization library * * Copyright (C) 2003-2008 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport * (Egervary Research Group on Combinatorial Optimization, EGRES). * * Permission to use, modify and distribute this software is granted * provided that this copyright notice appears in all copies. For * precise terms see the accompanying LICENSE file. * * This software is provided "AS IS" with no warranty of any kind, * express or implied, and with no claim as to its suitability for any * purpose. * */ #ifndef LEMON_GRAPH_UTILS_H #define LEMON_GRAPH_UTILS_H #include #include #include #include #include #include #include #include #include #include #include ///\ingroup gutils ///\file ///\brief Graph utilities. namespace lemon { /// \addtogroup gutils /// @{ ///Creates convenience typedefs for the digraph types and iterators ///This \c \#define creates convenience typedefs for the following types ///of \c Digraph: \c Node, \c NodeIt, \c Arc, \c ArcIt, \c InArcIt, ///\c OutArcIt, \c BoolNodeMap, \c IntNodeMap, \c DoubleNodeMap, ///\c BoolArcMap, \c IntArcMap, \c DoubleArcMap. /// ///\note If the graph type is a dependent type, ie. the graph type depend ///on a template parameter, then use \c TEMPLATE_DIGRAPH_TYPEDEFS() ///macro. #define DIGRAPH_TYPEDEFS(Digraph) \ typedef Digraph::Node Node; \ typedef Digraph::NodeIt NodeIt; \ typedef Digraph::Arc Arc; \ typedef Digraph::ArcIt ArcIt; \ typedef Digraph::InArcIt InArcIt; \ typedef Digraph::OutArcIt OutArcIt; \ typedef Digraph::NodeMap BoolNodeMap; \ typedef Digraph::NodeMap IntNodeMap; \ typedef Digraph::NodeMap DoubleNodeMap; \ typedef Digraph::ArcMap BoolArcMap; \ typedef Digraph::ArcMap IntArcMap; \ typedef Digraph::ArcMap DoubleArcMap ///Creates convenience typedefs for the digraph types and iterators ///\see DIGRAPH_TYPEDEFS /// ///\note Use this macro, if the graph type is a dependent type, ///ie. the graph type depend on a template parameter. #define TEMPLATE_DIGRAPH_TYPEDEFS(Digraph) \ typedef typename Digraph::Node Node; \ typedef typename Digraph::NodeIt NodeIt; \ typedef typename Digraph::Arc Arc; \ typedef typename Digraph::ArcIt ArcIt; \ typedef typename Digraph::InArcIt InArcIt; \ typedef typename Digraph::OutArcIt OutArcIt; \ typedef typename Digraph::template NodeMap BoolNodeMap; \ typedef typename Digraph::template NodeMap IntNodeMap; \ typedef typename Digraph::template NodeMap DoubleNodeMap; \ typedef typename Digraph::template ArcMap BoolArcMap; \ typedef typename Digraph::template ArcMap IntArcMap; \ typedef typename Digraph::template ArcMap DoubleArcMap ///Creates convenience typedefs for the graph types and iterators ///This \c \#define creates the same convenience typedefs as defined ///by \ref DIGRAPH_TYPEDEFS(Graph) and six more, namely it creates ///\c Edge, \c EdgeIt, \c IncEdgeIt, \c BoolEdgeMap, \c IntEdgeMap, ///\c DoubleEdgeMap. /// ///\note If the graph type is a dependent type, ie. the graph type depend ///on a template parameter, then use \c TEMPLATE_DIGRAPH_TYPEDEFS() ///macro. #define GRAPH_TYPEDEFS(Graph) \ DIGRAPH_TYPEDEFS(Graph); \ typedef Graph::Edge Edge; \ typedef Graph::EdgeIt EdgeIt; \ typedef Graph::IncEdgeIt IncEdgeIt; \ typedef Graph::EdgeMap BoolEdgeMap; \ typedef Graph::EdgeMap IntEdgeMap; \ typedef Graph::EdgeMap DoubleEdgeMap ///Creates convenience typedefs for the graph types and iterators ///\see GRAPH_TYPEDEFS /// ///\note Use this macro, if the graph type is a dependent type, ///ie. the graph type depend on a template parameter. #define TEMPLATE_GRAPH_TYPEDEFS(Graph) \ TEMPLATE_DIGRAPH_TYPEDEFS(Graph); \ typedef typename Graph::Edge Edge; \ typedef typename Graph::EdgeIt EdgeIt; \ typedef typename Graph::IncEdgeIt IncEdgeIt; \ typedef typename Graph::template EdgeMap BoolEdgeMap; \ typedef typename Graph::template EdgeMap IntEdgeMap; \ typedef typename Graph::template EdgeMap DoubleEdgeMap /// \brief Function to count the items in the graph. /// /// This function counts the items (nodes, arcs etc) in the graph. /// The complexity of the function is O(n) because /// it iterates on all of the items. template inline int countItems(const Graph& g) { typedef typename ItemSetTraits::ItemIt ItemIt; int num = 0; for (ItemIt it(g); it != INVALID; ++it) { ++num; } return num; } // Node counting: namespace _graph_utils_bits { template struct CountNodesSelector { static int count(const Graph &g) { return countItems(g); } }; template struct CountNodesSelector< Graph, typename enable_if::type> { static int count(const Graph &g) { return g.nodeNum(); } }; } /// \brief Function to count the nodes in the graph. /// /// This function counts the nodes in the graph. /// The complexity of the function is O(n) but for some /// graph structures it is specialized to run in O(1). /// /// If the graph contains a \e nodeNum() member function and a /// \e NodeNumTag tag then this function calls directly the member /// function to query the cardinality of the node set. template inline int countNodes(const Graph& g) { return _graph_utils_bits::CountNodesSelector::count(g); } // Arc counting: namespace _graph_utils_bits { template struct CountArcsSelector { static int count(const Graph &g) { return countItems(g); } }; template struct CountArcsSelector< Graph, typename enable_if::type> { static int count(const Graph &g) { return g.arcNum(); } }; } /// \brief Function to count the arcs in the graph. /// /// This function counts the arcs in the graph. /// The complexity of the function is O(e) but for some /// graph structures it is specialized to run in O(1). /// /// If the graph contains a \e arcNum() member function and a /// \e EdgeNumTag tag then this function calls directly the member /// function to query the cardinality of the arc set. template inline int countArcs(const Graph& g) { return _graph_utils_bits::CountArcsSelector::count(g); } // Edge counting: namespace _graph_utils_bits { template struct CountEdgesSelector { static int count(const Graph &g) { return countItems(g); } }; template struct CountEdgesSelector< Graph, typename enable_if::type> { static int count(const Graph &g) { return g.edgeNum(); } }; } /// \brief Function to count the edges in the graph. /// /// This function counts the edges in the graph. /// The complexity of the function is O(m) but for some /// graph structures it is specialized to run in O(1). /// /// If the graph contains a \e edgeNum() member function and a /// \e EdgeNumTag tag then this function calls directly the member /// function to query the cardinality of the edge set. template inline int countEdges(const Graph& g) { return _graph_utils_bits::CountEdgesSelector::count(g); } template inline int countNodeDegree(const Graph& _g, const typename Graph::Node& _n) { int num = 0; for (DegIt it(_g, _n); it != INVALID; ++it) { ++num; } return num; } /// \brief Function to count the number of the out-arcs from node \c n. /// /// This function counts the number of the out-arcs from node \c n /// in the graph. template inline int countOutArcs(const Graph& _g, const typename Graph::Node& _n) { return countNodeDegree(_g, _n); } /// \brief Function to count the number of the in-arcs to node \c n. /// /// This function counts the number of the in-arcs to node \c n /// in the graph. template inline int countInArcs(const Graph& _g, const typename Graph::Node& _n) { return countNodeDegree(_g, _n); } /// \brief Function to count the number of the inc-edges to node \c n. /// /// This function counts the number of the inc-edges to node \c n /// in the graph. template inline int countIncEdges(const Graph& _g, const typename Graph::Node& _n) { return countNodeDegree(_g, _n); } namespace _graph_utils_bits { template struct FindArcSelector { typedef typename Graph::Node Node; typedef typename Graph::Arc Arc; static Arc find(const Graph &g, Node u, Node v, Arc e) { if (e == INVALID) { g.firstOut(e, u); } else { g.nextOut(e); } while (e != INVALID && g.target(e) != v) { g.nextOut(e); } return e; } }; template struct FindArcSelector< Graph, typename enable_if::type> { typedef typename Graph::Node Node; typedef typename Graph::Arc Arc; static Arc find(const Graph &g, Node u, Node v, Arc prev) { return g.findArc(u, v, prev); } }; } /// \brief Finds an arc between two nodes of a graph. /// /// Finds an arc from node \c u to node \c v in graph \c g. /// /// If \c prev is \ref INVALID (this is the default value), then /// it finds the first arc from \c u to \c v. Otherwise it looks for /// the next arc from \c u to \c v after \c prev. /// \return The found arc or \ref INVALID if there is no such an arc. /// /// Thus you can iterate through each arc from \c u to \c v as it follows. ///\code /// for(Arc e=findArc(g,u,v);e!=INVALID;e=findArc(g,u,v,e)) { /// ... /// } ///\endcode /// ///\sa ArcLookUp ///\sa AllArcLookUp ///\sa DynArcLookUp ///\sa ConArcIt template inline typename Graph::Arc findArc(const Graph &g, typename Graph::Node u, typename Graph::Node v, typename Graph::Arc prev = INVALID) { return _graph_utils_bits::FindArcSelector::find(g, u, v, prev); } /// \brief Iterator for iterating on arcs connected the same nodes. /// /// Iterator for iterating on arcs connected the same nodes. It is /// higher level interface for the findArc() function. You can /// use it the following way: ///\code /// for (ConArcIt it(g, src, trg); it != INVALID; ++it) { /// ... /// } ///\endcode /// ///\sa findArc() ///\sa ArcLookUp ///\sa AllArcLookUp ///\sa DynArcLookUp template class ConArcIt : public _Graph::Arc { public: typedef _Graph Graph; typedef typename Graph::Arc Parent; typedef typename Graph::Arc Arc; typedef typename Graph::Node Node; /// \brief Constructor. /// /// Construct a new ConArcIt iterating on the arcs which /// connects the \c u and \c v node. ConArcIt(const Graph& g, Node u, Node v) : _graph(g) { Parent::operator=(findArc(_graph, u, v)); } /// \brief Constructor. /// /// Construct a new ConArcIt which continues the iterating from /// the \c e arc. ConArcIt(const Graph& g, Arc a) : Parent(a), _graph(g) {} /// \brief Increment operator. /// /// It increments the iterator and gives back the next arc. ConArcIt& operator++() { Parent::operator=(findArc(_graph, _graph.source(*this), _graph.target(*this), *this)); return *this; } private: const Graph& _graph; }; namespace _graph_utils_bits { template struct FindEdgeSelector { typedef typename Graph::Node Node; typedef typename Graph::Edge Edge; static Edge find(const Graph &g, Node u, Node v, Edge e) { bool b; if (u != v) { if (e == INVALID) { g.firstInc(e, b, u); } else { b = g.u(e) == u; g.nextInc(e, b); } while (e != INVALID && (b ? g.v(e) : g.u(e)) != v) { g.nextInc(e, b); } } else { if (e == INVALID) { g.firstInc(e, b, u); } else { b = true; g.nextInc(e, b); } while (e != INVALID && (!b || g.v(e) != v)) { g.nextInc(e, b); } } return e; } }; template struct FindEdgeSelector< Graph, typename enable_if::type> { typedef typename Graph::Node Node; typedef typename Graph::Edge Edge; static Edge find(const Graph &g, Node u, Node v, Edge prev) { return g.findEdge(u, v, prev); } }; } /// \brief Finds an edge between two nodes of a graph. /// /// Finds an edge from node \c u to node \c v in graph \c g. /// If the node \c u and node \c v is equal then each loop edge /// will be enumerated once. /// /// If \c prev is \ref INVALID (this is the default value), then /// it finds the first arc from \c u to \c v. Otherwise it looks for /// the next arc from \c u to \c v after \c prev. /// \return The found arc or \ref INVALID if there is no such an arc. /// /// Thus you can iterate through each arc from \c u to \c v as it follows. ///\code /// for(Edge e = findEdge(g,u,v); e != INVALID; /// e = findEdge(g,u,v,e)) { /// ... /// } ///\endcode /// ///\sa ConEdgeIt template inline typename Graph::Edge findEdge(const Graph &g, typename Graph::Node u, typename Graph::Node v, typename Graph::Edge p = INVALID) { return _graph_utils_bits::FindEdgeSelector::find(g, u, v, p); } /// \brief Iterator for iterating on edges connected the same nodes. /// /// Iterator for iterating on edges connected the same nodes. It is /// higher level interface for the findEdge() function. You can /// use it the following way: ///\code /// for (ConEdgeIt it(g, src, trg); it != INVALID; ++it) { /// ... /// } ///\endcode /// ///\sa findEdge() template class ConEdgeIt : public _Graph::Edge { public: typedef _Graph Graph; typedef typename Graph::Edge Parent; typedef typename Graph::Edge Edge; typedef typename Graph::Node Node; /// \brief Constructor. /// /// Construct a new ConEdgeIt iterating on the edges which /// connects the \c u and \c v node. ConEdgeIt(const Graph& g, Node u, Node v) : _graph(g) { Parent::operator=(findEdge(_graph, u, v)); } /// \brief Constructor. /// /// Construct a new ConEdgeIt which continues the iterating from /// the \c e edge. ConEdgeIt(const Graph& g, Edge e) : Parent(e), _graph(g) {} /// \brief Increment operator. /// /// It increments the iterator and gives back the next edge. ConEdgeIt& operator++() { Parent::operator=(findEdge(_graph, _graph.u(*this), _graph.v(*this), *this)); return *this; } private: const Graph& _graph; }; namespace _graph_utils_bits { template class MapCopyBase { public: virtual void copy(const Digraph& from, const RefMap& refMap) = 0; virtual ~MapCopyBase() {} }; template class MapCopy : public MapCopyBase { public: MapCopy(ToMap& tmap, const FromMap& map) : _tmap(tmap), _map(map) {} virtual void copy(const Digraph& digraph, const RefMap& refMap) { typedef typename ItemSetTraits::ItemIt ItemIt; for (ItemIt it(digraph); it != INVALID; ++it) { _tmap.set(refMap[it], _map[it]); } } private: ToMap& _tmap; const FromMap& _map; }; template class ItemCopy : public MapCopyBase { public: ItemCopy(It& it, const Item& item) : _it(it), _item(item) {} virtual void copy(const Digraph&, const RefMap& refMap) { _it = refMap[_item]; } private: It& _it; Item _item; }; template class RefCopy : public MapCopyBase { public: RefCopy(Ref& map) : _map(map) {} virtual void copy(const Digraph& digraph, const RefMap& refMap) { typedef typename ItemSetTraits::ItemIt ItemIt; for (ItemIt it(digraph); it != INVALID; ++it) { _map.set(it, refMap[it]); } } private: Ref& _map; }; template class CrossRefCopy : public MapCopyBase { public: CrossRefCopy(CrossRef& cmap) : _cmap(cmap) {} virtual void copy(const Digraph& digraph, const RefMap& refMap) { typedef typename ItemSetTraits::ItemIt ItemIt; for (ItemIt it(digraph); it != INVALID; ++it) { _cmap.set(refMap[it], it); } } private: CrossRef& _cmap; }; template struct DigraphCopySelector { template static void copy(Digraph &to, const From& from, NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) { for (typename From::NodeIt it(from); it != INVALID; ++it) { nodeRefMap[it] = to.addNode(); } for (typename From::ArcIt it(from); it != INVALID; ++it) { arcRefMap[it] = to.addArc(nodeRefMap[from.source(it)], nodeRefMap[from.target(it)]); } } }; template struct DigraphCopySelector< Digraph, typename enable_if::type> { template static void copy(Digraph &to, const From& from, NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) { to.build(from, nodeRefMap, arcRefMap); } }; template struct GraphCopySelector { template static void copy(Graph &to, const From& from, NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) { for (typename From::NodeIt it(from); it != INVALID; ++it) { nodeRefMap[it] = to.addNode(); } for (typename From::EdgeIt it(from); it != INVALID; ++it) { edgeRefMap[it] = to.addArc(nodeRefMap[from.source(it)], nodeRefMap[from.target(it)]); } } }; template struct GraphCopySelector< Graph, typename enable_if::type> { template static void copy(Graph &to, const From& from, NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) { to.build(from, nodeRefMap, edgeRefMap); } }; } /// \brief Class to copy a digraph. /// /// Class to copy a digraph to another digraph (duplicate a digraph). The /// simplest way of using it is through the \c copyDigraph() function. /// /// This class not just make a copy of a graph, but it can create /// references and cross references between the nodes and arcs of /// the two graphs, it can copy maps for use with the newly created /// graph and copy nodes and arcs. /// /// To make a copy from a graph, first an instance of DigraphCopy /// should be created, then the data belongs to the graph should /// assigned to copy. In the end, the \c run() member should be /// called. /// /// The next code copies a graph with several data: ///\code /// DigraphCopy dc(new_graph, orig_graph); /// // create a reference for the nodes /// OrigGraph::NodeMap nr(orig_graph); /// dc.nodeRef(nr); /// // create a cross reference (inverse) for the arcs /// NewGraph::ArcMap acr(new_graph); /// dc.arcCrossRef(acr); /// // copy an arc map /// OrigGraph::ArcMap oamap(orig_graph); /// NewGraph::ArcMap namap(new_graph); /// dc.arcMap(namap, oamap); /// // copy a node /// OrigGraph::Node on; /// NewGraph::Node nn; /// dc.node(nn, on); /// // Executions of copy /// dc.run(); ///\endcode template class DigraphCopy { private: typedef typename From::Node Node; typedef typename From::NodeIt NodeIt; typedef typename From::Arc Arc; typedef typename From::ArcIt ArcIt; typedef typename To::Node TNode; typedef typename To::Arc TArc; typedef typename From::template NodeMap NodeRefMap; typedef typename From::template ArcMap ArcRefMap; public: /// \brief Constructor for the DigraphCopy. /// /// It copies the content of the \c _from digraph into the /// \c _to digraph. DigraphCopy(To& to, const From& from) : _from(from), _to(to) {} /// \brief Destructor of the DigraphCopy /// /// Destructor of the DigraphCopy ~DigraphCopy() { for (int i = 0; i < int(_node_maps.size()); ++i) { delete _node_maps[i]; } for (int i = 0; i < int(_arc_maps.size()); ++i) { delete _arc_maps[i]; } } /// \brief Copies the node references into the given map. /// /// Copies the node references into the given map. The parameter /// should be a map, which key type is the Node type of the source /// graph, while the value type is the Node type of the /// destination graph. template DigraphCopy& nodeRef(NodeRef& map) { _node_maps.push_back(new _graph_utils_bits::RefCopy(map)); return *this; } /// \brief Copies the node cross references into the given map. /// /// Copies the node cross references (reverse references) into /// the given map. The parameter should be a map, which key type /// is the Node type of the destination graph, while the value type is /// the Node type of the source graph. template DigraphCopy& nodeCrossRef(NodeCrossRef& map) { _node_maps.push_back(new _graph_utils_bits::CrossRefCopy(map)); return *this; } /// \brief Make copy of the given map. /// /// Makes copy of the given map for the newly created digraph. /// The new map's key type is the destination graph's node type, /// and the copied map's key type is the source graph's node type. template DigraphCopy& nodeMap(ToMap& tmap, const FromMap& map) { _node_maps.push_back(new _graph_utils_bits::MapCopy(tmap, map)); return *this; } /// \brief Make a copy of the given node. /// /// Make a copy of the given node. DigraphCopy& node(TNode& tnode, const Node& snode) { _node_maps.push_back(new _graph_utils_bits::ItemCopy(tnode, snode)); return *this; } /// \brief Copies the arc references into the given map. /// /// Copies the arc references into the given map. template DigraphCopy& arcRef(ArcRef& map) { _arc_maps.push_back(new _graph_utils_bits::RefCopy(map)); return *this; } /// \brief Copies the arc cross references into the given map. /// /// Copies the arc cross references (reverse references) into /// the given map. template DigraphCopy& arcCrossRef(ArcCrossRef& map) { _arc_maps.push_back(new _graph_utils_bits::CrossRefCopy(map)); return *this; } /// \brief Make copy of the given map. /// /// Makes copy of the given map for the newly created digraph. /// The new map's key type is the to digraph's arc type, /// and the copied map's key type is the from digraph's arc /// type. template DigraphCopy& arcMap(ToMap& tmap, const FromMap& map) { _arc_maps.push_back(new _graph_utils_bits::MapCopy(tmap, map)); return *this; } /// \brief Make a copy of the given arc. /// /// Make a copy of the given arc. DigraphCopy& arc(TArc& tarc, const Arc& sarc) { _arc_maps.push_back(new _graph_utils_bits::ItemCopy(tarc, sarc)); return *this; } /// \brief Executes the copies. /// /// Executes the copies. void run() { NodeRefMap nodeRefMap(_from); ArcRefMap arcRefMap(_from); _graph_utils_bits::DigraphCopySelector:: copy(_to, _from, nodeRefMap, arcRefMap); for (int i = 0; i < int(_node_maps.size()); ++i) { _node_maps[i]->copy(_from, nodeRefMap); } for (int i = 0; i < int(_arc_maps.size()); ++i) { _arc_maps[i]->copy(_from, arcRefMap); } } protected: const From& _from; To& _to; std::vector<_graph_utils_bits::MapCopyBase* > _node_maps; std::vector<_graph_utils_bits::MapCopyBase* > _arc_maps; }; /// \brief Copy a digraph to another digraph. /// /// Copy a digraph to another digraph. The complete usage of the /// function is detailed in the DigraphCopy class, but a short /// example shows a basic work: ///\code /// copyDigraph(trg, src).nodeRef(nr).arcCrossRef(ecr).run(); ///\endcode /// /// After the copy the \c nr map will contain the mapping from the /// nodes of the \c from digraph to the nodes of the \c to digraph and /// \c ecr will contain the mapping from the arcs of the \c to digraph /// to the arcs of the \c from digraph. /// /// \see DigraphCopy template DigraphCopy copyDigraph(To& to, const From& from) { return DigraphCopy(to, from); } /// \brief Class to copy a graph. /// /// Class to copy a graph to another graph (duplicate a graph). The /// simplest way of using it is through the \c copyGraph() function. /// /// This class not just make a copy of a graph, but it can create /// references and cross references between the nodes, edges and arcs of /// the two graphs, it can copy maps for use with the newly created /// graph and copy nodes, edges and arcs. /// /// To make a copy from a graph, first an instance of GraphCopy /// should be created, then the data belongs to the graph should /// assigned to copy. In the end, the \c run() member should be /// called. /// /// The next code copies a graph with several data: ///\code /// GraphCopy dc(new_graph, orig_graph); /// // create a reference for the nodes /// OrigGraph::NodeMap nr(orig_graph); /// dc.nodeRef(nr); /// // create a cross reference (inverse) for the edges /// NewGraph::EdgeMap ecr(new_graph); /// dc.edgeCrossRef(ecr); /// // copy an arc map /// OrigGraph::ArcMap oamap(orig_graph); /// NewGraph::ArcMap namap(new_graph); /// dc.arcMap(namap, oamap); /// // copy a node /// OrigGraph::Node on; /// NewGraph::Node nn; /// dc.node(nn, on); /// // Executions of copy /// dc.run(); ///\endcode template class GraphCopy { private: typedef typename From::Node Node; typedef typename From::NodeIt NodeIt; typedef typename From::Arc Arc; typedef typename From::ArcIt ArcIt; typedef typename From::Edge Edge; typedef typename From::EdgeIt EdgeIt; typedef typename To::Node TNode; typedef typename To::Arc TArc; typedef typename To::Edge TEdge; typedef typename From::template NodeMap NodeRefMap; typedef typename From::template EdgeMap EdgeRefMap; struct ArcRefMap { ArcRefMap(const To& to, const From& from, const EdgeRefMap& edge_ref, const NodeRefMap& node_ref) : _to(to), _from(from), _edge_ref(edge_ref), _node_ref(node_ref) {} typedef typename From::Arc Key; typedef typename To::Arc Value; Value operator[](const Key& key) const { bool forward = (_from.direction(key) == (_node_ref[_from.source(key)] == _to.source(_edge_ref[key]))); return _to.direct(_edge_ref[key], forward); } const To& _to; const From& _from; const EdgeRefMap& _edge_ref; const NodeRefMap& _node_ref; }; public: /// \brief Constructor for the GraphCopy. /// /// It copies the content of the \c _from graph into the /// \c _to graph. GraphCopy(To& to, const From& from) : _from(from), _to(to) {} /// \brief Destructor of the GraphCopy /// /// Destructor of the GraphCopy ~GraphCopy() { for (int i = 0; i < int(_node_maps.size()); ++i) { delete _node_maps[i]; } for (int i = 0; i < int(_arc_maps.size()); ++i) { delete _arc_maps[i]; } for (int i = 0; i < int(_edge_maps.size()); ++i) { delete _edge_maps[i]; } } /// \brief Copies the node references into the given map. /// /// Copies the node references into the given map. template GraphCopy& nodeRef(NodeRef& map) { _node_maps.push_back(new _graph_utils_bits::RefCopy(map)); return *this; } /// \brief Copies the node cross references into the given map. /// /// Copies the node cross references (reverse references) into /// the given map. template GraphCopy& nodeCrossRef(NodeCrossRef& map) { _node_maps.push_back(new _graph_utils_bits::CrossRefCopy(map)); return *this; } /// \brief Make copy of the given map. /// /// Makes copy of the given map for the newly created graph. /// The new map's key type is the to graph's node type, /// and the copied map's key type is the from graph's node /// type. template GraphCopy& nodeMap(ToMap& tmap, const FromMap& map) { _node_maps.push_back(new _graph_utils_bits::MapCopy(tmap, map)); return *this; } /// \brief Make a copy of the given node. /// /// Make a copy of the given node. GraphCopy& node(TNode& tnode, const Node& snode) { _node_maps.push_back(new _graph_utils_bits::ItemCopy(tnode, snode)); return *this; } /// \brief Copies the arc references into the given map. /// /// Copies the arc references into the given map. template GraphCopy& arcRef(ArcRef& map) { _arc_maps.push_back(new _graph_utils_bits::RefCopy(map)); return *this; } /// \brief Copies the arc cross references into the given map. /// /// Copies the arc cross references (reverse references) into /// the given map. template GraphCopy& arcCrossRef(ArcCrossRef& map) { _arc_maps.push_back(new _graph_utils_bits::CrossRefCopy(map)); return *this; } /// \brief Make copy of the given map. /// /// Makes copy of the given map for the newly created graph. /// The new map's key type is the to graph's arc type, /// and the copied map's key type is the from graph's arc /// type. template GraphCopy& arcMap(ToMap& tmap, const FromMap& map) { _arc_maps.push_back(new _graph_utils_bits::MapCopy(tmap, map)); return *this; } /// \brief Make a copy of the given arc. /// /// Make a copy of the given arc. GraphCopy& arc(TArc& tarc, const Arc& sarc) { _arc_maps.push_back(new _graph_utils_bits::ItemCopy(tarc, sarc)); return *this; } /// \brief Copies the edge references into the given map. /// /// Copies the edge references into the given map. template GraphCopy& edgeRef(EdgeRef& map) { _edge_maps.push_back(new _graph_utils_bits::RefCopy(map)); return *this; } /// \brief Copies the edge cross references into the given map. /// /// Copies the edge cross references (reverse /// references) into the given map. template GraphCopy& edgeCrossRef(EdgeCrossRef& map) { _edge_maps.push_back(new _graph_utils_bits::CrossRefCopy(map)); return *this; } /// \brief Make copy of the given map. /// /// Makes copy of the given map for the newly created graph. /// The new map's key type is the to graph's edge type, /// and the copied map's key type is the from graph's edge /// type. template GraphCopy& edgeMap(ToMap& tmap, const FromMap& map) { _edge_maps.push_back(new _graph_utils_bits::MapCopy(tmap, map)); return *this; } /// \brief Make a copy of the given edge. /// /// Make a copy of the given edge. GraphCopy& edge(TEdge& tedge, const Edge& sedge) { _edge_maps.push_back(new _graph_utils_bits::ItemCopy(tedge, sedge)); return *this; } /// \brief Executes the copies. /// /// Executes the copies. void run() { NodeRefMap nodeRefMap(_from); EdgeRefMap edgeRefMap(_from); ArcRefMap arcRefMap(_to, _from, edgeRefMap, nodeRefMap); _graph_utils_bits::GraphCopySelector:: copy(_to, _from, nodeRefMap, edgeRefMap); for (int i = 0; i < int(_node_maps.size()); ++i) { _node_maps[i]->copy(_from, nodeRefMap); } for (int i = 0; i < int(_edge_maps.size()); ++i) { _edge_maps[i]->copy(_from, edgeRefMap); } for (int i = 0; i < int(_arc_maps.size()); ++i) { _arc_maps[i]->copy(_from, arcRefMap); } } private: const From& _from; To& _to; std::vector<_graph_utils_bits::MapCopyBase* > _node_maps; std::vector<_graph_utils_bits::MapCopyBase* > _arc_maps; std::vector<_graph_utils_bits::MapCopyBase* > _edge_maps; }; /// \brief Copy a graph to another graph. /// /// Copy a graph to another graph. The complete usage of the /// function is detailed in the GraphCopy class, but a short /// example shows a basic work: ///\code /// copyGraph(trg, src).nodeRef(nr).arcCrossRef(ecr).run(); ///\endcode /// /// After the copy the \c nr map will contain the mapping from the /// nodes of the \c from graph to the nodes of the \c to graph and /// \c ecr will contain the mapping from the arcs of the \c to graph /// to the arcs of the \c from graph. /// /// \see GraphCopy template GraphCopy copyGraph(To& to, const From& from) { return GraphCopy(to, from); } /// @} /// \addtogroup graph_maps /// @{ /// Provides an immutable and unique id for each item in the graph. /// The IdMap class provides a unique and immutable id for each item of the /// same type (e.g. node) in the graph. This id is
  • \b unique: /// different items (nodes) get different ids
  • \b immutable: the id of an /// item (node) does not change (even if you delete other nodes).
/// Through this map you get access (i.e. can read) the inner id values of /// the items stored in the graph. This map can be inverted with its member /// class \c InverseMap or with the \c operator() member. /// template class IdMap { public: typedef _Graph Graph; typedef int Value; typedef _Item Item; typedef _Item Key; /// \brief Constructor. /// /// Constructor of the map. explicit IdMap(const Graph& graph) : _graph(&graph) {} /// \brief Gives back the \e id of the item. /// /// Gives back the immutable and unique \e id of the item. int operator[](const Item& item) const { return _graph->id(item);} /// \brief Gives back the item by its id. /// /// Gives back the item by its id. Item operator()(int id) { return _graph->fromId(id, Item()); } private: const Graph* _graph; public: /// \brief The class represents the inverse of its owner (IdMap). /// /// The class represents the inverse of its owner (IdMap). /// \see inverse() class InverseMap { public: /// \brief Constructor. /// /// Constructor for creating an id-to-item map. explicit InverseMap(const Graph& graph) : _graph(&graph) {} /// \brief Constructor. /// /// Constructor for creating an id-to-item map. explicit InverseMap(const IdMap& map) : _graph(map._graph) {} /// \brief Gives back the given item from its id. /// /// Gives back the given item from its id. /// Item operator[](int id) const { return _graph->fromId(id, Item());} private: const Graph* _graph; }; /// \brief Gives back the inverse of the map. /// /// Gives back the inverse of the IdMap. InverseMap inverse() const { return InverseMap(*_graph);} }; /// \brief General invertable graph-map type. /// This type provides simple invertable graph-maps. /// The InvertableMap wraps an arbitrary ReadWriteMap /// and if a key is set to a new value then store it /// in the inverse map. /// /// The values of the map can be accessed /// with stl compatible forward iterator. /// /// \tparam _Graph The graph type. /// \tparam _Item The item type of the graph. /// \tparam _Value The value type of the map. /// /// \see IterableValueMap template class InvertableMap : protected DefaultMap<_Graph, _Item, _Value> { private: typedef DefaultMap<_Graph, _Item, _Value> Map; typedef _Graph Graph; typedef std::map<_Value, _Item> Container; Container _inv_map; public: /// The key type of InvertableMap (Node, Arc, Edge). typedef typename Map::Key Key; /// The value type of the InvertableMap. typedef typename Map::Value Value; /// \brief Constructor. /// /// Construct a new InvertableMap for the graph. /// explicit InvertableMap(const Graph& graph) : Map(graph) {} /// \brief Forward iterator for values. /// /// This iterator is an stl compatible forward /// iterator on the values of the map. The values can /// be accessed in the [beginValue, endValue) range. /// class ValueIterator : public std::iterator { friend class InvertableMap; private: ValueIterator(typename Container::const_iterator _it) : it(_it) {} public: ValueIterator() {} ValueIterator& operator++() { ++it; return *this; } ValueIterator operator++(int) { ValueIterator tmp(*this); operator++(); return tmp; } const Value& operator*() const { return it->first; } const Value* operator->() const { return &(it->first); } bool operator==(ValueIterator jt) const { return it == jt.it; } bool operator!=(ValueIterator jt) const { return it != jt.it; } private: typename Container::const_iterator it; }; /// \brief Returns an iterator to the first value. /// /// Returns an stl compatible iterator to the /// first value of the map. The values of the /// map can be accessed in the [beginValue, endValue) /// range. ValueIterator beginValue() const { return ValueIterator(_inv_map.begin()); } /// \brief Returns an iterator after the last value. /// /// Returns an stl compatible iterator after the /// last value of the map. The values of the /// map can be accessed in the [beginValue, endValue) /// range. ValueIterator endValue() const { return ValueIterator(_inv_map.end()); } /// \brief The setter function of the map. /// /// Sets the mapped value. void set(const Key& key, const Value& val) { Value oldval = Map::operator[](key); typename Container::iterator it = _inv_map.find(oldval); if (it != _inv_map.end() && it->second == key) { _inv_map.erase(it); } _inv_map.insert(make_pair(val, key)); Map::set(key, val); } /// \brief The getter function of the map. /// /// It gives back the value associated with the key. typename MapTraits::ConstReturnValue operator[](const Key& key) const { return Map::operator[](key); } /// \brief Gives back the item by its value. /// /// Gives back the item by its value. Key operator()(const Value& key) const { typename Container::const_iterator it = _inv_map.find(key); return it != _inv_map.end() ? it->second : INVALID; } protected: /// \brief Erase the key from the map. /// /// Erase the key to the map. It is called by the /// \c AlterationNotifier. virtual void erase(const Key& key) { Value val = Map::operator[](key); typename Container::iterator it = _inv_map.find(val); if (it != _inv_map.end() && it->second == key) { _inv_map.erase(it); } Map::erase(key); } /// \brief Erase more keys from the map. /// /// Erase more keys from the map. It is called by the /// \c AlterationNotifier. virtual void erase(const std::vector& keys) { for (int i = 0; i < int(keys.size()); ++i) { Value val = Map::operator[](keys[i]); typename Container::iterator it = _inv_map.find(val); if (it != _inv_map.end() && it->second == keys[i]) { _inv_map.erase(it); } } Map::erase(keys); } /// \brief Clear the keys from the map and inverse map. /// /// Clear the keys from the map and inverse map. It is called by the /// \c AlterationNotifier. virtual void clear() { _inv_map.clear(); Map::clear(); } public: /// \brief The inverse map type. /// /// The inverse of this map. The subscript operator of the map /// gives back always the item what was last assigned to the value. class InverseMap { public: /// \brief Constructor of the InverseMap. /// /// Constructor of the InverseMap. explicit InverseMap(const InvertableMap& inverted) : _inverted(inverted) {} /// The value type of the InverseMap. typedef typename InvertableMap::Key Value; /// The key type of the InverseMap. typedef typename InvertableMap::Value Key; /// \brief Subscript operator. /// /// Subscript operator. It gives back always the item /// what was last assigned to the value. Value operator[](const Key& key) const { return _inverted(key); } private: const InvertableMap& _inverted; }; /// \brief It gives back the just readable inverse map. /// /// It gives back the just readable inverse map. InverseMap inverse() const { return InverseMap(*this); } }; /// \brief Provides a mutable, continuous and unique descriptor for each /// item in the graph. /// /// The DescriptorMap class provides a unique and continuous (but mutable) /// descriptor (id) for each item of the same type (e.g. node) in the /// graph. This id is
  • \b unique: different items (nodes) get /// different ids
  • \b continuous: the range of the ids is the set of /// integers between 0 and \c n-1, where \c n is the number of the items of /// this type (e.g. nodes) (so the id of a node can change if you delete an /// other node, i.e. this id is mutable).
This map can be inverted /// with its member class \c InverseMap, or with the \c operator() member. /// /// \tparam _Graph The graph class the \c DescriptorMap belongs to. /// \tparam _Item The Item is the Key of the Map. It may be Node, Arc or /// Edge. template class DescriptorMap : protected DefaultMap<_Graph, _Item, int> { typedef _Item Item; typedef DefaultMap<_Graph, _Item, int> Map; public: /// The graph class of DescriptorMap. typedef _Graph Graph; /// The key type of DescriptorMap (Node, Arc, Edge). typedef typename Map::Key Key; /// The value type of DescriptorMap. typedef typename Map::Value Value; /// \brief Constructor. /// /// Constructor for descriptor map. explicit DescriptorMap(const Graph& _graph) : Map(_graph) { Item it; const typename Map::Notifier* nf = Map::notifier(); for (nf->first(it); it != INVALID; nf->next(it)) { Map::set(it, _inv_map.size()); _inv_map.push_back(it); } } protected: /// \brief Add a new key to the map. /// /// Add a new key to the map. It is called by the /// \c AlterationNotifier. virtual void add(const Item& item) { Map::add(item); Map::set(item, _inv_map.size()); _inv_map.push_back(item); } /// \brief Add more new keys to the map. /// /// Add more new keys to the map. It is called by the /// \c AlterationNotifier. virtual void add(const std::vector& items) { Map::add(items); for (int i = 0; i < int(items.size()); ++i) { Map::set(items[i], _inv_map.size()); _inv_map.push_back(items[i]); } } /// \brief Erase the key from the map. /// /// Erase the key from the map. It is called by the /// \c AlterationNotifier. virtual void erase(const Item& item) { Map::set(_inv_map.back(), Map::operator[](item)); _inv_map[Map::operator[](item)] = _inv_map.back(); _inv_map.pop_back(); Map::erase(item); } /// \brief Erase more keys from the map. /// /// Erase more keys from the map. It is called by the /// \c AlterationNotifier. virtual void erase(const std::vector& items) { for (int i = 0; i < int(items.size()); ++i) { Map::set(_inv_map.back(), Map::operator[](items[i])); _inv_map[Map::operator[](items[i])] = _inv_map.back(); _inv_map.pop_back(); } Map::erase(items); } /// \brief Build the unique map. /// /// Build the unique map. It is called by the /// \c AlterationNotifier. virtual void build() { Map::build(); Item it; const typename Map::Notifier* nf = Map::notifier(); for (nf->first(it); it != INVALID; nf->next(it)) { Map::set(it, _inv_map.size()); _inv_map.push_back(it); } } /// \brief Clear the keys from the map. /// /// Clear the keys from the map. It is called by the /// \c AlterationNotifier. virtual void clear() { _inv_map.clear(); Map::clear(); } public: /// \brief Returns the maximal value plus one. /// /// Returns the maximal value plus one in the map. unsigned int size() const { return _inv_map.size(); } /// \brief Swaps the position of the two items in the map. /// /// Swaps the position of the two items in the map. void swap(const Item& p, const Item& q) { int pi = Map::operator[](p); int qi = Map::operator[](q); Map::set(p, qi); _inv_map[qi] = p; Map::set(q, pi); _inv_map[pi] = q; } /// \brief Gives back the \e descriptor of the item. /// /// Gives back the mutable and unique \e descriptor of the map. int operator[](const Item& item) const { return Map::operator[](item); } /// \brief Gives back the item by its descriptor. /// /// Gives back th item by its descriptor. Item operator()(int id) const { return _inv_map[id]; } private: typedef std::vector Container; Container _inv_map; public: /// \brief The inverse map type of DescriptorMap. /// /// The inverse map type of DescriptorMap. class InverseMap { public: /// \brief Constructor of the InverseMap. /// /// Constructor of the InverseMap. explicit InverseMap(const DescriptorMap& inverted) : _inverted(inverted) {} /// The value type of the InverseMap. typedef typename DescriptorMap::Key Value; /// The key type of the InverseMap. typedef typename DescriptorMap::Value Key; /// \brief Subscript operator. /// /// Subscript operator. It gives back the item /// that the descriptor belongs to currently. Value operator[](const Key& key) const { return _inverted(key); } /// \brief Size of the map. /// /// Returns the size of the map. unsigned int size() const { return _inverted.size(); } private: const DescriptorMap& _inverted; }; /// \brief Gives back the inverse of the map. /// /// Gives back the inverse of the map. const InverseMap inverse() const { return InverseMap(*this); } }; /// \brief Returns the source of the given arc. /// /// The SourceMap gives back the source Node of the given arc. /// \see TargetMap template class SourceMap { public: typedef typename Digraph::Node Value; typedef typename Digraph::Arc Key; /// \brief Constructor /// /// Constructor /// \param _digraph The digraph that the map belongs to. explicit SourceMap(const Digraph& digraph) : _digraph(digraph) {} /// \brief The subscript operator. /// /// The subscript operator. /// \param arc The arc /// \return The source of the arc Value operator[](const Key& arc) const { return _digraph.source(arc); } private: const Digraph& _digraph; }; /// \brief Returns a \ref SourceMap class. /// /// This function just returns an \ref SourceMap class. /// \relates SourceMap template inline SourceMap sourceMap(const Digraph& digraph) { return SourceMap(digraph); } /// \brief Returns the target of the given arc. /// /// The TargetMap gives back the target Node of the given arc. /// \see SourceMap template class TargetMap { public: typedef typename Digraph::Node Value; typedef typename Digraph::Arc Key; /// \brief Constructor /// /// Constructor /// \param _digraph The digraph that the map belongs to. explicit TargetMap(const Digraph& digraph) : _digraph(digraph) {} /// \brief The subscript operator. /// /// The subscript operator. /// \param e The arc /// \return The target of the arc Value operator[](const Key& e) const { return _digraph.target(e); } private: const Digraph& _digraph; }; /// \brief Returns a \ref TargetMap class. /// /// This function just returns a \ref TargetMap class. /// \relates TargetMap template inline TargetMap targetMap(const Digraph& digraph) { return TargetMap(digraph); } /// \brief Returns the "forward" directed arc view of an edge. /// /// Returns the "forward" directed arc view of an edge. /// \see BackwardMap template class ForwardMap { public: typedef typename Graph::Arc Value; typedef typename Graph::Edge Key; /// \brief Constructor /// /// Constructor /// \param _graph The graph that the map belongs to. explicit ForwardMap(const Graph& graph) : _graph(graph) {} /// \brief The subscript operator. /// /// The subscript operator. /// \param key An edge /// \return The "forward" directed arc view of edge Value operator[](const Key& key) const { return _graph.direct(key, true); } private: const Graph& _graph; }; /// \brief Returns a \ref ForwardMap class. /// /// This function just returns an \ref ForwardMap class. /// \relates ForwardMap template inline ForwardMap forwardMap(const Graph& graph) { return ForwardMap(graph); } /// \brief Returns the "backward" directed arc view of an edge. /// /// Returns the "backward" directed arc view of an edge. /// \see ForwardMap template class BackwardMap { public: typedef typename Graph::Arc Value; typedef typename Graph::Edge Key; /// \brief Constructor /// /// Constructor /// \param _graph The graph that the map belongs to. explicit BackwardMap(const Graph& graph) : _graph(graph) {} /// \brief The subscript operator. /// /// The subscript operator. /// \param key An edge /// \return The "backward" directed arc view of edge Value operator[](const Key& key) const { return _graph.direct(key, false); } private: const Graph& _graph; }; /// \brief Returns a \ref BackwardMap class /// This function just returns a \ref BackwardMap class. /// \relates BackwardMap template inline BackwardMap backwardMap(const Graph& graph) { return BackwardMap(graph); } /// \brief Potential difference map /// /// If there is an potential map on the nodes then we /// can get an arc map as we get the substraction of the /// values of the target and source. template class PotentialDifferenceMap { public: typedef typename Digraph::Arc Key; typedef typename NodeMap::Value Value; /// \brief Constructor /// /// Contructor of the map explicit PotentialDifferenceMap(const Digraph& digraph, const NodeMap& potential) : _digraph(digraph), _potential(potential) {} /// \brief Const subscription operator /// /// Const subscription operator Value operator[](const Key& arc) const { return _potential[_digraph.target(arc)] - _potential[_digraph.source(arc)]; } private: const Digraph& _digraph; const NodeMap& _potential; }; /// \brief Returns a PotentialDifferenceMap. /// /// This function just returns a PotentialDifferenceMap. /// \relates PotentialDifferenceMap template PotentialDifferenceMap potentialDifferenceMap(const Digraph& digraph, const NodeMap& potential) { return PotentialDifferenceMap(digraph, potential); } /// \brief Map of the node in-degrees. /// /// This map returns the in-degree of a node. Once it is constructed, /// the degrees are stored in a standard NodeMap, so each query is done /// in constant time. On the other hand, the values are updated automatically /// whenever the digraph changes. /// /// \warning Besides addNode() and addArc(), a digraph structure may provide /// alternative ways to modify the digraph. The correct behavior of InDegMap /// is not guarantied if these additional features are used. For example /// the functions \ref ListDigraph::changeSource() "changeSource()", /// \ref ListDigraph::changeTarget() "changeTarget()" and /// \ref ListDigraph::reverseArc() "reverseArc()" /// of \ref ListDigraph will \e not update the degree values correctly. /// /// \sa OutDegMap template class InDegMap : protected ItemSetTraits<_Digraph, typename _Digraph::Arc> ::ItemNotifier::ObserverBase { public: typedef _Digraph Digraph; typedef int Value; typedef typename Digraph::Node Key; typedef typename ItemSetTraits ::ItemNotifier::ObserverBase Parent; private: class AutoNodeMap : public DefaultMap { public: typedef DefaultMap Parent; AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {} virtual void add(const Key& key) { Parent::add(key); Parent::set(key, 0); } virtual void add(const std::vector& keys) { Parent::add(keys); for (int i = 0; i < int(keys.size()); ++i) { Parent::set(keys[i], 0); } } virtual void build() { Parent::build(); Key it; typename Parent::Notifier* nf = Parent::notifier(); for (nf->first(it); it != INVALID; nf->next(it)) { Parent::set(it, 0); } } }; public: /// \brief Constructor. /// /// Constructor for creating in-degree map. explicit InDegMap(const Digraph& digraph) : _digraph(digraph), _deg(digraph) { Parent::attach(_digraph.notifier(typename Digraph::Arc())); for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { _deg[it] = countInArcs(_digraph, it); } } /// Gives back the in-degree of a Node. int operator[](const Key& key) const { return _deg[key]; } protected: typedef typename Digraph::Arc Arc; virtual void add(const Arc& arc) { ++_deg[_digraph.target(arc)]; } virtual void add(const std::vector& arcs) { for (int i = 0; i < int(arcs.size()); ++i) { ++_deg[_digraph.target(arcs[i])]; } } virtual void erase(const Arc& arc) { --_deg[_digraph.target(arc)]; } virtual void erase(const std::vector& arcs) { for (int i = 0; i < int(arcs.size()); ++i) { --_deg[_digraph.target(arcs[i])]; } } virtual void build() { for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { _deg[it] = countInArcs(_digraph, it); } } virtual void clear() { for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { _deg[it] = 0; } } private: const Digraph& _digraph; AutoNodeMap _deg; }; /// \brief Map of the node out-degrees. /// /// This map returns the out-degree of a node. Once it is constructed, /// the degrees are stored in a standard NodeMap, so each query is done /// in constant time. On the other hand, the values are updated automatically /// whenever the digraph changes. /// /// \warning Besides addNode() and addArc(), a digraph structure may provide /// alternative ways to modify the digraph. The correct behavior of OutDegMap /// is not guarantied if these additional features are used. For example /// the functions \ref ListDigraph::changeSource() "changeSource()", /// \ref ListDigraph::changeTarget() "changeTarget()" and /// \ref ListDigraph::reverseArc() "reverseArc()" /// of \ref ListDigraph will \e not update the degree values correctly. /// /// \sa InDegMap template class OutDegMap : protected ItemSetTraits<_Digraph, typename _Digraph::Arc> ::ItemNotifier::ObserverBase { public: typedef _Digraph Digraph; typedef int Value; typedef typename Digraph::Node Key; typedef typename ItemSetTraits ::ItemNotifier::ObserverBase Parent; private: class AutoNodeMap : public DefaultMap { public: typedef DefaultMap Parent; AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {} virtual void add(const Key& key) { Parent::add(key); Parent::set(key, 0); } virtual void add(const std::vector& keys) { Parent::add(keys); for (int i = 0; i < int(keys.size()); ++i) { Parent::set(keys[i], 0); } } virtual void build() { Parent::build(); Key it; typename Parent::Notifier* nf = Parent::notifier(); for (nf->first(it); it != INVALID; nf->next(it)) { Parent::set(it, 0); } } }; public: /// \brief Constructor. /// /// Constructor for creating out-degree map. explicit OutDegMap(const Digraph& digraph) : _digraph(digraph), _deg(digraph) { Parent::attach(_digraph.notifier(typename Digraph::Arc())); for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { _deg[it] = countOutArcs(_digraph, it); } } /// Gives back the out-degree of a Node. int operator[](const Key& key) const { return _deg[key]; } protected: typedef typename Digraph::Arc Arc; virtual void add(const Arc& arc) { ++_deg[_digraph.source(arc)]; } virtual void add(const std::vector& arcs) { for (int i = 0; i < int(arcs.size()); ++i) { ++_deg[_digraph.source(arcs[i])]; } } virtual void erase(const Arc& arc) { --_deg[_digraph.source(arc)]; } virtual void erase(const std::vector& arcs) { for (int i = 0; i < int(arcs.size()); ++i) { --_deg[_digraph.source(arcs[i])]; } } virtual void build() { for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { _deg[it] = countOutArcs(_digraph, it); } } virtual void clear() { for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { _deg[it] = 0; } } private: const Digraph& _digraph; AutoNodeMap _deg; }; ///Dynamic arc look up between given endpoints. ///\ingroup gutils ///Using this class, you can find an arc in a digraph from a given ///source to a given target in amortized time O(log d), ///where d is the out-degree of the source node. /// ///It is possible to find \e all parallel arcs between two nodes with ///the \c findFirst() and \c findNext() members. /// ///See the \ref ArcLookUp and \ref AllArcLookUp classes if your ///digraph is not changed so frequently. /// ///This class uses a self-adjusting binary search tree, Sleator's ///and Tarjan's Splay tree for guarantee the logarithmic amortized ///time bound for arc lookups. This class also guarantees the ///optimal time bound in a constant factor for any distribution of ///queries. /// ///\tparam G The type of the underlying digraph. /// ///\sa ArcLookUp ///\sa AllArcLookUp template class DynArcLookUp : protected ItemSetTraits::ItemNotifier::ObserverBase { public: typedef typename ItemSetTraits ::ItemNotifier::ObserverBase Parent; TEMPLATE_DIGRAPH_TYPEDEFS(G); typedef G Digraph; protected: class AutoNodeMap : public DefaultMap { public: typedef DefaultMap Parent; AutoNodeMap(const G& digraph) : Parent(digraph, INVALID) {} virtual void add(const Node& node) { Parent::add(node); Parent::set(node, INVALID); } virtual void add(const std::vector& nodes) { Parent::add(nodes); for (int i = 0; i < int(nodes.size()); ++i) { Parent::set(nodes[i], INVALID); } } virtual void build() { Parent::build(); Node it; typename Parent::Notifier* nf = Parent::notifier(); for (nf->first(it); it != INVALID; nf->next(it)) { Parent::set(it, INVALID); } } }; const Digraph &_g; AutoNodeMap _head; typename Digraph::template ArcMap _parent; typename Digraph::template ArcMap _left; typename Digraph::template ArcMap _right; class ArcLess { const Digraph &g; public: ArcLess(const Digraph &_g) : g(_g) {} bool operator()(Arc a,Arc b) const { return g.target(a)& arcs) { for (int i = 0; i < int(arcs.size()); ++i) { insert(arcs[i]); } } virtual void erase(const Arc& arc) { remove(arc); } virtual void erase(const std::vector& arcs) { for (int i = 0; i < int(arcs.size()); ++i) { remove(arcs[i]); } } virtual void build() { refresh(); } virtual void clear() { for(NodeIt n(_g);n!=INVALID;++n) { _head.set(n, INVALID); } } void insert(Arc arc) { Node s = _g.source(arc); Node t = _g.target(arc); _left.set(arc, INVALID); _right.set(arc, INVALID); Arc e = _head[s]; if (e == INVALID) { _head.set(s, arc); _parent.set(arc, INVALID); return; } while (true) { if (t < _g.target(e)) { if (_left[e] == INVALID) { _left.set(e, arc); _parent.set(arc, e); splay(arc); return; } else { e = _left[e]; } } else { if (_right[e] == INVALID) { _right.set(e, arc); _parent.set(arc, e); splay(arc); return; } else { e = _right[e]; } } } } void remove(Arc arc) { if (_left[arc] == INVALID) { if (_right[arc] != INVALID) { _parent.set(_right[arc], _parent[arc]); } if (_parent[arc] != INVALID) { if (_left[_parent[arc]] == arc) { _left.set(_parent[arc], _right[arc]); } else { _right.set(_parent[arc], _right[arc]); } } else { _head.set(_g.source(arc), _right[arc]); } } else if (_right[arc] == INVALID) { _parent.set(_left[arc], _parent[arc]); if (_parent[arc] != INVALID) { if (_left[_parent[arc]] == arc) { _left.set(_parent[arc], _left[arc]); } else { _right.set(_parent[arc], _left[arc]); } } else { _head.set(_g.source(arc), _left[arc]); } } else { Arc e = _left[arc]; if (_right[e] != INVALID) { e = _right[e]; while (_right[e] != INVALID) { e = _right[e]; } Arc s = _parent[e]; _right.set(_parent[e], _left[e]); if (_left[e] != INVALID) { _parent.set(_left[e], _parent[e]); } _left.set(e, _left[arc]); _parent.set(_left[arc], e); _right.set(e, _right[arc]); _parent.set(_right[arc], e); _parent.set(e, _parent[arc]); if (_parent[arc] != INVALID) { if (_left[_parent[arc]] == arc) { _left.set(_parent[arc], e); } else { _right.set(_parent[arc], e); } } splay(s); } else { _right.set(e, _right[arc]); _parent.set(_right[arc], e); if (_parent[arc] != INVALID) { if (_left[_parent[arc]] == arc) { _left.set(_parent[arc], e); } else { _right.set(_parent[arc], e); } } else { _head.set(_g.source(arc), e); } } } } Arc refreshRec(std::vector &v,int a,int b) { int m=(a+b)/2; Arc me=v[m]; if (a < m) { Arc left = refreshRec(v,a,m-1); _left.set(me, left); _parent.set(left, me); } else { _left.set(me, INVALID); } if (m < b) { Arc right = refreshRec(v,m+1,b); _right.set(me, right); _parent.set(right, me); } else { _right.set(me, INVALID); } return me; } void refresh() { for(NodeIt n(_g);n!=INVALID;++n) { std::vector v; for(OutArcIt e(_g,n);e!=INVALID;++e) v.push_back(e); if(v.size()) { std::sort(v.begin(),v.end(),ArcLess(_g)); Arc head = refreshRec(v,0,v.size()-1); _head.set(n, head); _parent.set(head, INVALID); } else _head.set(n, INVALID); } } void zig(Arc v) { Arc w = _parent[v]; _parent.set(v, _parent[w]); _parent.set(w, v); _left.set(w, _right[v]); _right.set(v, w); if (_parent[v] != INVALID) { if (_right[_parent[v]] == w) { _right.set(_parent[v], v); } else { _left.set(_parent[v], v); } } if (_left[w] != INVALID){ _parent.set(_left[w], w); } } void zag(Arc v) { Arc w = _parent[v]; _parent.set(v, _parent[w]); _parent.set(w, v); _right.set(w, _left[v]); _left.set(v, w); if (_parent[v] != INVALID){ if (_left[_parent[v]] == w) { _left.set(_parent[v], v); } else { _right.set(_parent[v], v); } } if (_right[w] != INVALID){ _parent.set(_right[w], w); } } void splay(Arc v) { while (_parent[v] != INVALID) { if (v == _left[_parent[v]]) { if (_parent[_parent[v]] == INVALID) { zig(v); } else { if (_parent[v] == _left[_parent[_parent[v]]]) { zig(_parent[v]); zig(v); } else { zig(v); zag(v); } } } else { if (_parent[_parent[v]] == INVALID) { zag(v); } else { if (_parent[v] == _left[_parent[_parent[v]]]) { zag(v); zig(v); } else { zag(_parent[v]); zag(v); } } } } _head[_g.source(v)] = v; } public: ///Find an arc between two nodes. ///Find an arc between two nodes in time O(logd), where /// d is the number of outgoing arcs of \c s. ///\param s The source node ///\param t The target node ///\return An arc from \c s to \c t if there exists, ///\ref INVALID otherwise. Arc operator()(Node s, Node t) const { Arc a = _head[s]; while (true) { if (_g.target(a) == t) { const_cast(*this).splay(a); return a; } else if (t < _g.target(a)) { if (_left[a] == INVALID) { const_cast(*this).splay(a); return INVALID; } else { a = _left[a]; } } else { if (_right[a] == INVALID) { const_cast(*this).splay(a); return INVALID; } else { a = _right[a]; } } } } ///Find the first arc between two nodes. ///Find the first arc between two nodes in time /// O(logd), where d is the number of /// outgoing arcs of \c s. ///\param s The source node ///\param t The target node ///\return An arc from \c s to \c t if there exists, \ref INVALID /// otherwise. Arc findFirst(Node s, Node t) const { Arc a = _head[s]; Arc r = INVALID; while (true) { if (_g.target(a) < t) { if (_right[a] == INVALID) { const_cast(*this).splay(a); return r; } else { a = _right[a]; } } else { if (_g.target(a) == t) { r = a; } if (_left[a] == INVALID) { const_cast(*this).splay(a); return r; } else { a = _left[a]; } } } } ///Find the next arc between two nodes. ///Find the next arc between two nodes in time /// O(logd), where d is the number of /// outgoing arcs of \c s. ///\param s The source node ///\param t The target node ///\return An arc from \c s to \c t if there exists, \ref INVALID /// otherwise. ///\note If \c e is not the result of the previous \c findFirst() ///operation then the amorized time bound can not be guaranteed. #ifdef DOXYGEN Arc findNext(Node s, Node t, Arc a) const #else Arc findNext(Node, Node t, Arc a) const #endif { if (_right[a] != INVALID) { a = _right[a]; while (_left[a] != INVALID) { a = _left[a]; } const_cast(*this).splay(a); } else { while (_parent[a] != INVALID && _right[_parent[a]] == a) { a = _parent[a]; } if (_parent[a] == INVALID) { return INVALID; } else { a = _parent[a]; const_cast(*this).splay(a); } } if (_g.target(a) == t) return a; else return INVALID; } }; ///Fast arc look up between given endpoints. ///\ingroup gutils ///Using this class, you can find an arc in a digraph from a given ///source to a given target in time O(log d), ///where d is the out-degree of the source node. /// ///It is not possible to find \e all parallel arcs between two nodes. ///Use \ref AllArcLookUp for this purpose. /// ///\warning This class is static, so you should refresh() (or at least ///refresh(Node)) this data structure ///whenever the digraph changes. This is a time consuming (superlinearly ///proportional (O(mlogm)) to the number of arcs). /// ///\tparam G The type of the underlying digraph. /// ///\sa DynArcLookUp ///\sa AllArcLookUp template class ArcLookUp { public: TEMPLATE_DIGRAPH_TYPEDEFS(G); typedef G Digraph; protected: const Digraph &_g; typename Digraph::template NodeMap _head; typename Digraph::template ArcMap _left; typename Digraph::template ArcMap _right; class ArcLess { const Digraph &g; public: ArcLess(const Digraph &_g) : g(_g) {} bool operator()(Arc a,Arc b) const { return g.target(a) &v,int a,int b) { int m=(a+b)/2; Arc me=v[m]; _left[me] = aO(dlogd), where d is ///the number of the outgoing arcs of \c n. void refresh(Node n) { std::vector v; for(OutArcIt e(_g,n);e!=INVALID;++e) v.push_back(e); if(v.size()) { std::sort(v.begin(),v.end(),ArcLess(_g)); _head[n]=refreshRec(v,0,v.size()-1); } else _head[n]=INVALID; } ///Refresh the full data structure. ///Build up the full search database. In fact, it simply calls ///\ref refresh(Node) "refresh(n)" for each node \c n. /// ///It runs in time O(mlogD), where m is ///the number of the arcs of \c n and D is the maximum ///out-degree of the digraph. void refresh() { for(NodeIt n(_g);n!=INVALID;++n) refresh(n); } ///Find an arc between two nodes. ///Find an arc between two nodes in time O(logd), where /// d is the number of outgoing arcs of \c s. ///\param s The source node ///\param t The target node ///\return An arc from \c s to \c t if there exists, ///\ref INVALID otherwise. /// ///\warning If you change the digraph, refresh() must be called before using ///this operator. If you change the outgoing arcs of ///a single node \c n, then ///\ref refresh(Node) "refresh(n)" is enough. /// Arc operator()(Node s, Node t) const { Arc e; for(e=_head[s]; e!=INVALID&&_g.target(e)!=t; e = t < _g.target(e)?_left[e]:_right[e]) ; return e; } }; ///Fast look up of all arcs between given endpoints. ///\ingroup gutils ///This class is the same as \ref ArcLookUp, with the addition ///that it makes it possible to find all arcs between given endpoints. /// ///\warning This class is static, so you should refresh() (or at least ///refresh(Node)) this data structure ///whenever the digraph changes. This is a time consuming (superlinearly ///proportional (O(mlogm)) to the number of arcs). /// ///\tparam G The type of the underlying digraph. /// ///\sa DynArcLookUp ///\sa ArcLookUp template class AllArcLookUp : public ArcLookUp { using ArcLookUp::_g; using ArcLookUp::_right; using ArcLookUp::_left; using ArcLookUp::_head; TEMPLATE_DIGRAPH_TYPEDEFS(G); typedef G Digraph; typename Digraph::template ArcMap _next; Arc refreshNext(Arc head,Arc next=INVALID) { if(head==INVALID) return next; else { next=refreshNext(_right[head],next); // _next[head]=next; _next[head]=( next!=INVALID && _g.target(next)==_g.target(head)) ? next : INVALID; return refreshNext(_left[head],head); } } void refreshNext() { for(NodeIt n(_g);n!=INVALID;++n) refreshNext(_head[n]); } public: ///Constructor ///Constructor. /// ///It builds up the search database, which remains valid until the digraph ///changes. AllArcLookUp(const Digraph &g) : ArcLookUp(g), _next(g) {refreshNext();} ///Refresh the data structure at a node. ///Build up the search database of node \c n. /// ///It runs in time O(dlogd), where d is ///the number of the outgoing arcs of \c n. void refresh(Node n) { ArcLookUp::refresh(n); refreshNext(_head[n]); } ///Refresh the full data structure. ///Build up the full search database. In fact, it simply calls ///\ref refresh(Node) "refresh(n)" for each node \c n. /// ///It runs in time O(mlogD), where m is ///the number of the arcs of \c n and D is the maximum ///out-degree of the digraph. void refresh() { for(NodeIt n(_g);n!=INVALID;++n) refresh(_head[n]); } ///Find an arc between two nodes. ///Find an arc between two nodes. ///\param s The source node ///\param t The target node ///\param prev The previous arc between \c s and \c t. It it is INVALID or ///not given, the operator finds the first appropriate arc. ///\return An arc from \c s to \c t after \c prev or ///\ref INVALID if there is no more. /// ///For example, you can count the number of arcs from \c u to \c v in the ///following way. ///\code ///AllArcLookUp ae(g); ///... ///int n=0; ///for(Arc e=ae(u,v);e!=INVALID;e=ae(u,v,e)) n++; ///\endcode /// ///Finding the first arc take O(logd) time, where /// d is the number of outgoing arcs of \c s. Then, the ///consecutive arcs are found in constant time. /// ///\warning If you change the digraph, refresh() must be called before using ///this operator. If you change the outgoing arcs of ///a single node \c n, then ///\ref refresh(Node) "refresh(n)" is enough. /// #ifdef DOXYGEN Arc operator()(Node s, Node t, Arc prev=INVALID) const {} #else using ArcLookUp::operator() ; Arc operator()(Node s, Node t, Arc prev) const { return prev==INVALID?(*this)(s,t):_next[prev]; } #endif }; /// @} } //END OF NAMESPACE LEMON #endif