1 | /* -*- mode: C++; indent-tabs-mode: nil; -*- |
---|
2 | * |
---|
3 | * This file is a part of LEMON, a generic C++ optimization library. |
---|
4 | * |
---|
5 | * Copyright (C) 2003-2010 |
---|
6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
---|
8 | * |
---|
9 | * Permission to use, modify and distribute this software is granted |
---|
10 | * provided that this copyright notice appears in all copies. For |
---|
11 | * precise terms see the accompanying LICENSE file. |
---|
12 | * |
---|
13 | * This software is provided "AS IS" with no warranty of any kind, |
---|
14 | * express or implied, and with no claim as to its suitability for any |
---|
15 | * purpose. |
---|
16 | * |
---|
17 | */ |
---|
18 | |
---|
19 | #ifndef LEMON_HAO_ORLIN_H |
---|
20 | #define LEMON_HAO_ORLIN_H |
---|
21 | |
---|
22 | #include <vector> |
---|
23 | #include <list> |
---|
24 | #include <limits> |
---|
25 | |
---|
26 | #include <lemon/maps.h> |
---|
27 | #include <lemon/core.h> |
---|
28 | #include <lemon/tolerance.h> |
---|
29 | |
---|
30 | /// \file |
---|
31 | /// \ingroup min_cut |
---|
32 | /// \brief Implementation of the Hao-Orlin algorithm. |
---|
33 | /// |
---|
34 | /// Implementation of the Hao-Orlin algorithm for finding a minimum cut |
---|
35 | /// in a digraph. |
---|
36 | |
---|
37 | namespace lemon { |
---|
38 | |
---|
39 | /// \ingroup min_cut |
---|
40 | /// |
---|
41 | /// \brief Hao-Orlin algorithm for finding a minimum cut in a digraph. |
---|
42 | /// |
---|
43 | /// This class implements the Hao-Orlin algorithm for finding a minimum |
---|
44 | /// value cut in a directed graph \f$D=(V,A)\f$. |
---|
45 | /// It takes a fixed node \f$ source \in V \f$ and |
---|
46 | /// consists of two phases: in the first phase it determines a |
---|
47 | /// minimum cut with \f$ source \f$ on the source-side (i.e. a set |
---|
48 | /// \f$ X\subsetneq V \f$ with \f$ source \in X \f$ and minimal outgoing |
---|
49 | /// capacity) and in the second phase it determines a minimum cut |
---|
50 | /// with \f$ source \f$ on the sink-side (i.e. a set |
---|
51 | /// \f$ X\subsetneq V \f$ with \f$ source \notin X \f$ and minimal outgoing |
---|
52 | /// capacity). Obviously, the smaller of these two cuts will be a |
---|
53 | /// minimum cut of \f$ D \f$. The algorithm is a modified |
---|
54 | /// preflow push-relabel algorithm. Our implementation calculates |
---|
55 | /// the minimum cut in \f$ O(n^2\sqrt{m}) \f$ time (we use the |
---|
56 | /// highest-label rule), or in \f$O(nm)\f$ for unit capacities. The |
---|
57 | /// purpose of such algorithm is e.g. testing network reliability. |
---|
58 | /// |
---|
59 | /// For an undirected graph you can run just the first phase of the |
---|
60 | /// algorithm or you can use the algorithm of Nagamochi and Ibaraki, |
---|
61 | /// which solves the undirected problem in \f$ O(nm + n^2 \log n) \f$ |
---|
62 | /// time. It is implemented in the NagamochiIbaraki algorithm class. |
---|
63 | /// |
---|
64 | /// \tparam GR The type of the digraph the algorithm runs on. |
---|
65 | /// \tparam CAP The type of the arc map containing the capacities, |
---|
66 | /// which can be any numreric type. The default map type is |
---|
67 | /// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
---|
68 | /// \tparam TOL Tolerance class for handling inexact computations. The |
---|
69 | /// default tolerance type is \ref Tolerance "Tolerance<CAP::Value>". |
---|
70 | #ifdef DOXYGEN |
---|
71 | template <typename GR, typename CAP, typename TOL> |
---|
72 | #else |
---|
73 | template <typename GR, |
---|
74 | typename CAP = typename GR::template ArcMap<int>, |
---|
75 | typename TOL = Tolerance<typename CAP::Value> > |
---|
76 | #endif |
---|
77 | class HaoOrlin { |
---|
78 | public: |
---|
79 | |
---|
80 | /// The digraph type of the algorithm |
---|
81 | typedef GR Digraph; |
---|
82 | /// The capacity map type of the algorithm |
---|
83 | typedef CAP CapacityMap; |
---|
84 | /// The tolerance type of the algorithm |
---|
85 | typedef TOL Tolerance; |
---|
86 | |
---|
87 | private: |
---|
88 | |
---|
89 | typedef typename CapacityMap::Value Value; |
---|
90 | |
---|
91 | TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
---|
92 | |
---|
93 | const Digraph& _graph; |
---|
94 | const CapacityMap* _capacity; |
---|
95 | |
---|
96 | typedef typename Digraph::template ArcMap<Value> FlowMap; |
---|
97 | FlowMap* _flow; |
---|
98 | |
---|
99 | Node _source; |
---|
100 | |
---|
101 | int _node_num; |
---|
102 | |
---|
103 | // Bucketing structure |
---|
104 | std::vector<Node> _first, _last; |
---|
105 | typename Digraph::template NodeMap<Node>* _next; |
---|
106 | typename Digraph::template NodeMap<Node>* _prev; |
---|
107 | typename Digraph::template NodeMap<bool>* _active; |
---|
108 | typename Digraph::template NodeMap<int>* _bucket; |
---|
109 | |
---|
110 | std::vector<bool> _dormant; |
---|
111 | |
---|
112 | std::list<std::list<int> > _sets; |
---|
113 | std::list<int>::iterator _highest; |
---|
114 | |
---|
115 | typedef typename Digraph::template NodeMap<Value> ExcessMap; |
---|
116 | ExcessMap* _excess; |
---|
117 | |
---|
118 | typedef typename Digraph::template NodeMap<bool> SourceSetMap; |
---|
119 | SourceSetMap* _source_set; |
---|
120 | |
---|
121 | Value _min_cut; |
---|
122 | |
---|
123 | typedef typename Digraph::template NodeMap<bool> MinCutMap; |
---|
124 | MinCutMap* _min_cut_map; |
---|
125 | |
---|
126 | Tolerance _tolerance; |
---|
127 | |
---|
128 | public: |
---|
129 | |
---|
130 | /// \brief Constructor |
---|
131 | /// |
---|
132 | /// Constructor of the algorithm class. |
---|
133 | HaoOrlin(const Digraph& graph, const CapacityMap& capacity, |
---|
134 | const Tolerance& tolerance = Tolerance()) : |
---|
135 | _graph(graph), _capacity(&capacity), _flow(0), _source(), |
---|
136 | _node_num(), _first(), _last(), _next(0), _prev(0), |
---|
137 | _active(0), _bucket(0), _dormant(), _sets(), _highest(), |
---|
138 | _excess(0), _source_set(0), _min_cut(), _min_cut_map(0), |
---|
139 | _tolerance(tolerance) {} |
---|
140 | |
---|
141 | ~HaoOrlin() { |
---|
142 | if (_min_cut_map) { |
---|
143 | delete _min_cut_map; |
---|
144 | } |
---|
145 | if (_source_set) { |
---|
146 | delete _source_set; |
---|
147 | } |
---|
148 | if (_excess) { |
---|
149 | delete _excess; |
---|
150 | } |
---|
151 | if (_next) { |
---|
152 | delete _next; |
---|
153 | } |
---|
154 | if (_prev) { |
---|
155 | delete _prev; |
---|
156 | } |
---|
157 | if (_active) { |
---|
158 | delete _active; |
---|
159 | } |
---|
160 | if (_bucket) { |
---|
161 | delete _bucket; |
---|
162 | } |
---|
163 | if (_flow) { |
---|
164 | delete _flow; |
---|
165 | } |
---|
166 | } |
---|
167 | |
---|
168 | /// \brief Set the tolerance used by the algorithm. |
---|
169 | /// |
---|
170 | /// This function sets the tolerance object used by the algorithm. |
---|
171 | /// \return <tt>(*this)</tt> |
---|
172 | HaoOrlin& tolerance(const Tolerance& tolerance) { |
---|
173 | _tolerance = tolerance; |
---|
174 | return *this; |
---|
175 | } |
---|
176 | |
---|
177 | /// \brief Returns a const reference to the tolerance. |
---|
178 | /// |
---|
179 | /// This function returns a const reference to the tolerance object |
---|
180 | /// used by the algorithm. |
---|
181 | const Tolerance& tolerance() const { |
---|
182 | return _tolerance; |
---|
183 | } |
---|
184 | |
---|
185 | private: |
---|
186 | |
---|
187 | void activate(const Node& i) { |
---|
188 | (*_active)[i] = true; |
---|
189 | |
---|
190 | int bucket = (*_bucket)[i]; |
---|
191 | |
---|
192 | if ((*_prev)[i] == INVALID || (*_active)[(*_prev)[i]]) return; |
---|
193 | //unlace |
---|
194 | (*_next)[(*_prev)[i]] = (*_next)[i]; |
---|
195 | if ((*_next)[i] != INVALID) { |
---|
196 | (*_prev)[(*_next)[i]] = (*_prev)[i]; |
---|
197 | } else { |
---|
198 | _last[bucket] = (*_prev)[i]; |
---|
199 | } |
---|
200 | //lace |
---|
201 | (*_next)[i] = _first[bucket]; |
---|
202 | (*_prev)[_first[bucket]] = i; |
---|
203 | (*_prev)[i] = INVALID; |
---|
204 | _first[bucket] = i; |
---|
205 | } |
---|
206 | |
---|
207 | void deactivate(const Node& i) { |
---|
208 | (*_active)[i] = false; |
---|
209 | int bucket = (*_bucket)[i]; |
---|
210 | |
---|
211 | if ((*_next)[i] == INVALID || !(*_active)[(*_next)[i]]) return; |
---|
212 | |
---|
213 | //unlace |
---|
214 | (*_prev)[(*_next)[i]] = (*_prev)[i]; |
---|
215 | if ((*_prev)[i] != INVALID) { |
---|
216 | (*_next)[(*_prev)[i]] = (*_next)[i]; |
---|
217 | } else { |
---|
218 | _first[bucket] = (*_next)[i]; |
---|
219 | } |
---|
220 | //lace |
---|
221 | (*_prev)[i] = _last[bucket]; |
---|
222 | (*_next)[_last[bucket]] = i; |
---|
223 | (*_next)[i] = INVALID; |
---|
224 | _last[bucket] = i; |
---|
225 | } |
---|
226 | |
---|
227 | void addItem(const Node& i, int bucket) { |
---|
228 | (*_bucket)[i] = bucket; |
---|
229 | if (_last[bucket] != INVALID) { |
---|
230 | (*_prev)[i] = _last[bucket]; |
---|
231 | (*_next)[_last[bucket]] = i; |
---|
232 | (*_next)[i] = INVALID; |
---|
233 | _last[bucket] = i; |
---|
234 | } else { |
---|
235 | (*_prev)[i] = INVALID; |
---|
236 | _first[bucket] = i; |
---|
237 | (*_next)[i] = INVALID; |
---|
238 | _last[bucket] = i; |
---|
239 | } |
---|
240 | } |
---|
241 | |
---|
242 | void findMinCutOut() { |
---|
243 | |
---|
244 | for (NodeIt n(_graph); n != INVALID; ++n) { |
---|
245 | (*_excess)[n] = 0; |
---|
246 | (*_source_set)[n] = false; |
---|
247 | } |
---|
248 | |
---|
249 | for (ArcIt a(_graph); a != INVALID; ++a) { |
---|
250 | (*_flow)[a] = 0; |
---|
251 | } |
---|
252 | |
---|
253 | int bucket_num = 0; |
---|
254 | std::vector<Node> queue(_node_num); |
---|
255 | int qfirst = 0, qlast = 0, qsep = 0; |
---|
256 | |
---|
257 | { |
---|
258 | typename Digraph::template NodeMap<bool> reached(_graph, false); |
---|
259 | |
---|
260 | reached[_source] = true; |
---|
261 | bool first_set = true; |
---|
262 | |
---|
263 | for (NodeIt t(_graph); t != INVALID; ++t) { |
---|
264 | if (reached[t]) continue; |
---|
265 | _sets.push_front(std::list<int>()); |
---|
266 | |
---|
267 | queue[qlast++] = t; |
---|
268 | reached[t] = true; |
---|
269 | |
---|
270 | while (qfirst != qlast) { |
---|
271 | if (qsep == qfirst) { |
---|
272 | ++bucket_num; |
---|
273 | _sets.front().push_front(bucket_num); |
---|
274 | _dormant[bucket_num] = !first_set; |
---|
275 | _first[bucket_num] = _last[bucket_num] = INVALID; |
---|
276 | qsep = qlast; |
---|
277 | } |
---|
278 | |
---|
279 | Node n = queue[qfirst++]; |
---|
280 | addItem(n, bucket_num); |
---|
281 | |
---|
282 | for (InArcIt a(_graph, n); a != INVALID; ++a) { |
---|
283 | Node u = _graph.source(a); |
---|
284 | if (!reached[u] && _tolerance.positive((*_capacity)[a])) { |
---|
285 | reached[u] = true; |
---|
286 | queue[qlast++] = u; |
---|
287 | } |
---|
288 | } |
---|
289 | } |
---|
290 | first_set = false; |
---|
291 | } |
---|
292 | |
---|
293 | ++bucket_num; |
---|
294 | (*_bucket)[_source] = 0; |
---|
295 | _dormant[0] = true; |
---|
296 | } |
---|
297 | (*_source_set)[_source] = true; |
---|
298 | |
---|
299 | Node target = _last[_sets.back().back()]; |
---|
300 | { |
---|
301 | for (OutArcIt a(_graph, _source); a != INVALID; ++a) { |
---|
302 | if (_tolerance.positive((*_capacity)[a])) { |
---|
303 | Node u = _graph.target(a); |
---|
304 | (*_flow)[a] = (*_capacity)[a]; |
---|
305 | (*_excess)[u] += (*_capacity)[a]; |
---|
306 | if (!(*_active)[u] && u != _source) { |
---|
307 | activate(u); |
---|
308 | } |
---|
309 | } |
---|
310 | } |
---|
311 | |
---|
312 | if ((*_active)[target]) { |
---|
313 | deactivate(target); |
---|
314 | } |
---|
315 | |
---|
316 | _highest = _sets.back().begin(); |
---|
317 | while (_highest != _sets.back().end() && |
---|
318 | !(*_active)[_first[*_highest]]) { |
---|
319 | ++_highest; |
---|
320 | } |
---|
321 | } |
---|
322 | |
---|
323 | while (true) { |
---|
324 | while (_highest != _sets.back().end()) { |
---|
325 | Node n = _first[*_highest]; |
---|
326 | Value excess = (*_excess)[n]; |
---|
327 | int next_bucket = _node_num; |
---|
328 | |
---|
329 | int under_bucket; |
---|
330 | if (++std::list<int>::iterator(_highest) == _sets.back().end()) { |
---|
331 | under_bucket = -1; |
---|
332 | } else { |
---|
333 | under_bucket = *(++std::list<int>::iterator(_highest)); |
---|
334 | } |
---|
335 | |
---|
336 | for (OutArcIt a(_graph, n); a != INVALID; ++a) { |
---|
337 | Node v = _graph.target(a); |
---|
338 | if (_dormant[(*_bucket)[v]]) continue; |
---|
339 | Value rem = (*_capacity)[a] - (*_flow)[a]; |
---|
340 | if (!_tolerance.positive(rem)) continue; |
---|
341 | if ((*_bucket)[v] == under_bucket) { |
---|
342 | if (!(*_active)[v] && v != target) { |
---|
343 | activate(v); |
---|
344 | } |
---|
345 | if (!_tolerance.less(rem, excess)) { |
---|
346 | (*_flow)[a] += excess; |
---|
347 | (*_excess)[v] += excess; |
---|
348 | excess = 0; |
---|
349 | goto no_more_push; |
---|
350 | } else { |
---|
351 | excess -= rem; |
---|
352 | (*_excess)[v] += rem; |
---|
353 | (*_flow)[a] = (*_capacity)[a]; |
---|
354 | } |
---|
355 | } else if (next_bucket > (*_bucket)[v]) { |
---|
356 | next_bucket = (*_bucket)[v]; |
---|
357 | } |
---|
358 | } |
---|
359 | |
---|
360 | for (InArcIt a(_graph, n); a != INVALID; ++a) { |
---|
361 | Node v = _graph.source(a); |
---|
362 | if (_dormant[(*_bucket)[v]]) continue; |
---|
363 | Value rem = (*_flow)[a]; |
---|
364 | if (!_tolerance.positive(rem)) continue; |
---|
365 | if ((*_bucket)[v] == under_bucket) { |
---|
366 | if (!(*_active)[v] && v != target) { |
---|
367 | activate(v); |
---|
368 | } |
---|
369 | if (!_tolerance.less(rem, excess)) { |
---|
370 | (*_flow)[a] -= excess; |
---|
371 | (*_excess)[v] += excess; |
---|
372 | excess = 0; |
---|
373 | goto no_more_push; |
---|
374 | } else { |
---|
375 | excess -= rem; |
---|
376 | (*_excess)[v] += rem; |
---|
377 | (*_flow)[a] = 0; |
---|
378 | } |
---|
379 | } else if (next_bucket > (*_bucket)[v]) { |
---|
380 | next_bucket = (*_bucket)[v]; |
---|
381 | } |
---|
382 | } |
---|
383 | |
---|
384 | no_more_push: |
---|
385 | |
---|
386 | (*_excess)[n] = excess; |
---|
387 | |
---|
388 | if (excess != 0) { |
---|
389 | if ((*_next)[n] == INVALID) { |
---|
390 | typename std::list<std::list<int> >::iterator new_set = |
---|
391 | _sets.insert(--_sets.end(), std::list<int>()); |
---|
392 | new_set->splice(new_set->end(), _sets.back(), |
---|
393 | _sets.back().begin(), ++_highest); |
---|
394 | for (std::list<int>::iterator it = new_set->begin(); |
---|
395 | it != new_set->end(); ++it) { |
---|
396 | _dormant[*it] = true; |
---|
397 | } |
---|
398 | while (_highest != _sets.back().end() && |
---|
399 | !(*_active)[_first[*_highest]]) { |
---|
400 | ++_highest; |
---|
401 | } |
---|
402 | } else if (next_bucket == _node_num) { |
---|
403 | _first[(*_bucket)[n]] = (*_next)[n]; |
---|
404 | (*_prev)[(*_next)[n]] = INVALID; |
---|
405 | |
---|
406 | std::list<std::list<int> >::iterator new_set = |
---|
407 | _sets.insert(--_sets.end(), std::list<int>()); |
---|
408 | |
---|
409 | new_set->push_front(bucket_num); |
---|
410 | (*_bucket)[n] = bucket_num; |
---|
411 | _first[bucket_num] = _last[bucket_num] = n; |
---|
412 | (*_next)[n] = INVALID; |
---|
413 | (*_prev)[n] = INVALID; |
---|
414 | _dormant[bucket_num] = true; |
---|
415 | ++bucket_num; |
---|
416 | |
---|
417 | while (_highest != _sets.back().end() && |
---|
418 | !(*_active)[_first[*_highest]]) { |
---|
419 | ++_highest; |
---|
420 | } |
---|
421 | } else { |
---|
422 | _first[*_highest] = (*_next)[n]; |
---|
423 | (*_prev)[(*_next)[n]] = INVALID; |
---|
424 | |
---|
425 | while (next_bucket != *_highest) { |
---|
426 | --_highest; |
---|
427 | } |
---|
428 | |
---|
429 | if (_highest == _sets.back().begin()) { |
---|
430 | _sets.back().push_front(bucket_num); |
---|
431 | _dormant[bucket_num] = false; |
---|
432 | _first[bucket_num] = _last[bucket_num] = INVALID; |
---|
433 | ++bucket_num; |
---|
434 | } |
---|
435 | --_highest; |
---|
436 | |
---|
437 | (*_bucket)[n] = *_highest; |
---|
438 | (*_next)[n] = _first[*_highest]; |
---|
439 | if (_first[*_highest] != INVALID) { |
---|
440 | (*_prev)[_first[*_highest]] = n; |
---|
441 | } else { |
---|
442 | _last[*_highest] = n; |
---|
443 | } |
---|
444 | _first[*_highest] = n; |
---|
445 | } |
---|
446 | } else { |
---|
447 | |
---|
448 | deactivate(n); |
---|
449 | if (!(*_active)[_first[*_highest]]) { |
---|
450 | ++_highest; |
---|
451 | if (_highest != _sets.back().end() && |
---|
452 | !(*_active)[_first[*_highest]]) { |
---|
453 | _highest = _sets.back().end(); |
---|
454 | } |
---|
455 | } |
---|
456 | } |
---|
457 | } |
---|
458 | |
---|
459 | if ((*_excess)[target] < _min_cut) { |
---|
460 | _min_cut = (*_excess)[target]; |
---|
461 | for (NodeIt i(_graph); i != INVALID; ++i) { |
---|
462 | (*_min_cut_map)[i] = true; |
---|
463 | } |
---|
464 | for (std::list<int>::iterator it = _sets.back().begin(); |
---|
465 | it != _sets.back().end(); ++it) { |
---|
466 | Node n = _first[*it]; |
---|
467 | while (n != INVALID) { |
---|
468 | (*_min_cut_map)[n] = false; |
---|
469 | n = (*_next)[n]; |
---|
470 | } |
---|
471 | } |
---|
472 | } |
---|
473 | |
---|
474 | { |
---|
475 | Node new_target; |
---|
476 | if ((*_prev)[target] != INVALID || (*_next)[target] != INVALID) { |
---|
477 | if ((*_next)[target] == INVALID) { |
---|
478 | _last[(*_bucket)[target]] = (*_prev)[target]; |
---|
479 | new_target = (*_prev)[target]; |
---|
480 | } else { |
---|
481 | (*_prev)[(*_next)[target]] = (*_prev)[target]; |
---|
482 | new_target = (*_next)[target]; |
---|
483 | } |
---|
484 | if ((*_prev)[target] == INVALID) { |
---|
485 | _first[(*_bucket)[target]] = (*_next)[target]; |
---|
486 | } else { |
---|
487 | (*_next)[(*_prev)[target]] = (*_next)[target]; |
---|
488 | } |
---|
489 | } else { |
---|
490 | _sets.back().pop_back(); |
---|
491 | if (_sets.back().empty()) { |
---|
492 | _sets.pop_back(); |
---|
493 | if (_sets.empty()) |
---|
494 | break; |
---|
495 | for (std::list<int>::iterator it = _sets.back().begin(); |
---|
496 | it != _sets.back().end(); ++it) { |
---|
497 | _dormant[*it] = false; |
---|
498 | } |
---|
499 | } |
---|
500 | new_target = _last[_sets.back().back()]; |
---|
501 | } |
---|
502 | |
---|
503 | (*_bucket)[target] = 0; |
---|
504 | |
---|
505 | (*_source_set)[target] = true; |
---|
506 | for (OutArcIt a(_graph, target); a != INVALID; ++a) { |
---|
507 | Value rem = (*_capacity)[a] - (*_flow)[a]; |
---|
508 | if (!_tolerance.positive(rem)) continue; |
---|
509 | Node v = _graph.target(a); |
---|
510 | if (!(*_active)[v] && !(*_source_set)[v]) { |
---|
511 | activate(v); |
---|
512 | } |
---|
513 | (*_excess)[v] += rem; |
---|
514 | (*_flow)[a] = (*_capacity)[a]; |
---|
515 | } |
---|
516 | |
---|
517 | for (InArcIt a(_graph, target); a != INVALID; ++a) { |
---|
518 | Value rem = (*_flow)[a]; |
---|
519 | if (!_tolerance.positive(rem)) continue; |
---|
520 | Node v = _graph.source(a); |
---|
521 | if (!(*_active)[v] && !(*_source_set)[v]) { |
---|
522 | activate(v); |
---|
523 | } |
---|
524 | (*_excess)[v] += rem; |
---|
525 | (*_flow)[a] = 0; |
---|
526 | } |
---|
527 | |
---|
528 | target = new_target; |
---|
529 | if ((*_active)[target]) { |
---|
530 | deactivate(target); |
---|
531 | } |
---|
532 | |
---|
533 | _highest = _sets.back().begin(); |
---|
534 | while (_highest != _sets.back().end() && |
---|
535 | !(*_active)[_first[*_highest]]) { |
---|
536 | ++_highest; |
---|
537 | } |
---|
538 | } |
---|
539 | } |
---|
540 | } |
---|
541 | |
---|
542 | void findMinCutIn() { |
---|
543 | |
---|
544 | for (NodeIt n(_graph); n != INVALID; ++n) { |
---|
545 | (*_excess)[n] = 0; |
---|
546 | (*_source_set)[n] = false; |
---|
547 | } |
---|
548 | |
---|
549 | for (ArcIt a(_graph); a != INVALID; ++a) { |
---|
550 | (*_flow)[a] = 0; |
---|
551 | } |
---|
552 | |
---|
553 | int bucket_num = 0; |
---|
554 | std::vector<Node> queue(_node_num); |
---|
555 | int qfirst = 0, qlast = 0, qsep = 0; |
---|
556 | |
---|
557 | { |
---|
558 | typename Digraph::template NodeMap<bool> reached(_graph, false); |
---|
559 | |
---|
560 | reached[_source] = true; |
---|
561 | |
---|
562 | bool first_set = true; |
---|
563 | |
---|
564 | for (NodeIt t(_graph); t != INVALID; ++t) { |
---|
565 | if (reached[t]) continue; |
---|
566 | _sets.push_front(std::list<int>()); |
---|
567 | |
---|
568 | queue[qlast++] = t; |
---|
569 | reached[t] = true; |
---|
570 | |
---|
571 | while (qfirst != qlast) { |
---|
572 | if (qsep == qfirst) { |
---|
573 | ++bucket_num; |
---|
574 | _sets.front().push_front(bucket_num); |
---|
575 | _dormant[bucket_num] = !first_set; |
---|
576 | _first[bucket_num] = _last[bucket_num] = INVALID; |
---|
577 | qsep = qlast; |
---|
578 | } |
---|
579 | |
---|
580 | Node n = queue[qfirst++]; |
---|
581 | addItem(n, bucket_num); |
---|
582 | |
---|
583 | for (OutArcIt a(_graph, n); a != INVALID; ++a) { |
---|
584 | Node u = _graph.target(a); |
---|
585 | if (!reached[u] && _tolerance.positive((*_capacity)[a])) { |
---|
586 | reached[u] = true; |
---|
587 | queue[qlast++] = u; |
---|
588 | } |
---|
589 | } |
---|
590 | } |
---|
591 | first_set = false; |
---|
592 | } |
---|
593 | |
---|
594 | ++bucket_num; |
---|
595 | (*_bucket)[_source] = 0; |
---|
596 | _dormant[0] = true; |
---|
597 | } |
---|
598 | (*_source_set)[_source] = true; |
---|
599 | |
---|
600 | Node target = _last[_sets.back().back()]; |
---|
601 | { |
---|
602 | for (InArcIt a(_graph, _source); a != INVALID; ++a) { |
---|
603 | if (_tolerance.positive((*_capacity)[a])) { |
---|
604 | Node u = _graph.source(a); |
---|
605 | (*_flow)[a] = (*_capacity)[a]; |
---|
606 | (*_excess)[u] += (*_capacity)[a]; |
---|
607 | if (!(*_active)[u] && u != _source) { |
---|
608 | activate(u); |
---|
609 | } |
---|
610 | } |
---|
611 | } |
---|
612 | if ((*_active)[target]) { |
---|
613 | deactivate(target); |
---|
614 | } |
---|
615 | |
---|
616 | _highest = _sets.back().begin(); |
---|
617 | while (_highest != _sets.back().end() && |
---|
618 | !(*_active)[_first[*_highest]]) { |
---|
619 | ++_highest; |
---|
620 | } |
---|
621 | } |
---|
622 | |
---|
623 | |
---|
624 | while (true) { |
---|
625 | while (_highest != _sets.back().end()) { |
---|
626 | Node n = _first[*_highest]; |
---|
627 | Value excess = (*_excess)[n]; |
---|
628 | int next_bucket = _node_num; |
---|
629 | |
---|
630 | int under_bucket; |
---|
631 | if (++std::list<int>::iterator(_highest) == _sets.back().end()) { |
---|
632 | under_bucket = -1; |
---|
633 | } else { |
---|
634 | under_bucket = *(++std::list<int>::iterator(_highest)); |
---|
635 | } |
---|
636 | |
---|
637 | for (InArcIt a(_graph, n); a != INVALID; ++a) { |
---|
638 | Node v = _graph.source(a); |
---|
639 | if (_dormant[(*_bucket)[v]]) continue; |
---|
640 | Value rem = (*_capacity)[a] - (*_flow)[a]; |
---|
641 | if (!_tolerance.positive(rem)) continue; |
---|
642 | if ((*_bucket)[v] == under_bucket) { |
---|
643 | if (!(*_active)[v] && v != target) { |
---|
644 | activate(v); |
---|
645 | } |
---|
646 | if (!_tolerance.less(rem, excess)) { |
---|
647 | (*_flow)[a] += excess; |
---|
648 | (*_excess)[v] += excess; |
---|
649 | excess = 0; |
---|
650 | goto no_more_push; |
---|
651 | } else { |
---|
652 | excess -= rem; |
---|
653 | (*_excess)[v] += rem; |
---|
654 | (*_flow)[a] = (*_capacity)[a]; |
---|
655 | } |
---|
656 | } else if (next_bucket > (*_bucket)[v]) { |
---|
657 | next_bucket = (*_bucket)[v]; |
---|
658 | } |
---|
659 | } |
---|
660 | |
---|
661 | for (OutArcIt a(_graph, n); a != INVALID; ++a) { |
---|
662 | Node v = _graph.target(a); |
---|
663 | if (_dormant[(*_bucket)[v]]) continue; |
---|
664 | Value rem = (*_flow)[a]; |
---|
665 | if (!_tolerance.positive(rem)) continue; |
---|
666 | if ((*_bucket)[v] == under_bucket) { |
---|
667 | if (!(*_active)[v] && v != target) { |
---|
668 | activate(v); |
---|
669 | } |
---|
670 | if (!_tolerance.less(rem, excess)) { |
---|
671 | (*_flow)[a] -= excess; |
---|
672 | (*_excess)[v] += excess; |
---|
673 | excess = 0; |
---|
674 | goto no_more_push; |
---|
675 | } else { |
---|
676 | excess -= rem; |
---|
677 | (*_excess)[v] += rem; |
---|
678 | (*_flow)[a] = 0; |
---|
679 | } |
---|
680 | } else if (next_bucket > (*_bucket)[v]) { |
---|
681 | next_bucket = (*_bucket)[v]; |
---|
682 | } |
---|
683 | } |
---|
684 | |
---|
685 | no_more_push: |
---|
686 | |
---|
687 | (*_excess)[n] = excess; |
---|
688 | |
---|
689 | if (excess != 0) { |
---|
690 | if ((*_next)[n] == INVALID) { |
---|
691 | typename std::list<std::list<int> >::iterator new_set = |
---|
692 | _sets.insert(--_sets.end(), std::list<int>()); |
---|
693 | new_set->splice(new_set->end(), _sets.back(), |
---|
694 | _sets.back().begin(), ++_highest); |
---|
695 | for (std::list<int>::iterator it = new_set->begin(); |
---|
696 | it != new_set->end(); ++it) { |
---|
697 | _dormant[*it] = true; |
---|
698 | } |
---|
699 | while (_highest != _sets.back().end() && |
---|
700 | !(*_active)[_first[*_highest]]) { |
---|
701 | ++_highest; |
---|
702 | } |
---|
703 | } else if (next_bucket == _node_num) { |
---|
704 | _first[(*_bucket)[n]] = (*_next)[n]; |
---|
705 | (*_prev)[(*_next)[n]] = INVALID; |
---|
706 | |
---|
707 | std::list<std::list<int> >::iterator new_set = |
---|
708 | _sets.insert(--_sets.end(), std::list<int>()); |
---|
709 | |
---|
710 | new_set->push_front(bucket_num); |
---|
711 | (*_bucket)[n] = bucket_num; |
---|
712 | _first[bucket_num] = _last[bucket_num] = n; |
---|
713 | (*_next)[n] = INVALID; |
---|
714 | (*_prev)[n] = INVALID; |
---|
715 | _dormant[bucket_num] = true; |
---|
716 | ++bucket_num; |
---|
717 | |
---|
718 | while (_highest != _sets.back().end() && |
---|
719 | !(*_active)[_first[*_highest]]) { |
---|
720 | ++_highest; |
---|
721 | } |
---|
722 | } else { |
---|
723 | _first[*_highest] = (*_next)[n]; |
---|
724 | (*_prev)[(*_next)[n]] = INVALID; |
---|
725 | |
---|
726 | while (next_bucket != *_highest) { |
---|
727 | --_highest; |
---|
728 | } |
---|
729 | if (_highest == _sets.back().begin()) { |
---|
730 | _sets.back().push_front(bucket_num); |
---|
731 | _dormant[bucket_num] = false; |
---|
732 | _first[bucket_num] = _last[bucket_num] = INVALID; |
---|
733 | ++bucket_num; |
---|
734 | } |
---|
735 | --_highest; |
---|
736 | |
---|
737 | (*_bucket)[n] = *_highest; |
---|
738 | (*_next)[n] = _first[*_highest]; |
---|
739 | if (_first[*_highest] != INVALID) { |
---|
740 | (*_prev)[_first[*_highest]] = n; |
---|
741 | } else { |
---|
742 | _last[*_highest] = n; |
---|
743 | } |
---|
744 | _first[*_highest] = n; |
---|
745 | } |
---|
746 | } else { |
---|
747 | |
---|
748 | deactivate(n); |
---|
749 | if (!(*_active)[_first[*_highest]]) { |
---|
750 | ++_highest; |
---|
751 | if (_highest != _sets.back().end() && |
---|
752 | !(*_active)[_first[*_highest]]) { |
---|
753 | _highest = _sets.back().end(); |
---|
754 | } |
---|
755 | } |
---|
756 | } |
---|
757 | } |
---|
758 | |
---|
759 | if ((*_excess)[target] < _min_cut) { |
---|
760 | _min_cut = (*_excess)[target]; |
---|
761 | for (NodeIt i(_graph); i != INVALID; ++i) { |
---|
762 | (*_min_cut_map)[i] = false; |
---|
763 | } |
---|
764 | for (std::list<int>::iterator it = _sets.back().begin(); |
---|
765 | it != _sets.back().end(); ++it) { |
---|
766 | Node n = _first[*it]; |
---|
767 | while (n != INVALID) { |
---|
768 | (*_min_cut_map)[n] = true; |
---|
769 | n = (*_next)[n]; |
---|
770 | } |
---|
771 | } |
---|
772 | } |
---|
773 | |
---|
774 | { |
---|
775 | Node new_target; |
---|
776 | if ((*_prev)[target] != INVALID || (*_next)[target] != INVALID) { |
---|
777 | if ((*_next)[target] == INVALID) { |
---|
778 | _last[(*_bucket)[target]] = (*_prev)[target]; |
---|
779 | new_target = (*_prev)[target]; |
---|
780 | } else { |
---|
781 | (*_prev)[(*_next)[target]] = (*_prev)[target]; |
---|
782 | new_target = (*_next)[target]; |
---|
783 | } |
---|
784 | if ((*_prev)[target] == INVALID) { |
---|
785 | _first[(*_bucket)[target]] = (*_next)[target]; |
---|
786 | } else { |
---|
787 | (*_next)[(*_prev)[target]] = (*_next)[target]; |
---|
788 | } |
---|
789 | } else { |
---|
790 | _sets.back().pop_back(); |
---|
791 | if (_sets.back().empty()) { |
---|
792 | _sets.pop_back(); |
---|
793 | if (_sets.empty()) |
---|
794 | break; |
---|
795 | for (std::list<int>::iterator it = _sets.back().begin(); |
---|
796 | it != _sets.back().end(); ++it) { |
---|
797 | _dormant[*it] = false; |
---|
798 | } |
---|
799 | } |
---|
800 | new_target = _last[_sets.back().back()]; |
---|
801 | } |
---|
802 | |
---|
803 | (*_bucket)[target] = 0; |
---|
804 | |
---|
805 | (*_source_set)[target] = true; |
---|
806 | for (InArcIt a(_graph, target); a != INVALID; ++a) { |
---|
807 | Value rem = (*_capacity)[a] - (*_flow)[a]; |
---|
808 | if (!_tolerance.positive(rem)) continue; |
---|
809 | Node v = _graph.source(a); |
---|
810 | if (!(*_active)[v] && !(*_source_set)[v]) { |
---|
811 | activate(v); |
---|
812 | } |
---|
813 | (*_excess)[v] += rem; |
---|
814 | (*_flow)[a] = (*_capacity)[a]; |
---|
815 | } |
---|
816 | |
---|
817 | for (OutArcIt a(_graph, target); a != INVALID; ++a) { |
---|
818 | Value rem = (*_flow)[a]; |
---|
819 | if (!_tolerance.positive(rem)) continue; |
---|
820 | Node v = _graph.target(a); |
---|
821 | if (!(*_active)[v] && !(*_source_set)[v]) { |
---|
822 | activate(v); |
---|
823 | } |
---|
824 | (*_excess)[v] += rem; |
---|
825 | (*_flow)[a] = 0; |
---|
826 | } |
---|
827 | |
---|
828 | target = new_target; |
---|
829 | if ((*_active)[target]) { |
---|
830 | deactivate(target); |
---|
831 | } |
---|
832 | |
---|
833 | _highest = _sets.back().begin(); |
---|
834 | while (_highest != _sets.back().end() && |
---|
835 | !(*_active)[_first[*_highest]]) { |
---|
836 | ++_highest; |
---|
837 | } |
---|
838 | } |
---|
839 | } |
---|
840 | } |
---|
841 | |
---|
842 | public: |
---|
843 | |
---|
844 | /// \name Execution Control |
---|
845 | /// The simplest way to execute the algorithm is to use |
---|
846 | /// one of the member functions called \ref run(). |
---|
847 | /// \n |
---|
848 | /// If you need better control on the execution, |
---|
849 | /// you have to call one of the \ref init() functions first, then |
---|
850 | /// \ref calculateOut() and/or \ref calculateIn(). |
---|
851 | |
---|
852 | /// @{ |
---|
853 | |
---|
854 | /// \brief Initialize the internal data structures. |
---|
855 | /// |
---|
856 | /// This function initializes the internal data structures. It creates |
---|
857 | /// the maps and some bucket structures for the algorithm. |
---|
858 | /// The first node is used as the source node for the push-relabel |
---|
859 | /// algorithm. |
---|
860 | void init() { |
---|
861 | init(NodeIt(_graph)); |
---|
862 | } |
---|
863 | |
---|
864 | /// \brief Initialize the internal data structures. |
---|
865 | /// |
---|
866 | /// This function initializes the internal data structures. It creates |
---|
867 | /// the maps and some bucket structures for the algorithm. |
---|
868 | /// The given node is used as the source node for the push-relabel |
---|
869 | /// algorithm. |
---|
870 | void init(const Node& source) { |
---|
871 | _source = source; |
---|
872 | |
---|
873 | _node_num = countNodes(_graph); |
---|
874 | |
---|
875 | _first.resize(_node_num); |
---|
876 | _last.resize(_node_num); |
---|
877 | |
---|
878 | _dormant.resize(_node_num); |
---|
879 | |
---|
880 | if (!_flow) { |
---|
881 | _flow = new FlowMap(_graph); |
---|
882 | } |
---|
883 | if (!_next) { |
---|
884 | _next = new typename Digraph::template NodeMap<Node>(_graph); |
---|
885 | } |
---|
886 | if (!_prev) { |
---|
887 | _prev = new typename Digraph::template NodeMap<Node>(_graph); |
---|
888 | } |
---|
889 | if (!_active) { |
---|
890 | _active = new typename Digraph::template NodeMap<bool>(_graph); |
---|
891 | } |
---|
892 | if (!_bucket) { |
---|
893 | _bucket = new typename Digraph::template NodeMap<int>(_graph); |
---|
894 | } |
---|
895 | if (!_excess) { |
---|
896 | _excess = new ExcessMap(_graph); |
---|
897 | } |
---|
898 | if (!_source_set) { |
---|
899 | _source_set = new SourceSetMap(_graph); |
---|
900 | } |
---|
901 | if (!_min_cut_map) { |
---|
902 | _min_cut_map = new MinCutMap(_graph); |
---|
903 | } |
---|
904 | |
---|
905 | _min_cut = std::numeric_limits<Value>::max(); |
---|
906 | } |
---|
907 | |
---|
908 | |
---|
909 | /// \brief Calculate a minimum cut with \f$ source \f$ on the |
---|
910 | /// source-side. |
---|
911 | /// |
---|
912 | /// This function calculates a minimum cut with \f$ source \f$ on the |
---|
913 | /// source-side (i.e. a set \f$ X\subsetneq V \f$ with |
---|
914 | /// \f$ source \in X \f$ and minimal outgoing capacity). |
---|
915 | /// |
---|
916 | /// \pre \ref init() must be called before using this function. |
---|
917 | void calculateOut() { |
---|
918 | findMinCutOut(); |
---|
919 | } |
---|
920 | |
---|
921 | /// \brief Calculate a minimum cut with \f$ source \f$ on the |
---|
922 | /// sink-side. |
---|
923 | /// |
---|
924 | /// This function calculates a minimum cut with \f$ source \f$ on the |
---|
925 | /// sink-side (i.e. a set \f$ X\subsetneq V \f$ with |
---|
926 | /// \f$ source \notin X \f$ and minimal outgoing capacity). |
---|
927 | /// |
---|
928 | /// \pre \ref init() must be called before using this function. |
---|
929 | void calculateIn() { |
---|
930 | findMinCutIn(); |
---|
931 | } |
---|
932 | |
---|
933 | |
---|
934 | /// \brief Run the algorithm. |
---|
935 | /// |
---|
936 | /// This function runs the algorithm. It finds nodes \c source and |
---|
937 | /// \c target arbitrarily and then calls \ref init(), \ref calculateOut() |
---|
938 | /// and \ref calculateIn(). |
---|
939 | void run() { |
---|
940 | init(); |
---|
941 | calculateOut(); |
---|
942 | calculateIn(); |
---|
943 | } |
---|
944 | |
---|
945 | /// \brief Run the algorithm. |
---|
946 | /// |
---|
947 | /// This function runs the algorithm. It uses the given \c source node, |
---|
948 | /// finds a proper \c target node and then calls the \ref init(), |
---|
949 | /// \ref calculateOut() and \ref calculateIn(). |
---|
950 | void run(const Node& s) { |
---|
951 | init(s); |
---|
952 | calculateOut(); |
---|
953 | calculateIn(); |
---|
954 | } |
---|
955 | |
---|
956 | /// @} |
---|
957 | |
---|
958 | /// \name Query Functions |
---|
959 | /// The result of the %HaoOrlin algorithm |
---|
960 | /// can be obtained using these functions.\n |
---|
961 | /// \ref run(), \ref calculateOut() or \ref calculateIn() |
---|
962 | /// should be called before using them. |
---|
963 | |
---|
964 | /// @{ |
---|
965 | |
---|
966 | /// \brief Return the value of the minimum cut. |
---|
967 | /// |
---|
968 | /// This function returns the value of the minimum cut. |
---|
969 | /// |
---|
970 | /// \pre \ref run(), \ref calculateOut() or \ref calculateIn() |
---|
971 | /// must be called before using this function. |
---|
972 | Value minCutValue() const { |
---|
973 | return _min_cut; |
---|
974 | } |
---|
975 | |
---|
976 | |
---|
977 | /// \brief Return a minimum cut. |
---|
978 | /// |
---|
979 | /// This function sets \c cutMap to the characteristic vector of a |
---|
980 | /// minimum value cut: it will give a non-empty set \f$ X\subsetneq V \f$ |
---|
981 | /// with minimal outgoing capacity (i.e. \c cutMap will be \c true exactly |
---|
982 | /// for the nodes of \f$ X \f$). |
---|
983 | /// |
---|
984 | /// \param cutMap A \ref concepts::WriteMap "writable" node map with |
---|
985 | /// \c bool (or convertible) value type. |
---|
986 | /// |
---|
987 | /// \return The value of the minimum cut. |
---|
988 | /// |
---|
989 | /// \pre \ref run(), \ref calculateOut() or \ref calculateIn() |
---|
990 | /// must be called before using this function. |
---|
991 | template <typename CutMap> |
---|
992 | Value minCutMap(CutMap& cutMap) const { |
---|
993 | for (NodeIt it(_graph); it != INVALID; ++it) { |
---|
994 | cutMap.set(it, (*_min_cut_map)[it]); |
---|
995 | } |
---|
996 | return _min_cut; |
---|
997 | } |
---|
998 | |
---|
999 | /// @} |
---|
1000 | |
---|
1001 | }; //class HaoOrlin |
---|
1002 | |
---|
1003 | } //namespace lemon |
---|
1004 | |
---|
1005 | #endif //LEMON_HAO_ORLIN_H |
---|