COIN-OR::LEMON - Graph Library

source: lemon-1.2/lemon/howard.h @ 863:a93f1a27d831

Last change on this file since 863:a93f1a27d831 was 863:a93f1a27d831, checked in by Peter Kovacs <kpeter@…>, 14 years ago

Fix gcc 3.3 compilation error (#354)

gcc 3.3 requires that a class has a default constructor if it has
template named parameters. (That constructor can be protected.)

File size: 18.1 KB
RevLine 
[758]1/* -*- C++ -*-
2 *
3 * This file is a part of LEMON, a generic C++ optimization library
4 *
5 * Copyright (C) 2003-2008
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 *
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
12 *
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
15 * purpose.
16 *
17 */
18
[764]19#ifndef LEMON_HOWARD_H
20#define LEMON_HOWARD_H
[758]21
[768]22/// \ingroup min_mean_cycle
[758]23///
24/// \file
25/// \brief Howard's algorithm for finding a minimum mean cycle.
26
27#include <vector>
[763]28#include <limits>
[758]29#include <lemon/core.h>
30#include <lemon/path.h>
31#include <lemon/tolerance.h>
32#include <lemon/connectivity.h>
33
34namespace lemon {
35
[764]36  /// \brief Default traits class of Howard class.
[761]37  ///
[764]38  /// Default traits class of Howard class.
[761]39  /// \tparam GR The type of the digraph.
40  /// \tparam LEN The type of the length map.
41  /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
42#ifdef DOXYGEN
43  template <typename GR, typename LEN>
44#else
45  template <typename GR, typename LEN,
46    bool integer = std::numeric_limits<typename LEN::Value>::is_integer>
47#endif
[764]48  struct HowardDefaultTraits
[761]49  {
50    /// The type of the digraph
51    typedef GR Digraph;
52    /// The type of the length map
53    typedef LEN LengthMap;
54    /// The type of the arc lengths
55    typedef typename LengthMap::Value Value;
56
57    /// \brief The large value type used for internal computations
58    ///
59    /// The large value type used for internal computations.
60    /// It is \c long \c long if the \c Value type is integer,
61    /// otherwise it is \c double.
62    /// \c Value must be convertible to \c LargeValue.
63    typedef double LargeValue;
64
65    /// The tolerance type used for internal computations
66    typedef lemon::Tolerance<LargeValue> Tolerance;
67
68    /// \brief The path type of the found cycles
69    ///
70    /// The path type of the found cycles.
71    /// It must conform to the \ref lemon::concepts::Path "Path" concept
72    /// and it must have an \c addBack() function.
73    typedef lemon::Path<Digraph> Path;
74  };
75
76  // Default traits class for integer value types
77  template <typename GR, typename LEN>
[764]78  struct HowardDefaultTraits<GR, LEN, true>
[761]79  {
80    typedef GR Digraph;
81    typedef LEN LengthMap;
82    typedef typename LengthMap::Value Value;
83#ifdef LEMON_HAVE_LONG_LONG
84    typedef long long LargeValue;
85#else
86    typedef long LargeValue;
87#endif
88    typedef lemon::Tolerance<LargeValue> Tolerance;
89    typedef lemon::Path<Digraph> Path;
90  };
91
92
[768]93  /// \addtogroup min_mean_cycle
[758]94  /// @{
95
96  /// \brief Implementation of Howard's algorithm for finding a minimum
97  /// mean cycle.
98  ///
[764]99  /// This class implements Howard's policy iteration algorithm for finding
[771]100  /// a directed cycle of minimum mean length (cost) in a digraph
101  /// \ref amo93networkflows, \ref dasdan98minmeancycle.
[768]102  /// This class provides the most efficient algorithm for the
103  /// minimum mean cycle problem, though the best known theoretical
104  /// bound on its running time is exponential.
[758]105  ///
106  /// \tparam GR The type of the digraph the algorithm runs on.
107  /// \tparam LEN The type of the length map. The default
108  /// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
[825]109  /// \tparam TR The traits class that defines various types used by the
110  /// algorithm. By default, it is \ref HowardDefaultTraits
111  /// "HowardDefaultTraits<GR, LEN>".
112  /// In most cases, this parameter should not be set directly,
113  /// consider to use the named template parameters instead.
[758]114#ifdef DOXYGEN
[761]115  template <typename GR, typename LEN, typename TR>
[758]116#else
117  template < typename GR,
[761]118             typename LEN = typename GR::template ArcMap<int>,
[764]119             typename TR = HowardDefaultTraits<GR, LEN> >
[758]120#endif
[764]121  class Howard
[758]122  {
123  public:
124 
[761]125    /// The type of the digraph
126    typedef typename TR::Digraph Digraph;
[758]127    /// The type of the length map
[761]128    typedef typename TR::LengthMap LengthMap;
[758]129    /// The type of the arc lengths
[761]130    typedef typename TR::Value Value;
131
132    /// \brief The large value type
133    ///
134    /// The large value type used for internal computations.
[825]135    /// By default, it is \c long \c long if the \c Value type is integer,
[761]136    /// otherwise it is \c double.
137    typedef typename TR::LargeValue LargeValue;
138
139    /// The tolerance type
140    typedef typename TR::Tolerance Tolerance;
141
142    /// \brief The path type of the found cycles
143    ///
144    /// The path type of the found cycles.
[764]145    /// Using the \ref HowardDefaultTraits "default traits class",
[761]146    /// it is \ref lemon::Path "Path<Digraph>".
147    typedef typename TR::Path Path;
148
[764]149    /// The \ref HowardDefaultTraits "traits class" of the algorithm
[761]150    typedef TR Traits;
[758]151
152  private:
153
154    TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
155 
156    // The digraph the algorithm runs on
157    const Digraph &_gr;
158    // The length of the arcs
159    const LengthMap &_length;
160
[760]161    // Data for the found cycles
162    bool _curr_found, _best_found;
[761]163    LargeValue _curr_length, _best_length;
[760]164    int _curr_size, _best_size;
165    Node _curr_node, _best_node;
166
[758]167    Path *_cycle_path;
[760]168    bool _local_path;
[758]169
[760]170    // Internal data used by the algorithm
171    typename Digraph::template NodeMap<Arc> _policy;
172    typename Digraph::template NodeMap<bool> _reached;
173    typename Digraph::template NodeMap<int> _level;
[761]174    typename Digraph::template NodeMap<LargeValue> _dist;
[758]175
[760]176    // Data for storing the strongly connected components
177    int _comp_num;
[758]178    typename Digraph::template NodeMap<int> _comp;
[760]179    std::vector<std::vector<Node> > _comp_nodes;
180    std::vector<Node>* _nodes;
181    typename Digraph::template NodeMap<std::vector<Arc> > _in_arcs;
182   
183    // Queue used for BFS search
184    std::vector<Node> _queue;
185    int _qfront, _qback;
[761]186
187    Tolerance _tolerance;
188 
[767]189    // Infinite constant
190    const LargeValue INF;
191
[761]192  public:
193 
194    /// \name Named Template Parameters
195    /// @{
196
197    template <typename T>
198    struct SetLargeValueTraits : public Traits {
199      typedef T LargeValue;
200      typedef lemon::Tolerance<T> Tolerance;
201    };
202
203    /// \brief \ref named-templ-param "Named parameter" for setting
204    /// \c LargeValue type.
205    ///
206    /// \ref named-templ-param "Named parameter" for setting \c LargeValue
207    /// type. It is used for internal computations in the algorithm.
208    template <typename T>
209    struct SetLargeValue
[764]210      : public Howard<GR, LEN, SetLargeValueTraits<T> > {
211      typedef Howard<GR, LEN, SetLargeValueTraits<T> > Create;
[761]212    };
213
214    template <typename T>
215    struct SetPathTraits : public Traits {
216      typedef T Path;
217    };
218
219    /// \brief \ref named-templ-param "Named parameter" for setting
220    /// \c %Path type.
221    ///
222    /// \ref named-templ-param "Named parameter" for setting the \c %Path
223    /// type of the found cycles.
224    /// It must conform to the \ref lemon::concepts::Path "Path" concept
225    /// and it must have an \c addBack() function.
226    template <typename T>
227    struct SetPath
[764]228      : public Howard<GR, LEN, SetPathTraits<T> > {
229      typedef Howard<GR, LEN, SetPathTraits<T> > Create;
[761]230    };
[760]231   
[761]232    /// @}
[758]233
[863]234  protected:
235
236    Howard() {}
237
[758]238  public:
239
240    /// \brief Constructor.
241    ///
242    /// The constructor of the class.
243    ///
244    /// \param digraph The digraph the algorithm runs on.
245    /// \param length The lengths (costs) of the arcs.
[764]246    Howard( const Digraph &digraph,
247            const LengthMap &length ) :
[767]248      _gr(digraph), _length(length), _best_found(false),
249      _best_length(0), _best_size(1), _cycle_path(NULL), _local_path(false),
[760]250      _policy(digraph), _reached(digraph), _level(digraph), _dist(digraph),
[767]251      _comp(digraph), _in_arcs(digraph),
252      INF(std::numeric_limits<LargeValue>::has_infinity ?
253          std::numeric_limits<LargeValue>::infinity() :
254          std::numeric_limits<LargeValue>::max())
[758]255    {}
256
257    /// Destructor.
[764]258    ~Howard() {
[758]259      if (_local_path) delete _cycle_path;
260    }
261
262    /// \brief Set the path structure for storing the found cycle.
263    ///
264    /// This function sets an external path structure for storing the
265    /// found cycle.
266    ///
267    /// If you don't call this function before calling \ref run() or
[759]268    /// \ref findMinMean(), it will allocate a local \ref Path "path"
[758]269    /// structure. The destuctor deallocates this automatically
270    /// allocated object, of course.
271    ///
272    /// \note The algorithm calls only the \ref lemon::Path::addBack()
273    /// "addBack()" function of the given path structure.
274    ///
275    /// \return <tt>(*this)</tt>
[764]276    Howard& cycle(Path &path) {
[758]277      if (_local_path) {
278        delete _cycle_path;
279        _local_path = false;
280      }
281      _cycle_path = &path;
282      return *this;
283    }
284
[769]285    /// \brief Set the tolerance used by the algorithm.
286    ///
287    /// This function sets the tolerance object used by the algorithm.
288    ///
289    /// \return <tt>(*this)</tt>
290    Howard& tolerance(const Tolerance& tolerance) {
291      _tolerance = tolerance;
292      return *this;
293    }
294
295    /// \brief Return a const reference to the tolerance.
296    ///
297    /// This function returns a const reference to the tolerance object
298    /// used by the algorithm.
299    const Tolerance& tolerance() const {
300      return _tolerance;
301    }
302
[758]303    /// \name Execution control
304    /// The simplest way to execute the algorithm is to call the \ref run()
305    /// function.\n
[759]306    /// If you only need the minimum mean length, you may call
307    /// \ref findMinMean().
[758]308
309    /// @{
310
311    /// \brief Run the algorithm.
312    ///
313    /// This function runs the algorithm.
[759]314    /// It can be called more than once (e.g. if the underlying digraph
315    /// and/or the arc lengths have been modified).
[758]316    ///
317    /// \return \c true if a directed cycle exists in the digraph.
318    ///
[759]319    /// \note <tt>mmc.run()</tt> is just a shortcut of the following code.
[758]320    /// \code
[759]321    ///   return mmc.findMinMean() && mmc.findCycle();
[758]322    /// \endcode
323    bool run() {
324      return findMinMean() && findCycle();
325    }
326
[759]327    /// \brief Find the minimum cycle mean.
[758]328    ///
[759]329    /// This function finds the minimum mean length of the directed
330    /// cycles in the digraph.
[758]331    ///
[759]332    /// \return \c true if a directed cycle exists in the digraph.
333    bool findMinMean() {
[760]334      // Initialize and find strongly connected components
335      init();
336      findComponents();
337     
[759]338      // Find the minimum cycle mean in the components
[758]339      for (int comp = 0; comp < _comp_num; ++comp) {
[760]340        // Find the minimum mean cycle in the current component
341        if (!buildPolicyGraph(comp)) continue;
[758]342        while (true) {
[760]343          findPolicyCycle();
[758]344          if (!computeNodeDistances()) break;
345        }
[760]346        // Update the best cycle (global minimum mean cycle)
[767]347        if ( _curr_found && (!_best_found ||
[760]348             _curr_length * _best_size < _best_length * _curr_size) ) {
349          _best_found = true;
350          _best_length = _curr_length;
351          _best_size = _curr_size;
352          _best_node = _curr_node;
353        }
[758]354      }
[760]355      return _best_found;
[758]356    }
357
358    /// \brief Find a minimum mean directed cycle.
359    ///
360    /// This function finds a directed cycle of minimum mean length
361    /// in the digraph using the data computed by findMinMean().
362    ///
363    /// \return \c true if a directed cycle exists in the digraph.
364    ///
[759]365    /// \pre \ref findMinMean() must be called before using this function.
[758]366    bool findCycle() {
[760]367      if (!_best_found) return false;
368      _cycle_path->addBack(_policy[_best_node]);
369      for ( Node v = _best_node;
370            (v = _gr.target(_policy[v])) != _best_node; ) {
[758]371        _cycle_path->addBack(_policy[v]);
372      }
373      return true;
374    }
375
376    /// @}
377
378    /// \name Query Functions
[759]379    /// The results of the algorithm can be obtained using these
[758]380    /// functions.\n
381    /// The algorithm should be executed before using them.
382
383    /// @{
384
385    /// \brief Return the total length of the found cycle.
386    ///
387    /// This function returns the total length of the found cycle.
388    ///
[760]389    /// \pre \ref run() or \ref findMinMean() must be called before
[758]390    /// using this function.
[841]391    Value cycleLength() const {
392      return static_cast<Value>(_best_length);
[758]393    }
394
395    /// \brief Return the number of arcs on the found cycle.
396    ///
397    /// This function returns the number of arcs on the found cycle.
398    ///
[760]399    /// \pre \ref run() or \ref findMinMean() must be called before
[758]400    /// using this function.
401    int cycleArcNum() const {
[760]402      return _best_size;
[758]403    }
404
405    /// \brief Return the mean length of the found cycle.
406    ///
407    /// This function returns the mean length of the found cycle.
408    ///
[760]409    /// \note <tt>alg.cycleMean()</tt> is just a shortcut of the
[758]410    /// following code.
411    /// \code
[760]412    ///   return static_cast<double>(alg.cycleLength()) / alg.cycleArcNum();
[758]413    /// \endcode
414    ///
415    /// \pre \ref run() or \ref findMinMean() must be called before
416    /// using this function.
417    double cycleMean() const {
[760]418      return static_cast<double>(_best_length) / _best_size;
[758]419    }
420
421    /// \brief Return the found cycle.
422    ///
423    /// This function returns a const reference to the path structure
424    /// storing the found cycle.
425    ///
426    /// \pre \ref run() or \ref findCycle() must be called before using
427    /// this function.
428    const Path& cycle() const {
429      return *_cycle_path;
430    }
431
432    ///@}
433
434  private:
435
[760]436    // Initialize
437    void init() {
438      if (!_cycle_path) {
439        _local_path = true;
440        _cycle_path = new Path;
[758]441      }
[760]442      _queue.resize(countNodes(_gr));
443      _best_found = false;
444      _best_length = 0;
445      _best_size = 1;
446      _cycle_path->clear();
447    }
448   
449    // Find strongly connected components and initialize _comp_nodes
450    // and _in_arcs
451    void findComponents() {
452      _comp_num = stronglyConnectedComponents(_gr, _comp);
453      _comp_nodes.resize(_comp_num);
454      if (_comp_num == 1) {
455        _comp_nodes[0].clear();
456        for (NodeIt n(_gr); n != INVALID; ++n) {
457          _comp_nodes[0].push_back(n);
458          _in_arcs[n].clear();
459          for (InArcIt a(_gr, n); a != INVALID; ++a) {
460            _in_arcs[n].push_back(a);
461          }
462        }
463      } else {
464        for (int i = 0; i < _comp_num; ++i)
465          _comp_nodes[i].clear();
466        for (NodeIt n(_gr); n != INVALID; ++n) {
467          int k = _comp[n];
468          _comp_nodes[k].push_back(n);
469          _in_arcs[n].clear();
470          for (InArcIt a(_gr, n); a != INVALID; ++a) {
471            if (_comp[_gr.source(a)] == k) _in_arcs[n].push_back(a);
472          }
473        }
[758]474      }
[760]475    }
476
477    // Build the policy graph in the given strongly connected component
478    // (the out-degree of every node is 1)
479    bool buildPolicyGraph(int comp) {
480      _nodes = &(_comp_nodes[comp]);
481      if (_nodes->size() < 1 ||
482          (_nodes->size() == 1 && _in_arcs[(*_nodes)[0]].size() == 0)) {
483        return false;
[758]484      }
[760]485      for (int i = 0; i < int(_nodes->size()); ++i) {
[767]486        _dist[(*_nodes)[i]] = INF;
[760]487      }
488      Node u, v;
489      Arc e;
490      for (int i = 0; i < int(_nodes->size()); ++i) {
491        v = (*_nodes)[i];
492        for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
493          e = _in_arcs[v][j];
494          u = _gr.source(e);
495          if (_length[e] < _dist[u]) {
496            _dist[u] = _length[e];
497            _policy[u] = e;
498          }
[758]499        }
500      }
501      return true;
502    }
503
[760]504    // Find the minimum mean cycle in the policy graph
505    void findPolicyCycle() {
506      for (int i = 0; i < int(_nodes->size()); ++i) {
507        _level[(*_nodes)[i]] = -1;
508      }
[761]509      LargeValue clength;
[758]510      int csize;
511      Node u, v;
[760]512      _curr_found = false;
513      for (int i = 0; i < int(_nodes->size()); ++i) {
514        u = (*_nodes)[i];
515        if (_level[u] >= 0) continue;
516        for (; _level[u] < 0; u = _gr.target(_policy[u])) {
517          _level[u] = i;
518        }
519        if (_level[u] == i) {
520          // A cycle is found
521          clength = _length[_policy[u]];
522          csize = 1;
523          for (v = u; (v = _gr.target(_policy[v])) != u; ) {
524            clength += _length[_policy[v]];
525            ++csize;
[758]526          }
[760]527          if ( !_curr_found ||
528               (clength * _curr_size < _curr_length * csize) ) {
529            _curr_found = true;
530            _curr_length = clength;
531            _curr_size = csize;
532            _curr_node = u;
[758]533          }
534        }
535      }
536    }
537
[760]538    // Contract the policy graph and compute node distances
[758]539    bool computeNodeDistances() {
[760]540      // Find the component of the main cycle and compute node distances
541      // using reverse BFS
542      for (int i = 0; i < int(_nodes->size()); ++i) {
543        _reached[(*_nodes)[i]] = false;
544      }
545      _qfront = _qback = 0;
546      _queue[0] = _curr_node;
547      _reached[_curr_node] = true;
548      _dist[_curr_node] = 0;
[758]549      Node u, v;
[760]550      Arc e;
551      while (_qfront <= _qback) {
552        v = _queue[_qfront++];
553        for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
554          e = _in_arcs[v][j];
[758]555          u = _gr.source(e);
[760]556          if (_policy[u] == e && !_reached[u]) {
557            _reached[u] = true;
[761]558            _dist[u] = _dist[v] + _length[e] * _curr_size - _curr_length;
[760]559            _queue[++_qback] = u;
[758]560          }
561        }
562      }
[760]563
564      // Connect all other nodes to this component and compute node
565      // distances using reverse BFS
566      _qfront = 0;
567      while (_qback < int(_nodes->size())-1) {
568        v = _queue[_qfront++];
569        for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
570          e = _in_arcs[v][j];
571          u = _gr.source(e);
572          if (!_reached[u]) {
573            _reached[u] = true;
574            _policy[u] = e;
[761]575            _dist[u] = _dist[v] + _length[e] * _curr_size - _curr_length;
[760]576            _queue[++_qback] = u;
577          }
578        }
579      }
580
581      // Improve node distances
[758]582      bool improved = false;
[760]583      for (int i = 0; i < int(_nodes->size()); ++i) {
584        v = (*_nodes)[i];
585        for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
586          e = _in_arcs[v][j];
587          u = _gr.source(e);
[761]588          LargeValue delta = _dist[v] + _length[e] * _curr_size - _curr_length;
589          if (_tolerance.less(delta, _dist[u])) {
[760]590            _dist[u] = delta;
591            _policy[u] = e;
592            improved = true;
593          }
[758]594        }
595      }
596      return improved;
597    }
598
[764]599  }; //class Howard
[758]600
601  ///@}
602
603} //namespace lemon
604
[764]605#endif //LEMON_HOWARD_H
Note: See TracBrowser for help on using the repository browser.