[364] | 1 | /* -*- mode: C++; indent-tabs-mode: nil; -*- |
---|
| 2 | * |
---|
| 3 | * This file is a part of LEMON, a generic C++ optimization library. |
---|
| 4 | * |
---|
[440] | 5 | * Copyright (C) 2003-2009 |
---|
[364] | 6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
| 7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
---|
| 8 | * |
---|
| 9 | * Permission to use, modify and distribute this software is granted |
---|
| 10 | * provided that this copyright notice appears in all copies. For |
---|
| 11 | * precise terms see the accompanying LICENSE file. |
---|
| 12 | * |
---|
| 13 | * This software is provided "AS IS" with no warranty of any kind, |
---|
| 14 | * express or implied, and with no claim as to its suitability for any |
---|
| 15 | * purpose. |
---|
| 16 | * |
---|
| 17 | */ |
---|
| 18 | |
---|
| 19 | #ifndef HYPERCUBE_GRAPH_H |
---|
| 20 | #define HYPERCUBE_GRAPH_H |
---|
| 21 | |
---|
| 22 | #include <vector> |
---|
| 23 | #include <lemon/core.h> |
---|
[365] | 24 | #include <lemon/assert.h> |
---|
[364] | 25 | #include <lemon/bits/graph_extender.h> |
---|
| 26 | |
---|
| 27 | ///\ingroup graphs |
---|
| 28 | ///\file |
---|
[365] | 29 | ///\brief HypercubeGraph class. |
---|
[364] | 30 | |
---|
| 31 | namespace lemon { |
---|
| 32 | |
---|
[365] | 33 | class HypercubeGraphBase { |
---|
[364] | 34 | |
---|
| 35 | public: |
---|
| 36 | |
---|
[365] | 37 | typedef HypercubeGraphBase Graph; |
---|
[364] | 38 | |
---|
| 39 | class Node; |
---|
[365] | 40 | class Edge; |
---|
[364] | 41 | class Arc; |
---|
| 42 | |
---|
| 43 | public: |
---|
| 44 | |
---|
[365] | 45 | HypercubeGraphBase() {} |
---|
[364] | 46 | |
---|
| 47 | protected: |
---|
| 48 | |
---|
| 49 | void construct(int dim) { |
---|
[365] | 50 | LEMON_ASSERT(dim >= 1, "The number of dimensions must be at least 1."); |
---|
[364] | 51 | _dim = dim; |
---|
[365] | 52 | _node_num = 1 << dim; |
---|
[372] | 53 | _edge_num = dim * (1 << (dim-1)); |
---|
[364] | 54 | } |
---|
| 55 | |
---|
| 56 | public: |
---|
| 57 | |
---|
| 58 | typedef True NodeNumTag; |
---|
[365] | 59 | typedef True EdgeNumTag; |
---|
[364] | 60 | typedef True ArcNumTag; |
---|
| 61 | |
---|
[365] | 62 | int nodeNum() const { return _node_num; } |
---|
| 63 | int edgeNum() const { return _edge_num; } |
---|
| 64 | int arcNum() const { return 2 * _edge_num; } |
---|
[364] | 65 | |
---|
[365] | 66 | int maxNodeId() const { return _node_num - 1; } |
---|
| 67 | int maxEdgeId() const { return _edge_num - 1; } |
---|
| 68 | int maxArcId() const { return 2 * _edge_num - 1; } |
---|
[364] | 69 | |
---|
[365] | 70 | static Node nodeFromId(int id) { return Node(id); } |
---|
| 71 | static Edge edgeFromId(int id) { return Edge(id); } |
---|
| 72 | static Arc arcFromId(int id) { return Arc(id); } |
---|
| 73 | |
---|
| 74 | static int id(Node node) { return node._id; } |
---|
| 75 | static int id(Edge edge) { return edge._id; } |
---|
| 76 | static int id(Arc arc) { return arc._id; } |
---|
| 77 | |
---|
| 78 | Node u(Edge edge) const { |
---|
[372] | 79 | int base = edge._id & ((1 << (_dim-1)) - 1); |
---|
| 80 | int k = edge._id >> (_dim-1); |
---|
| 81 | return ((base >> k) << (k+1)) | (base & ((1 << k) - 1)); |
---|
[364] | 82 | } |
---|
| 83 | |
---|
[365] | 84 | Node v(Edge edge) const { |
---|
[372] | 85 | int base = edge._id & ((1 << (_dim-1)) - 1); |
---|
| 86 | int k = edge._id >> (_dim-1); |
---|
| 87 | return ((base >> k) << (k+1)) | (base & ((1 << k) - 1)) | (1 << k); |
---|
[364] | 88 | } |
---|
| 89 | |
---|
[365] | 90 | Node source(Arc arc) const { |
---|
| 91 | return (arc._id & 1) == 1 ? u(arc) : v(arc); |
---|
| 92 | } |
---|
[364] | 93 | |
---|
[365] | 94 | Node target(Arc arc) const { |
---|
| 95 | return (arc._id & 1) == 1 ? v(arc) : u(arc); |
---|
| 96 | } |
---|
[364] | 97 | |
---|
[365] | 98 | typedef True FindEdgeTag; |
---|
| 99 | typedef True FindArcTag; |
---|
| 100 | |
---|
| 101 | Edge findEdge(Node u, Node v, Edge prev = INVALID) const { |
---|
| 102 | if (prev != INVALID) return INVALID; |
---|
| 103 | int d = u._id ^ v._id; |
---|
| 104 | int k = 0; |
---|
| 105 | if (d == 0) return INVALID; |
---|
| 106 | for ( ; (d & 1) == 0; d >>= 1) ++k; |
---|
| 107 | if (d >> 1 != 0) return INVALID; |
---|
[372] | 108 | return (k << (_dim-1)) | ((u._id >> (k+1)) << k) | |
---|
| 109 | (u._id & ((1 << k) - 1)); |
---|
[365] | 110 | } |
---|
| 111 | |
---|
| 112 | Arc findArc(Node u, Node v, Arc prev = INVALID) const { |
---|
| 113 | Edge edge = findEdge(u, v, prev); |
---|
| 114 | if (edge == INVALID) return INVALID; |
---|
[372] | 115 | int k = edge._id >> (_dim-1); |
---|
[365] | 116 | return ((u._id >> k) & 1) == 1 ? edge._id << 1 : (edge._id << 1) | 1; |
---|
| 117 | } |
---|
[364] | 118 | |
---|
| 119 | class Node { |
---|
[365] | 120 | friend class HypercubeGraphBase; |
---|
| 121 | |
---|
[364] | 122 | protected: |
---|
[365] | 123 | int _id; |
---|
| 124 | Node(int id) : _id(id) {} |
---|
[364] | 125 | public: |
---|
| 126 | Node() {} |
---|
[365] | 127 | Node (Invalid) : _id(-1) {} |
---|
| 128 | bool operator==(const Node node) const {return _id == node._id;} |
---|
| 129 | bool operator!=(const Node node) const {return _id != node._id;} |
---|
| 130 | bool operator<(const Node node) const {return _id < node._id;} |
---|
| 131 | }; |
---|
| 132 | |
---|
| 133 | class Edge { |
---|
| 134 | friend class HypercubeGraphBase; |
---|
| 135 | friend class Arc; |
---|
| 136 | |
---|
| 137 | protected: |
---|
| 138 | int _id; |
---|
| 139 | |
---|
| 140 | Edge(int id) : _id(id) {} |
---|
| 141 | |
---|
| 142 | public: |
---|
| 143 | Edge() {} |
---|
| 144 | Edge (Invalid) : _id(-1) {} |
---|
| 145 | bool operator==(const Edge edge) const {return _id == edge._id;} |
---|
| 146 | bool operator!=(const Edge edge) const {return _id != edge._id;} |
---|
| 147 | bool operator<(const Edge edge) const {return _id < edge._id;} |
---|
[364] | 148 | }; |
---|
| 149 | |
---|
| 150 | class Arc { |
---|
[365] | 151 | friend class HypercubeGraphBase; |
---|
| 152 | |
---|
[364] | 153 | protected: |
---|
[365] | 154 | int _id; |
---|
| 155 | |
---|
| 156 | Arc(int id) : _id(id) {} |
---|
| 157 | |
---|
[364] | 158 | public: |
---|
[365] | 159 | Arc() {} |
---|
| 160 | Arc (Invalid) : _id(-1) {} |
---|
| 161 | operator Edge() const { return _id != -1 ? Edge(_id >> 1) : INVALID; } |
---|
| 162 | bool operator==(const Arc arc) const {return _id == arc._id;} |
---|
| 163 | bool operator!=(const Arc arc) const {return _id != arc._id;} |
---|
| 164 | bool operator<(const Arc arc) const {return _id < arc._id;} |
---|
[364] | 165 | }; |
---|
| 166 | |
---|
| 167 | void first(Node& node) const { |
---|
[365] | 168 | node._id = _node_num - 1; |
---|
[364] | 169 | } |
---|
| 170 | |
---|
| 171 | static void next(Node& node) { |
---|
[365] | 172 | --node._id; |
---|
| 173 | } |
---|
| 174 | |
---|
| 175 | void first(Edge& edge) const { |
---|
| 176 | edge._id = _edge_num - 1; |
---|
| 177 | } |
---|
| 178 | |
---|
| 179 | static void next(Edge& edge) { |
---|
| 180 | --edge._id; |
---|
[364] | 181 | } |
---|
| 182 | |
---|
| 183 | void first(Arc& arc) const { |
---|
[365] | 184 | arc._id = 2 * _edge_num - 1; |
---|
[364] | 185 | } |
---|
| 186 | |
---|
| 187 | static void next(Arc& arc) { |
---|
[365] | 188 | --arc._id; |
---|
| 189 | } |
---|
| 190 | |
---|
| 191 | void firstInc(Edge& edge, bool& dir, const Node& node) const { |
---|
| 192 | edge._id = node._id >> 1; |
---|
| 193 | dir = (node._id & 1) == 0; |
---|
| 194 | } |
---|
| 195 | |
---|
| 196 | void nextInc(Edge& edge, bool& dir) const { |
---|
| 197 | Node n = dir ? u(edge) : v(edge); |
---|
[372] | 198 | int k = (edge._id >> (_dim-1)) + 1; |
---|
[365] | 199 | if (k < _dim) { |
---|
[372] | 200 | edge._id = (k << (_dim-1)) | |
---|
| 201 | ((n._id >> (k+1)) << k) | (n._id & ((1 << k) - 1)); |
---|
[365] | 202 | dir = ((n._id >> k) & 1) == 0; |
---|
| 203 | } else { |
---|
| 204 | edge._id = -1; |
---|
| 205 | dir = true; |
---|
| 206 | } |
---|
[364] | 207 | } |
---|
| 208 | |
---|
| 209 | void firstOut(Arc& arc, const Node& node) const { |
---|
[365] | 210 | arc._id = ((node._id >> 1) << 1) | (~node._id & 1); |
---|
[364] | 211 | } |
---|
| 212 | |
---|
| 213 | void nextOut(Arc& arc) const { |
---|
[365] | 214 | Node n = (arc._id & 1) == 1 ? u(arc) : v(arc); |
---|
| 215 | int k = (arc._id >> _dim) + 1; |
---|
| 216 | if (k < _dim) { |
---|
[372] | 217 | arc._id = (k << (_dim-1)) | |
---|
| 218 | ((n._id >> (k+1)) << k) | (n._id & ((1 << k) - 1)); |
---|
[365] | 219 | arc._id = (arc._id << 1) | (~(n._id >> k) & 1); |
---|
| 220 | } else { |
---|
| 221 | arc._id = -1; |
---|
| 222 | } |
---|
[364] | 223 | } |
---|
| 224 | |
---|
| 225 | void firstIn(Arc& arc, const Node& node) const { |
---|
[365] | 226 | arc._id = ((node._id >> 1) << 1) | (node._id & 1); |
---|
[364] | 227 | } |
---|
| 228 | |
---|
| 229 | void nextIn(Arc& arc) const { |
---|
[365] | 230 | Node n = (arc._id & 1) == 1 ? v(arc) : u(arc); |
---|
| 231 | int k = (arc._id >> _dim) + 1; |
---|
| 232 | if (k < _dim) { |
---|
[372] | 233 | arc._id = (k << (_dim-1)) | |
---|
| 234 | ((n._id >> (k+1)) << k) | (n._id & ((1 << k) - 1)); |
---|
[365] | 235 | arc._id = (arc._id << 1) | ((n._id >> k) & 1); |
---|
[364] | 236 | } else { |
---|
[365] | 237 | arc._id = -1; |
---|
[364] | 238 | } |
---|
| 239 | } |
---|
| 240 | |
---|
[365] | 241 | static bool direction(Arc arc) { |
---|
| 242 | return (arc._id & 1) == 1; |
---|
| 243 | } |
---|
| 244 | |
---|
| 245 | static Arc direct(Edge edge, bool dir) { |
---|
| 246 | return Arc((edge._id << 1) | (dir ? 1 : 0)); |
---|
| 247 | } |
---|
| 248 | |
---|
[364] | 249 | int dimension() const { |
---|
| 250 | return _dim; |
---|
| 251 | } |
---|
| 252 | |
---|
| 253 | bool projection(Node node, int n) const { |
---|
[365] | 254 | return static_cast<bool>(node._id & (1 << n)); |
---|
| 255 | } |
---|
| 256 | |
---|
| 257 | int dimension(Edge edge) const { |
---|
[372] | 258 | return edge._id >> (_dim-1); |
---|
[364] | 259 | } |
---|
| 260 | |
---|
| 261 | int dimension(Arc arc) const { |
---|
[365] | 262 | return arc._id >> _dim; |
---|
[364] | 263 | } |
---|
| 264 | |
---|
| 265 | int index(Node node) const { |
---|
[365] | 266 | return node._id; |
---|
[364] | 267 | } |
---|
| 268 | |
---|
| 269 | Node operator()(int ix) const { |
---|
| 270 | return Node(ix); |
---|
| 271 | } |
---|
| 272 | |
---|
| 273 | private: |
---|
[365] | 274 | int _dim; |
---|
| 275 | int _node_num, _edge_num; |
---|
[364] | 276 | }; |
---|
| 277 | |
---|
| 278 | |
---|
[365] | 279 | typedef GraphExtender<HypercubeGraphBase> ExtendedHypercubeGraphBase; |
---|
[364] | 280 | |
---|
[365] | 281 | /// \ingroup graphs |
---|
[364] | 282 | /// |
---|
[365] | 283 | /// \brief Hypercube graph class |
---|
[364] | 284 | /// |
---|
[365] | 285 | /// This class implements a special graph type. The nodes of the graph |
---|
| 286 | /// are indiced with integers with at most \c dim binary digits. |
---|
| 287 | /// Two nodes are connected in the graph if and only if their indices |
---|
| 288 | /// differ only on one position in the binary form. |
---|
[364] | 289 | /// |
---|
[365] | 290 | /// \note The type of the indices is chosen to \c int for efficiency |
---|
| 291 | /// reasons. Thus the maximum dimension of this implementation is 26 |
---|
| 292 | /// (assuming that the size of \c int is 32 bit). |
---|
[364] | 293 | /// |
---|
[365] | 294 | /// This graph type is fully conform to the \ref concepts::Graph |
---|
| 295 | /// "Graph" concept, and it also has an important extra feature |
---|
| 296 | /// that its maps are real \ref concepts::ReferenceMap |
---|
| 297 | /// "reference map"s. |
---|
| 298 | class HypercubeGraph : public ExtendedHypercubeGraphBase { |
---|
[364] | 299 | public: |
---|
| 300 | |
---|
[365] | 301 | typedef ExtendedHypercubeGraphBase Parent; |
---|
[364] | 302 | |
---|
[365] | 303 | /// \brief Constructs a hypercube graph with \c dim dimensions. |
---|
[364] | 304 | /// |
---|
[365] | 305 | /// Constructs a hypercube graph with \c dim dimensions. |
---|
| 306 | HypercubeGraph(int dim) { construct(dim); } |
---|
[364] | 307 | |
---|
[365] | 308 | /// \brief The number of dimensions. |
---|
[364] | 309 | /// |
---|
[365] | 310 | /// Gives back the number of dimensions. |
---|
[364] | 311 | int dimension() const { |
---|
| 312 | return Parent::dimension(); |
---|
| 313 | } |
---|
| 314 | |
---|
[365] | 315 | /// \brief Returns \c true if the n'th bit of the node is one. |
---|
[364] | 316 | /// |
---|
[365] | 317 | /// Returns \c true if the n'th bit of the node is one. |
---|
[364] | 318 | bool projection(Node node, int n) const { |
---|
| 319 | return Parent::projection(node, n); |
---|
| 320 | } |
---|
| 321 | |
---|
[365] | 322 | /// \brief The dimension id of an edge. |
---|
[364] | 323 | /// |
---|
[365] | 324 | /// Gives back the dimension id of the given edge. |
---|
| 325 | /// It is in the [0..dim-1] range. |
---|
| 326 | int dimension(Edge edge) const { |
---|
| 327 | return Parent::dimension(edge); |
---|
| 328 | } |
---|
| 329 | |
---|
| 330 | /// \brief The dimension id of an arc. |
---|
| 331 | /// |
---|
| 332 | /// Gives back the dimension id of the given arc. |
---|
| 333 | /// It is in the [0..dim-1] range. |
---|
[364] | 334 | int dimension(Arc arc) const { |
---|
| 335 | return Parent::dimension(arc); |
---|
| 336 | } |
---|
| 337 | |
---|
[365] | 338 | /// \brief The index of a node. |
---|
[364] | 339 | /// |
---|
[365] | 340 | /// Gives back the index of the given node. |
---|
| 341 | /// The lower bits of the integer describes the node. |
---|
[364] | 342 | int index(Node node) const { |
---|
| 343 | return Parent::index(node); |
---|
| 344 | } |
---|
| 345 | |
---|
[365] | 346 | /// \brief Gives back a node by its index. |
---|
[364] | 347 | /// |
---|
[365] | 348 | /// Gives back a node by its index. |
---|
[364] | 349 | Node operator()(int ix) const { |
---|
| 350 | return Parent::operator()(ix); |
---|
| 351 | } |
---|
| 352 | |
---|
| 353 | /// \brief Number of nodes. |
---|
| 354 | int nodeNum() const { return Parent::nodeNum(); } |
---|
[365] | 355 | /// \brief Number of edges. |
---|
| 356 | int edgeNum() const { return Parent::edgeNum(); } |
---|
[364] | 357 | /// \brief Number of arcs. |
---|
| 358 | int arcNum() const { return Parent::arcNum(); } |
---|
| 359 | |
---|
| 360 | /// \brief Linear combination map. |
---|
| 361 | /// |
---|
[365] | 362 | /// This map makes possible to give back a linear combination |
---|
| 363 | /// for each node. It works like the \c std::accumulate function, |
---|
| 364 | /// so it accumulates the \c bf binary function with the \c fv first |
---|
| 365 | /// value. The map accumulates only on that positions (dimensions) |
---|
| 366 | /// where the index of the node is one. The values that have to be |
---|
| 367 | /// accumulated should be given by the \c begin and \c end iterators |
---|
| 368 | /// and the length of this range should be equal to the dimension |
---|
| 369 | /// number of the graph. |
---|
[364] | 370 | /// |
---|
| 371 | ///\code |
---|
| 372 | /// const int DIM = 3; |
---|
[365] | 373 | /// HypercubeGraph graph(DIM); |
---|
[364] | 374 | /// dim2::Point<double> base[DIM]; |
---|
| 375 | /// for (int k = 0; k < DIM; ++k) { |
---|
| 376 | /// base[k].x = rnd(); |
---|
| 377 | /// base[k].y = rnd(); |
---|
| 378 | /// } |
---|
[365] | 379 | /// HypercubeGraph::HyperMap<dim2::Point<double> > |
---|
| 380 | /// pos(graph, base, base + DIM, dim2::Point<double>(0.0, 0.0)); |
---|
[364] | 381 | ///\endcode |
---|
| 382 | /// |
---|
[365] | 383 | /// \see HypercubeGraph |
---|
[364] | 384 | template <typename T, typename BF = std::plus<T> > |
---|
| 385 | class HyperMap { |
---|
| 386 | public: |
---|
| 387 | |
---|
[365] | 388 | /// \brief The key type of the map |
---|
[364] | 389 | typedef Node Key; |
---|
[365] | 390 | /// \brief The value type of the map |
---|
[364] | 391 | typedef T Value; |
---|
| 392 | |
---|
| 393 | /// \brief Constructor for HyperMap. |
---|
| 394 | /// |
---|
[365] | 395 | /// Construct a HyperMap for the given graph. The values that have |
---|
| 396 | /// to be accumulated should be given by the \c begin and \c end |
---|
| 397 | /// iterators and the length of this range should be equal to the |
---|
| 398 | /// dimension number of the graph. |
---|
[364] | 399 | /// |
---|
[365] | 400 | /// This map accumulates the \c bf binary function with the \c fv |
---|
| 401 | /// first value on that positions (dimensions) where the index of |
---|
| 402 | /// the node is one. |
---|
[364] | 403 | template <typename It> |
---|
[365] | 404 | HyperMap(const Graph& graph, It begin, It end, |
---|
| 405 | T fv = 0, const BF& bf = BF()) |
---|
| 406 | : _graph(graph), _values(begin, end), _first_value(fv), _bin_func(bf) |
---|
[364] | 407 | { |
---|
[365] | 408 | LEMON_ASSERT(_values.size() == graph.dimension(), |
---|
| 409 | "Wrong size of range"); |
---|
[364] | 410 | } |
---|
| 411 | |
---|
[365] | 412 | /// \brief The partial accumulated value. |
---|
[364] | 413 | /// |
---|
| 414 | /// Gives back the partial accumulated value. |
---|
[365] | 415 | Value operator[](const Key& k) const { |
---|
[364] | 416 | Value val = _first_value; |
---|
| 417 | int id = _graph.index(k); |
---|
| 418 | int n = 0; |
---|
| 419 | while (id != 0) { |
---|
| 420 | if (id & 1) { |
---|
| 421 | val = _bin_func(val, _values[n]); |
---|
| 422 | } |
---|
| 423 | id >>= 1; |
---|
| 424 | ++n; |
---|
| 425 | } |
---|
| 426 | return val; |
---|
| 427 | } |
---|
| 428 | |
---|
| 429 | private: |
---|
[365] | 430 | const Graph& _graph; |
---|
[364] | 431 | std::vector<T> _values; |
---|
| 432 | T _first_value; |
---|
| 433 | BF _bin_func; |
---|
| 434 | }; |
---|
| 435 | |
---|
| 436 | }; |
---|
| 437 | |
---|
| 438 | } |
---|
| 439 | |
---|
| 440 | #endif |
---|