COIN-OR::LEMON - Graph Library

source: lemon-1.2/lemon/hypercube_graph.h @ 713:4ac30454f1c1

Last change on this file since 713:4ac30454f1c1 was 617:4137ef9aacc6, checked in by Peter Kovacs <kpeter@…>, 16 years ago

Fix and uniform the usage of Graph and Parent typedefs (#268)

  • Rename Graph typedefs to GraphType? in the implementation of graph maps and MapExtender? to prevent conflicts (especially using VS). They are not public.
  • Make Parent typedefs private in all classes.
  • Replace Digraph with Graph in some places (fix faulty renamings of the script).
  • Use Graph and Digraph typedefs (more) consequently.
File size: 11.8 KB
RevLine 
[364]1/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 *
3 * This file is a part of LEMON, a generic C++ optimization library.
4 *
[440]5 * Copyright (C) 2003-2009
[364]6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 *
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
12 *
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
15 * purpose.
16 *
17 */
18
19#ifndef HYPERCUBE_GRAPH_H
20#define HYPERCUBE_GRAPH_H
21
22#include <vector>
23#include <lemon/core.h>
[365]24#include <lemon/assert.h>
[364]25#include <lemon/bits/graph_extender.h>
26
27///\ingroup graphs
28///\file
[365]29///\brief HypercubeGraph class.
[364]30
31namespace lemon {
32
[365]33  class HypercubeGraphBase {
[364]34
35  public:
36
[365]37    typedef HypercubeGraphBase Graph;
[364]38
39    class Node;
[365]40    class Edge;
[364]41    class Arc;
42
43  public:
44
[365]45    HypercubeGraphBase() {}
[364]46
47  protected:
48
49    void construct(int dim) {
[365]50      LEMON_ASSERT(dim >= 1, "The number of dimensions must be at least 1.");
[364]51      _dim = dim;
[365]52      _node_num = 1 << dim;
[372]53      _edge_num = dim * (1 << (dim-1));
[364]54    }
55
56  public:
57
58    typedef True NodeNumTag;
[365]59    typedef True EdgeNumTag;
[364]60    typedef True ArcNumTag;
61
[365]62    int nodeNum() const { return _node_num; }
63    int edgeNum() const { return _edge_num; }
64    int arcNum() const { return 2 * _edge_num; }
[364]65
[365]66    int maxNodeId() const { return _node_num - 1; }
67    int maxEdgeId() const { return _edge_num - 1; }
68    int maxArcId() const { return 2 * _edge_num - 1; }
[364]69
[365]70    static Node nodeFromId(int id) { return Node(id); }
71    static Edge edgeFromId(int id) { return Edge(id); }
72    static Arc arcFromId(int id) { return Arc(id); }
73
74    static int id(Node node) { return node._id; }
75    static int id(Edge edge) { return edge._id; }
76    static int id(Arc arc) { return arc._id; }
77
78    Node u(Edge edge) const {
[372]79      int base = edge._id & ((1 << (_dim-1)) - 1);
80      int k = edge._id >> (_dim-1);
81      return ((base >> k) << (k+1)) | (base & ((1 << k) - 1));
[364]82    }
83
[365]84    Node v(Edge edge) const {
[372]85      int base = edge._id & ((1 << (_dim-1)) - 1);
86      int k = edge._id >> (_dim-1);
87      return ((base >> k) << (k+1)) | (base & ((1 << k) - 1)) | (1 << k);
[364]88    }
89
[365]90    Node source(Arc arc) const {
91      return (arc._id & 1) == 1 ? u(arc) : v(arc);
92    }
[364]93
[365]94    Node target(Arc arc) const {
95      return (arc._id & 1) == 1 ? v(arc) : u(arc);
96    }
[364]97
[365]98    typedef True FindEdgeTag;
99    typedef True FindArcTag;
100
101    Edge findEdge(Node u, Node v, Edge prev = INVALID) const {
102      if (prev != INVALID) return INVALID;
103      int d = u._id ^ v._id;
104      int k = 0;
105      if (d == 0) return INVALID;
106      for ( ; (d & 1) == 0; d >>= 1) ++k;
107      if (d >> 1 != 0) return INVALID;
[372]108      return (k << (_dim-1)) | ((u._id >> (k+1)) << k) |
109        (u._id & ((1 << k) - 1));
[365]110    }
111
112    Arc findArc(Node u, Node v, Arc prev = INVALID) const {
113      Edge edge = findEdge(u, v, prev);
114      if (edge == INVALID) return INVALID;
[372]115      int k = edge._id >> (_dim-1);
[365]116      return ((u._id >> k) & 1) == 1 ? edge._id << 1 : (edge._id << 1) | 1;
117    }
[364]118
119    class Node {
[365]120      friend class HypercubeGraphBase;
121
[364]122    protected:
[365]123      int _id;
124      Node(int id) : _id(id) {}
[364]125    public:
126      Node() {}
[365]127      Node (Invalid) : _id(-1) {}
128      bool operator==(const Node node) const {return _id == node._id;}
129      bool operator!=(const Node node) const {return _id != node._id;}
130      bool operator<(const Node node) const {return _id < node._id;}
131    };
132
133    class Edge {
134      friend class HypercubeGraphBase;
135      friend class Arc;
136
137    protected:
138      int _id;
139
140      Edge(int id) : _id(id) {}
141
142    public:
143      Edge() {}
144      Edge (Invalid) : _id(-1) {}
145      bool operator==(const Edge edge) const {return _id == edge._id;}
146      bool operator!=(const Edge edge) const {return _id != edge._id;}
147      bool operator<(const Edge edge) const {return _id < edge._id;}
[364]148    };
149
150    class Arc {
[365]151      friend class HypercubeGraphBase;
152
[364]153    protected:
[365]154      int _id;
155
156      Arc(int id) : _id(id) {}
157
[364]158    public:
[365]159      Arc() {}
160      Arc (Invalid) : _id(-1) {}
161      operator Edge() const { return _id != -1 ? Edge(_id >> 1) : INVALID; }
162      bool operator==(const Arc arc) const {return _id == arc._id;}
163      bool operator!=(const Arc arc) const {return _id != arc._id;}
164      bool operator<(const Arc arc) const {return _id < arc._id;}
[364]165    };
166
167    void first(Node& node) const {
[365]168      node._id = _node_num - 1;
[364]169    }
170
171    static void next(Node& node) {
[365]172      --node._id;
173    }
174
175    void first(Edge& edge) const {
176      edge._id = _edge_num - 1;
177    }
178
179    static void next(Edge& edge) {
180      --edge._id;
[364]181    }
182
183    void first(Arc& arc) const {
[365]184      arc._id = 2 * _edge_num - 1;
[364]185    }
186
187    static void next(Arc& arc) {
[365]188      --arc._id;
189    }
190
191    void firstInc(Edge& edge, bool& dir, const Node& node) const {
192      edge._id = node._id >> 1;
193      dir = (node._id & 1) == 0;
194    }
195
196    void nextInc(Edge& edge, bool& dir) const {
197      Node n = dir ? u(edge) : v(edge);
[372]198      int k = (edge._id >> (_dim-1)) + 1;
[365]199      if (k < _dim) {
[372]200        edge._id = (k << (_dim-1)) |
201          ((n._id >> (k+1)) << k) | (n._id & ((1 << k) - 1));
[365]202        dir = ((n._id >> k) & 1) == 0;
203      } else {
204        edge._id = -1;
205        dir = true;
206      }
[364]207    }
208
209    void firstOut(Arc& arc, const Node& node) const {
[365]210      arc._id = ((node._id >> 1) << 1) | (~node._id & 1);
[364]211    }
212
213    void nextOut(Arc& arc) const {
[365]214      Node n = (arc._id & 1) == 1 ? u(arc) : v(arc);
215      int k = (arc._id >> _dim) + 1;
216      if (k < _dim) {
[372]217        arc._id = (k << (_dim-1)) |
218          ((n._id >> (k+1)) << k) | (n._id & ((1 << k) - 1));
[365]219        arc._id = (arc._id << 1) | (~(n._id >> k) & 1);
220      } else {
221        arc._id = -1;
222      }
[364]223    }
224
225    void firstIn(Arc& arc, const Node& node) const {
[365]226      arc._id = ((node._id >> 1) << 1) | (node._id & 1);
[364]227    }
228
229    void nextIn(Arc& arc) const {
[365]230      Node n = (arc._id & 1) == 1 ? v(arc) : u(arc);
231      int k = (arc._id >> _dim) + 1;
232      if (k < _dim) {
[372]233        arc._id = (k << (_dim-1)) |
234          ((n._id >> (k+1)) << k) | (n._id & ((1 << k) - 1));
[365]235        arc._id = (arc._id << 1) | ((n._id >> k) & 1);
[364]236      } else {
[365]237        arc._id = -1;
[364]238      }
239    }
240
[365]241    static bool direction(Arc arc) {
242      return (arc._id & 1) == 1;
243    }
244
245    static Arc direct(Edge edge, bool dir) {
246      return Arc((edge._id << 1) | (dir ? 1 : 0));
247    }
248
[364]249    int dimension() const {
250      return _dim;
251    }
252
253    bool projection(Node node, int n) const {
[365]254      return static_cast<bool>(node._id & (1 << n));
255    }
256
257    int dimension(Edge edge) const {
[372]258      return edge._id >> (_dim-1);
[364]259    }
260
261    int dimension(Arc arc) const {
[365]262      return arc._id >> _dim;
[364]263    }
264
265    int index(Node node) const {
[365]266      return node._id;
[364]267    }
268
269    Node operator()(int ix) const {
270      return Node(ix);
271    }
272
273  private:
[365]274    int _dim;
275    int _node_num, _edge_num;
[364]276  };
277
278
[365]279  typedef GraphExtender<HypercubeGraphBase> ExtendedHypercubeGraphBase;
[364]280
[365]281  /// \ingroup graphs
[364]282  ///
[365]283  /// \brief Hypercube graph class
[364]284  ///
[365]285  /// This class implements a special graph type. The nodes of the graph
286  /// are indiced with integers with at most \c dim binary digits.
287  /// Two nodes are connected in the graph if and only if their indices
288  /// differ only on one position in the binary form.
[364]289  ///
[365]290  /// \note The type of the indices is chosen to \c int for efficiency
291  /// reasons. Thus the maximum dimension of this implementation is 26
292  /// (assuming that the size of \c int is 32 bit).
[364]293  ///
[559]294  /// This graph type fully conforms to the \ref concepts::Graph
[582]295  /// "Graph concept".
[365]296  class HypercubeGraph : public ExtendedHypercubeGraphBase {
[617]297    typedef ExtendedHypercubeGraphBase Parent;
298
[364]299  public:
300
[365]301    /// \brief Constructs a hypercube graph with \c dim dimensions.
[364]302    ///
[365]303    /// Constructs a hypercube graph with \c dim dimensions.
304    HypercubeGraph(int dim) { construct(dim); }
[364]305
[365]306    /// \brief The number of dimensions.
[364]307    ///
[365]308    /// Gives back the number of dimensions.
[364]309    int dimension() const {
310      return Parent::dimension();
311    }
312
[365]313    /// \brief Returns \c true if the n'th bit of the node is one.
[364]314    ///
[365]315    /// Returns \c true if the n'th bit of the node is one.
[364]316    bool projection(Node node, int n) const {
317      return Parent::projection(node, n);
318    }
319
[365]320    /// \brief The dimension id of an edge.
[364]321    ///
[365]322    /// Gives back the dimension id of the given edge.
323    /// It is in the [0..dim-1] range.
324    int dimension(Edge edge) const {
325      return Parent::dimension(edge);
326    }
327
328    /// \brief The dimension id of an arc.
329    ///
330    /// Gives back the dimension id of the given arc.
331    /// It is in the [0..dim-1] range.
[364]332    int dimension(Arc arc) const {
333      return Parent::dimension(arc);
334    }
335
[365]336    /// \brief The index of a node.
[364]337    ///
[365]338    /// Gives back the index of the given node.
339    /// The lower bits of the integer describes the node.
[364]340    int index(Node node) const {
341      return Parent::index(node);
342    }
343
[365]344    /// \brief Gives back a node by its index.
[364]345    ///
[365]346    /// Gives back a node by its index.
[364]347    Node operator()(int ix) const {
348      return Parent::operator()(ix);
349    }
350
351    /// \brief Number of nodes.
352    int nodeNum() const { return Parent::nodeNum(); }
[365]353    /// \brief Number of edges.
354    int edgeNum() const { return Parent::edgeNum(); }
[364]355    /// \brief Number of arcs.
356    int arcNum() const { return Parent::arcNum(); }
357
358    /// \brief Linear combination map.
359    ///
[365]360    /// This map makes possible to give back a linear combination
361    /// for each node. It works like the \c std::accumulate function,
362    /// so it accumulates the \c bf binary function with the \c fv first
363    /// value. The map accumulates only on that positions (dimensions)
364    /// where the index of the node is one. The values that have to be
365    /// accumulated should be given by the \c begin and \c end iterators
366    /// and the length of this range should be equal to the dimension
367    /// number of the graph.
[364]368    ///
369    ///\code
370    /// const int DIM = 3;
[365]371    /// HypercubeGraph graph(DIM);
[364]372    /// dim2::Point<double> base[DIM];
373    /// for (int k = 0; k < DIM; ++k) {
374    ///   base[k].x = rnd();
375    ///   base[k].y = rnd();
376    /// }
[365]377    /// HypercubeGraph::HyperMap<dim2::Point<double> >
378    ///   pos(graph, base, base + DIM, dim2::Point<double>(0.0, 0.0));
[364]379    ///\endcode
380    ///
[365]381    /// \see HypercubeGraph
[364]382    template <typename T, typename BF = std::plus<T> >
383    class HyperMap {
384    public:
385
[365]386      /// \brief The key type of the map
[364]387      typedef Node Key;
[365]388      /// \brief The value type of the map
[364]389      typedef T Value;
390
391      /// \brief Constructor for HyperMap.
392      ///
[365]393      /// Construct a HyperMap for the given graph. The values that have
394      /// to be accumulated should be given by the \c begin and \c end
395      /// iterators and the length of this range should be equal to the
396      /// dimension number of the graph.
[364]397      ///
[365]398      /// This map accumulates the \c bf binary function with the \c fv
399      /// first value on that positions (dimensions) where the index of
400      /// the node is one.
[364]401      template <typename It>
[365]402      HyperMap(const Graph& graph, It begin, It end,
403               T fv = 0, const BF& bf = BF())
404        : _graph(graph), _values(begin, end), _first_value(fv), _bin_func(bf)
[364]405      {
[365]406        LEMON_ASSERT(_values.size() == graph.dimension(),
407                     "Wrong size of range");
[364]408      }
409
[365]410      /// \brief The partial accumulated value.
[364]411      ///
412      /// Gives back the partial accumulated value.
[365]413      Value operator[](const Key& k) const {
[364]414        Value val = _first_value;
415        int id = _graph.index(k);
416        int n = 0;
417        while (id != 0) {
418          if (id & 1) {
419            val = _bin_func(val, _values[n]);
420          }
421          id >>= 1;
422          ++n;
423        }
424        return val;
425      }
426
427    private:
[365]428      const Graph& _graph;
[364]429      std::vector<T> _values;
430      T _first_value;
431      BF _bin_func;
432    };
433
434  };
435
436}
437
438#endif
Note: See TracBrowser for help on using the repository browser.