/* -*- mode: C++; indent-tabs-mode: nil; -*- * * This file is a part of LEMON, a generic C++ optimization library. * * Copyright (C) 2003-2009 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport * (Egervary Research Group on Combinatorial Optimization, EGRES). * * Permission to use, modify and distribute this software is granted * provided that this copyright notice appears in all copies. For * precise terms see the accompanying LICENSE file. * * This software is provided "AS IS" with no warranty of any kind, * express or implied, and with no claim as to its suitability for any * purpose. * */ #ifndef LEMON_LIST_GRAPH_H #define LEMON_LIST_GRAPH_H ///\ingroup graphs ///\file ///\brief ListDigraph, ListGraph classes. #include #include #include #include #include namespace lemon { class ListDigraphBase { protected: struct NodeT { int first_in, first_out; int prev, next; }; struct ArcT { int target, source; int prev_in, prev_out; int next_in, next_out; }; std::vector nodes; int first_node; int first_free_node; std::vector arcs; int first_free_arc; public: typedef ListDigraphBase Digraph; class Node { friend class ListDigraphBase; protected: int id; explicit Node(int pid) { id = pid;} public: Node() {} Node (Invalid) { id = -1; } bool operator==(const Node& node) const {return id == node.id;} bool operator!=(const Node& node) const {return id != node.id;} bool operator<(const Node& node) const {return id < node.id;} }; class Arc { friend class ListDigraphBase; protected: int id; explicit Arc(int pid) { id = pid;} public: Arc() {} Arc (Invalid) { id = -1; } bool operator==(const Arc& arc) const {return id == arc.id;} bool operator!=(const Arc& arc) const {return id != arc.id;} bool operator<(const Arc& arc) const {return id < arc.id;} }; ListDigraphBase() : nodes(), first_node(-1), first_free_node(-1), arcs(), first_free_arc(-1) {} int maxNodeId() const { return nodes.size()-1; } int maxArcId() const { return arcs.size()-1; } Node source(Arc e) const { return Node(arcs[e.id].source); } Node target(Arc e) const { return Node(arcs[e.id].target); } void first(Node& node) const { node.id = first_node; } void next(Node& node) const { node.id = nodes[node.id].next; } void first(Arc& arc) const { int n; for(n = first_node; n!=-1 && nodes[n].first_in == -1; n = nodes[n].next) {} arc.id = (n == -1) ? -1 : nodes[n].first_in; } void next(Arc& arc) const { if (arcs[arc.id].next_in != -1) { arc.id = arcs[arc.id].next_in; } else { int n; for(n = nodes[arcs[arc.id].target].next; n!=-1 && nodes[n].first_in == -1; n = nodes[n].next) {} arc.id = (n == -1) ? -1 : nodes[n].first_in; } } void firstOut(Arc &e, const Node& v) const { e.id = nodes[v.id].first_out; } void nextOut(Arc &e) const { e.id=arcs[e.id].next_out; } void firstIn(Arc &e, const Node& v) const { e.id = nodes[v.id].first_in; } void nextIn(Arc &e) const { e.id=arcs[e.id].next_in; } static int id(Node v) { return v.id; } static int id(Arc e) { return e.id; } static Node nodeFromId(int id) { return Node(id);} static Arc arcFromId(int id) { return Arc(id);} bool valid(Node n) const { return n.id >= 0 && n.id < static_cast(nodes.size()) && nodes[n.id].prev != -2; } bool valid(Arc a) const { return a.id >= 0 && a.id < static_cast(arcs.size()) && arcs[a.id].prev_in != -2; } Node addNode() { int n; if(first_free_node==-1) { n = nodes.size(); nodes.push_back(NodeT()); } else { n = first_free_node; first_free_node = nodes[n].next; } nodes[n].next = first_node; if(first_node != -1) nodes[first_node].prev = n; first_node = n; nodes[n].prev = -1; nodes[n].first_in = nodes[n].first_out = -1; return Node(n); } Arc addArc(Node u, Node v) { int n; if (first_free_arc == -1) { n = arcs.size(); arcs.push_back(ArcT()); } else { n = first_free_arc; first_free_arc = arcs[n].next_in; } arcs[n].source = u.id; arcs[n].target = v.id; arcs[n].next_out = nodes[u.id].first_out; if(nodes[u.id].first_out != -1) { arcs[nodes[u.id].first_out].prev_out = n; } arcs[n].next_in = nodes[v.id].first_in; if(nodes[v.id].first_in != -1) { arcs[nodes[v.id].first_in].prev_in = n; } arcs[n].prev_in = arcs[n].prev_out = -1; nodes[u.id].first_out = nodes[v.id].first_in = n; return Arc(n); } void erase(const Node& node) { int n = node.id; if(nodes[n].next != -1) { nodes[nodes[n].next].prev = nodes[n].prev; } if(nodes[n].prev != -1) { nodes[nodes[n].prev].next = nodes[n].next; } else { first_node = nodes[n].next; } nodes[n].next = first_free_node; first_free_node = n; nodes[n].prev = -2; } void erase(const Arc& arc) { int n = arc.id; if(arcs[n].next_in!=-1) { arcs[arcs[n].next_in].prev_in = arcs[n].prev_in; } if(arcs[n].prev_in!=-1) { arcs[arcs[n].prev_in].next_in = arcs[n].next_in; } else { nodes[arcs[n].target].first_in = arcs[n].next_in; } if(arcs[n].next_out!=-1) { arcs[arcs[n].next_out].prev_out = arcs[n].prev_out; } if(arcs[n].prev_out!=-1) { arcs[arcs[n].prev_out].next_out = arcs[n].next_out; } else { nodes[arcs[n].source].first_out = arcs[n].next_out; } arcs[n].next_in = first_free_arc; first_free_arc = n; arcs[n].prev_in = -2; } void clear() { arcs.clear(); nodes.clear(); first_node = first_free_node = first_free_arc = -1; } protected: void changeTarget(Arc e, Node n) { if(arcs[e.id].next_in != -1) arcs[arcs[e.id].next_in].prev_in = arcs[e.id].prev_in; if(arcs[e.id].prev_in != -1) arcs[arcs[e.id].prev_in].next_in = arcs[e.id].next_in; else nodes[arcs[e.id].target].first_in = arcs[e.id].next_in; if (nodes[n.id].first_in != -1) { arcs[nodes[n.id].first_in].prev_in = e.id; } arcs[e.id].target = n.id; arcs[e.id].prev_in = -1; arcs[e.id].next_in = nodes[n.id].first_in; nodes[n.id].first_in = e.id; } void changeSource(Arc e, Node n) { if(arcs[e.id].next_out != -1) arcs[arcs[e.id].next_out].prev_out = arcs[e.id].prev_out; if(arcs[e.id].prev_out != -1) arcs[arcs[e.id].prev_out].next_out = arcs[e.id].next_out; else nodes[arcs[e.id].source].first_out = arcs[e.id].next_out; if (nodes[n.id].first_out != -1) { arcs[nodes[n.id].first_out].prev_out = e.id; } arcs[e.id].source = n.id; arcs[e.id].prev_out = -1; arcs[e.id].next_out = nodes[n.id].first_out; nodes[n.id].first_out = e.id; } }; typedef DigraphExtender ExtendedListDigraphBase; /// \addtogroup graphs /// @{ ///A general directed graph structure. ///\ref ListDigraph is a simple and fast directed graph ///implementation based on static linked lists that are stored in ///\c std::vector structures. /// ///It conforms to the \ref concepts::Digraph "Digraph concept" and it ///also provides several useful additional functionalities. ///Most of the member functions and nested classes are documented ///only in the concept class. /// ///\sa concepts::Digraph class ListDigraph : public ExtendedListDigraphBase { typedef ExtendedListDigraphBase Parent; private: ///ListDigraph is \e not copy constructible. Use copyDigraph() instead. ///ListDigraph is \e not copy constructible. Use copyDigraph() instead. /// ListDigraph(const ListDigraph &) :ExtendedListDigraphBase() {}; ///\brief Assignment of ListDigraph to another one is \e not allowed. ///Use copyDigraph() instead. ///Assignment of ListDigraph to another one is \e not allowed. ///Use copyDigraph() instead. void operator=(const ListDigraph &) {} public: /// Constructor /// Constructor. /// ListDigraph() {} ///Add a new node to the digraph. ///Add a new node to the digraph. ///\return The new node. Node addNode() { return Parent::addNode(); } ///Add a new arc to the digraph. ///Add a new arc to the digraph with source node \c s ///and target node \c t. ///\return The new arc. Arc addArc(const Node& s, const Node& t) { return Parent::addArc(s, t); } ///\brief Erase a node from the digraph. /// ///Erase a node from the digraph. /// void erase(const Node& n) { Parent::erase(n); } ///\brief Erase an arc from the digraph. /// ///Erase an arc from the digraph. /// void erase(const Arc& a) { Parent::erase(a); } /// Node validity check /// This function gives back true if the given node is valid, /// ie. it is a real node of the graph. /// /// \warning A Node pointing to a removed item /// could become valid again later if new nodes are /// added to the graph. bool valid(Node n) const { return Parent::valid(n); } /// Arc validity check /// This function gives back true if the given arc is valid, /// ie. it is a real arc of the graph. /// /// \warning An Arc pointing to a removed item /// could become valid again later if new nodes are /// added to the graph. bool valid(Arc a) const { return Parent::valid(a); } /// Change the target of \c a to \c n /// Change the target of \c a to \c n /// ///\note The ArcIts and OutArcIts referencing ///the changed arc remain valid. However InArcIts are ///invalidated. /// ///\warning This functionality cannot be used together with the Snapshot ///feature. void changeTarget(Arc a, Node n) { Parent::changeTarget(a,n); } /// Change the source of \c a to \c n /// Change the source of \c a to \c n /// ///\note The InArcIts referencing the changed arc remain ///valid. However the ArcIts and OutArcIts are ///invalidated. /// ///\warning This functionality cannot be used together with the Snapshot ///feature. void changeSource(Arc a, Node n) { Parent::changeSource(a,n); } /// Invert the direction of an arc. ///\note The ArcIts referencing the changed arc remain ///valid. However OutArcIts and InArcIts are ///invalidated. /// ///\warning This functionality cannot be used together with the Snapshot ///feature. void reverseArc(Arc e) { Node t=target(e); changeTarget(e,source(e)); changeSource(e,t); } /// Reserve memory for nodes. /// Using this function it is possible to avoid the superfluous memory /// allocation: if you know that the digraph you want to build will /// be very large (e.g. it will contain millions of nodes and/or arcs) /// then it is worth reserving space for this amount before starting /// to build the digraph. /// \sa reserveArc void reserveNode(int n) { nodes.reserve(n); }; /// Reserve memory for arcs. /// Using this function it is possible to avoid the superfluous memory /// allocation: if you know that the digraph you want to build will /// be very large (e.g. it will contain millions of nodes and/or arcs) /// then it is worth reserving space for this amount before starting /// to build the digraph. /// \sa reserveNode void reserveArc(int m) { arcs.reserve(m); }; ///Contract two nodes. ///This function contracts two nodes. ///Node \p b will be removed but instead of deleting ///incident arcs, they will be joined to \p a. ///The last parameter \p r controls whether to remove loops. \c true ///means that loops will be removed. /// ///\note The ArcIts referencing a moved arc remain ///valid. However InArcIts and OutArcIts ///may be invalidated. /// ///\warning This functionality cannot be used together with the Snapshot ///feature. void contract(Node a, Node b, bool r = true) { for(OutArcIt e(*this,b);e!=INVALID;) { OutArcIt f=e; ++f; if(r && target(e)==a) erase(e); else changeSource(e,a); e=f; } for(InArcIt e(*this,b);e!=INVALID;) { InArcIt f=e; ++f; if(r && source(e)==a) erase(e); else changeTarget(e,a); e=f; } erase(b); } ///Split a node. ///This function splits a node. First a new node is added to the digraph, ///then the source of each outgoing arc of \c n is moved to this new node. ///If \c connect is \c true (this is the default value), then a new arc ///from \c n to the newly created node is also added. ///\return The newly created node. /// ///\note The ArcIts referencing a moved arc remain ///valid. However InArcIts and OutArcIts may ///be invalidated. /// ///\warning This functionality cannot be used in conjunction with the ///Snapshot feature. Node split(Node n, bool connect = true) { Node b = addNode(); for(OutArcIt e(*this,n);e!=INVALID;) { OutArcIt f=e; ++f; changeSource(e,b); e=f; } if (connect) addArc(n,b); return b; } ///Split an arc. ///This function splits an arc. First a new node \c b is added to ///the digraph, then the original arc is re-targeted to \c ///b. Finally an arc from \c b to the original target is added. /// ///\return The newly created node. /// ///\warning This functionality cannot be used together with the ///Snapshot feature. Node split(Arc e) { Node b = addNode(); addArc(b,target(e)); changeTarget(e,b); return b; } /// \brief Class to make a snapshot of the digraph and restore /// it later. /// /// Class to make a snapshot of the digraph and restore it later. /// /// The newly added nodes and arcs can be removed using the /// restore() function. /// /// \warning Arc and node deletions and other modifications (e.g. /// contracting, splitting, reversing arcs or nodes) cannot be /// restored. These events invalidate the snapshot. class Snapshot { protected: typedef Parent::NodeNotifier NodeNotifier; class NodeObserverProxy : public NodeNotifier::ObserverBase { public: NodeObserverProxy(Snapshot& _snapshot) : snapshot(_snapshot) {} using NodeNotifier::ObserverBase::attach; using NodeNotifier::ObserverBase::detach; using NodeNotifier::ObserverBase::attached; protected: virtual void add(const Node& node) { snapshot.addNode(node); } virtual void add(const std::vector& nodes) { for (int i = nodes.size() - 1; i >= 0; ++i) { snapshot.addNode(nodes[i]); } } virtual void erase(const Node& node) { snapshot.eraseNode(node); } virtual void erase(const std::vector& nodes) { for (int i = 0; i < int(nodes.size()); ++i) { snapshot.eraseNode(nodes[i]); } } virtual void build() { Node node; std::vector nodes; for (notifier()->first(node); node != INVALID; notifier()->next(node)) { nodes.push_back(node); } for (int i = nodes.size() - 1; i >= 0; --i) { snapshot.addNode(nodes[i]); } } virtual void clear() { Node node; for (notifier()->first(node); node != INVALID; notifier()->next(node)) { snapshot.eraseNode(node); } } Snapshot& snapshot; }; class ArcObserverProxy : public ArcNotifier::ObserverBase { public: ArcObserverProxy(Snapshot& _snapshot) : snapshot(_snapshot) {} using ArcNotifier::ObserverBase::attach; using ArcNotifier::ObserverBase::detach; using ArcNotifier::ObserverBase::attached; protected: virtual void add(const Arc& arc) { snapshot.addArc(arc); } virtual void add(const std::vector& arcs) { for (int i = arcs.size() - 1; i >= 0; ++i) { snapshot.addArc(arcs[i]); } } virtual void erase(const Arc& arc) { snapshot.eraseArc(arc); } virtual void erase(const std::vector& arcs) { for (int i = 0; i < int(arcs.size()); ++i) { snapshot.eraseArc(arcs[i]); } } virtual void build() { Arc arc; std::vector arcs; for (notifier()->first(arc); arc != INVALID; notifier()->next(arc)) { arcs.push_back(arc); } for (int i = arcs.size() - 1; i >= 0; --i) { snapshot.addArc(arcs[i]); } } virtual void clear() { Arc arc; for (notifier()->first(arc); arc != INVALID; notifier()->next(arc)) { snapshot.eraseArc(arc); } } Snapshot& snapshot; }; ListDigraph *digraph; NodeObserverProxy node_observer_proxy; ArcObserverProxy arc_observer_proxy; std::list added_nodes; std::list added_arcs; void addNode(const Node& node) { added_nodes.push_front(node); } void eraseNode(const Node& node) { std::list::iterator it = std::find(added_nodes.begin(), added_nodes.end(), node); if (it == added_nodes.end()) { clear(); arc_observer_proxy.detach(); throw NodeNotifier::ImmediateDetach(); } else { added_nodes.erase(it); } } void addArc(const Arc& arc) { added_arcs.push_front(arc); } void eraseArc(const Arc& arc) { std::list::iterator it = std::find(added_arcs.begin(), added_arcs.end(), arc); if (it == added_arcs.end()) { clear(); node_observer_proxy.detach(); throw ArcNotifier::ImmediateDetach(); } else { added_arcs.erase(it); } } void attach(ListDigraph &_digraph) { digraph = &_digraph; node_observer_proxy.attach(digraph->notifier(Node())); arc_observer_proxy.attach(digraph->notifier(Arc())); } void detach() { node_observer_proxy.detach(); arc_observer_proxy.detach(); } bool attached() const { return node_observer_proxy.attached(); } void clear() { added_nodes.clear(); added_arcs.clear(); } public: /// \brief Default constructor. /// /// Default constructor. /// To actually make a snapshot you must call save(). Snapshot() : digraph(0), node_observer_proxy(*this), arc_observer_proxy(*this) {} /// \brief Constructor that immediately makes a snapshot. /// /// This constructor immediately makes a snapshot of the digraph. /// \param _digraph The digraph we make a snapshot of. Snapshot(ListDigraph &_digraph) : node_observer_proxy(*this), arc_observer_proxy(*this) { attach(_digraph); } /// \brief Make a snapshot. /// /// Make a snapshot of the digraph. /// /// This function can be called more than once. In case of a repeated /// call, the previous snapshot gets lost. /// \param _digraph The digraph we make the snapshot of. void save(ListDigraph &_digraph) { if (attached()) { detach(); clear(); } attach(_digraph); } /// \brief Undo the changes until the last snapshot. // /// Undo the changes until the last snapshot created by save(). void restore() { detach(); for(std::list::iterator it = added_arcs.begin(); it != added_arcs.end(); ++it) { digraph->erase(*it); } for(std::list::iterator it = added_nodes.begin(); it != added_nodes.end(); ++it) { digraph->erase(*it); } clear(); } /// \brief Gives back true when the snapshot is valid. /// /// Gives back true when the snapshot is valid. bool valid() const { return attached(); } }; }; ///@} class ListGraphBase { protected: struct NodeT { int first_out; int prev, next; }; struct ArcT { int target; int prev_out, next_out; }; std::vector nodes; int first_node; int first_free_node; std::vector arcs; int first_free_arc; public: typedef ListGraphBase Graph; class Node; class Arc; class Edge; class Node { friend class ListGraphBase; protected: int id; explicit Node(int pid) { id = pid;} public: Node() {} Node (Invalid) { id = -1; } bool operator==(const Node& node) const {return id == node.id;} bool operator!=(const Node& node) const {return id != node.id;} bool operator<(const Node& node) const {return id < node.id;} }; class Edge { friend class ListGraphBase; protected: int id; explicit Edge(int pid) { id = pid;} public: Edge() {} Edge (Invalid) { id = -1; } bool operator==(const Edge& edge) const {return id == edge.id;} bool operator!=(const Edge& edge) const {return id != edge.id;} bool operator<(const Edge& edge) const {return id < edge.id;} }; class Arc { friend class ListGraphBase; protected: int id; explicit Arc(int pid) { id = pid;} public: operator Edge() const { return id != -1 ? edgeFromId(id / 2) : INVALID; } Arc() {} Arc (Invalid) { id = -1; } bool operator==(const Arc& arc) const {return id == arc.id;} bool operator!=(const Arc& arc) const {return id != arc.id;} bool operator<(const Arc& arc) const {return id < arc.id;} }; ListGraphBase() : nodes(), first_node(-1), first_free_node(-1), arcs(), first_free_arc(-1) {} int maxNodeId() const { return nodes.size()-1; } int maxEdgeId() const { return arcs.size() / 2 - 1; } int maxArcId() const { return arcs.size()-1; } Node source(Arc e) const { return Node(arcs[e.id ^ 1].target); } Node target(Arc e) const { return Node(arcs[e.id].target); } Node u(Edge e) const { return Node(arcs[2 * e.id].target); } Node v(Edge e) const { return Node(arcs[2 * e.id + 1].target); } static bool direction(Arc e) { return (e.id & 1) == 1; } static Arc direct(Edge e, bool d) { return Arc(e.id * 2 + (d ? 1 : 0)); } void first(Node& node) const { node.id = first_node; } void next(Node& node) const { node.id = nodes[node.id].next; } void first(Arc& e) const { int n = first_node; while (n != -1 && nodes[n].first_out == -1) { n = nodes[n].next; } e.id = (n == -1) ? -1 : nodes[n].first_out; } void next(Arc& e) const { if (arcs[e.id].next_out != -1) { e.id = arcs[e.id].next_out; } else { int n = nodes[arcs[e.id ^ 1].target].next; while(n != -1 && nodes[n].first_out == -1) { n = nodes[n].next; } e.id = (n == -1) ? -1 : nodes[n].first_out; } } void first(Edge& e) const { int n = first_node; while (n != -1) { e.id = nodes[n].first_out; while ((e.id & 1) != 1) { e.id = arcs[e.id].next_out; } if (e.id != -1) { e.id /= 2; return; } n = nodes[n].next; } e.id = -1; } void next(Edge& e) const { int n = arcs[e.id * 2].target; e.id = arcs[(e.id * 2) | 1].next_out; while ((e.id & 1) != 1) { e.id = arcs[e.id].next_out; } if (e.id != -1) { e.id /= 2; return; } n = nodes[n].next; while (n != -1) { e.id = nodes[n].first_out; while ((e.id & 1) != 1) { e.id = arcs[e.id].next_out; } if (e.id != -1) { e.id /= 2; return; } n = nodes[n].next; } e.id = -1; } void firstOut(Arc &e, const Node& v) const { e.id = nodes[v.id].first_out; } void nextOut(Arc &e) const { e.id = arcs[e.id].next_out; } void firstIn(Arc &e, const Node& v) const { e.id = ((nodes[v.id].first_out) ^ 1); if (e.id == -2) e.id = -1; } void nextIn(Arc &e) const { e.id = ((arcs[e.id ^ 1].next_out) ^ 1); if (e.id == -2) e.id = -1; } void firstInc(Edge &e, bool& d, const Node& v) const { int a = nodes[v.id].first_out; if (a != -1 ) { e.id = a / 2; d = ((a & 1) == 1); } else { e.id = -1; d = true; } } void nextInc(Edge &e, bool& d) const { int a = (arcs[(e.id * 2) | (d ? 1 : 0)].next_out); if (a != -1 ) { e.id = a / 2; d = ((a & 1) == 1); } else { e.id = -1; d = true; } } static int id(Node v) { return v.id; } static int id(Arc e) { return e.id; } static int id(Edge e) { return e.id; } static Node nodeFromId(int id) { return Node(id);} static Arc arcFromId(int id) { return Arc(id);} static Edge edgeFromId(int id) { return Edge(id);} bool valid(Node n) const { return n.id >= 0 && n.id < static_cast(nodes.size()) && nodes[n.id].prev != -2; } bool valid(Arc a) const { return a.id >= 0 && a.id < static_cast(arcs.size()) && arcs[a.id].prev_out != -2; } bool valid(Edge e) const { return e.id >= 0 && 2 * e.id < static_cast(arcs.size()) && arcs[2 * e.id].prev_out != -2; } Node addNode() { int n; if(first_free_node==-1) { n = nodes.size(); nodes.push_back(NodeT()); } else { n = first_free_node; first_free_node = nodes[n].next; } nodes[n].next = first_node; if (first_node != -1) nodes[first_node].prev = n; first_node = n; nodes[n].prev = -1; nodes[n].first_out = -1; return Node(n); } Edge addEdge(Node u, Node v) { int n; if (first_free_arc == -1) { n = arcs.size(); arcs.push_back(ArcT()); arcs.push_back(ArcT()); } else { n = first_free_arc; first_free_arc = arcs[n].next_out; } arcs[n].target = u.id; arcs[n | 1].target = v.id; arcs[n].next_out = nodes[v.id].first_out; if (nodes[v.id].first_out != -1) { arcs[nodes[v.id].first_out].prev_out = n; } arcs[n].prev_out = -1; nodes[v.id].first_out = n; arcs[n | 1].next_out = nodes[u.id].first_out; if (nodes[u.id].first_out != -1) { arcs[nodes[u.id].first_out].prev_out = (n | 1); } arcs[n | 1].prev_out = -1; nodes[u.id].first_out = (n | 1); return Edge(n / 2); } void erase(const Node& node) { int n = node.id; if(nodes[n].next != -1) { nodes[nodes[n].next].prev = nodes[n].prev; } if(nodes[n].prev != -1) { nodes[nodes[n].prev].next = nodes[n].next; } else { first_node = nodes[n].next; } nodes[n].next = first_free_node; first_free_node = n; nodes[n].prev = -2; } void erase(const Edge& edge) { int n = edge.id * 2; if (arcs[n].next_out != -1) { arcs[arcs[n].next_out].prev_out = arcs[n].prev_out; } if (arcs[n].prev_out != -1) { arcs[arcs[n].prev_out].next_out = arcs[n].next_out; } else { nodes[arcs[n | 1].target].first_out = arcs[n].next_out; } if (arcs[n | 1].next_out != -1) { arcs[arcs[n | 1].next_out].prev_out = arcs[n | 1].prev_out; } if (arcs[n | 1].prev_out != -1) { arcs[arcs[n | 1].prev_out].next_out = arcs[n | 1].next_out; } else { nodes[arcs[n].target].first_out = arcs[n | 1].next_out; } arcs[n].next_out = first_free_arc; first_free_arc = n; arcs[n].prev_out = -2; arcs[n | 1].prev_out = -2; } void clear() { arcs.clear(); nodes.clear(); first_node = first_free_node = first_free_arc = -1; } protected: void changeV(Edge e, Node n) { if(arcs[2 * e.id].next_out != -1) { arcs[arcs[2 * e.id].next_out].prev_out = arcs[2 * e.id].prev_out; } if(arcs[2 * e.id].prev_out != -1) { arcs[arcs[2 * e.id].prev_out].next_out = arcs[2 * e.id].next_out; } else { nodes[arcs[(2 * e.id) | 1].target].first_out = arcs[2 * e.id].next_out; } if (nodes[n.id].first_out != -1) { arcs[nodes[n.id].first_out].prev_out = 2 * e.id; } arcs[(2 * e.id) | 1].target = n.id; arcs[2 * e.id].prev_out = -1; arcs[2 * e.id].next_out = nodes[n.id].first_out; nodes[n.id].first_out = 2 * e.id; } void changeU(Edge e, Node n) { if(arcs[(2 * e.id) | 1].next_out != -1) { arcs[arcs[(2 * e.id) | 1].next_out].prev_out = arcs[(2 * e.id) | 1].prev_out; } if(arcs[(2 * e.id) | 1].prev_out != -1) { arcs[arcs[(2 * e.id) | 1].prev_out].next_out = arcs[(2 * e.id) | 1].next_out; } else { nodes[arcs[2 * e.id].target].first_out = arcs[(2 * e.id) | 1].next_out; } if (nodes[n.id].first_out != -1) { arcs[nodes[n.id].first_out].prev_out = ((2 * e.id) | 1); } arcs[2 * e.id].target = n.id; arcs[(2 * e.id) | 1].prev_out = -1; arcs[(2 * e.id) | 1].next_out = nodes[n.id].first_out; nodes[n.id].first_out = ((2 * e.id) | 1); } }; typedef GraphExtender ExtendedListGraphBase; /// \addtogroup graphs /// @{ ///A general undirected graph structure. ///\ref ListGraph is a simple and fast undirected graph ///implementation based on static linked lists that are stored in ///\c std::vector structures. /// ///It conforms to the \ref concepts::Graph "Graph concept" and it ///also provides several useful additional functionalities. ///Most of the member functions and nested classes are documented ///only in the concept class. /// ///\sa concepts::Graph class ListGraph : public ExtendedListGraphBase { typedef ExtendedListGraphBase Parent; private: ///ListGraph is \e not copy constructible. Use copyGraph() instead. ///ListGraph is \e not copy constructible. Use copyGraph() instead. /// ListGraph(const ListGraph &) :ExtendedListGraphBase() {}; ///\brief Assignment of ListGraph to another one is \e not allowed. ///Use copyGraph() instead. ///Assignment of ListGraph to another one is \e not allowed. ///Use copyGraph() instead. void operator=(const ListGraph &) {} public: /// Constructor /// Constructor. /// ListGraph() {} typedef Parent::OutArcIt IncEdgeIt; /// \brief Add a new node to the graph. /// /// Add a new node to the graph. /// \return The new node. Node addNode() { return Parent::addNode(); } /// \brief Add a new edge to the graph. /// /// Add a new edge to the graph with source node \c s /// and target node \c t. /// \return The new edge. Edge addEdge(const Node& s, const Node& t) { return Parent::addEdge(s, t); } /// \brief Erase a node from the graph. /// /// Erase a node from the graph. /// void erase(const Node& n) { Parent::erase(n); } /// \brief Erase an edge from the graph. /// /// Erase an edge from the graph. /// void erase(const Edge& e) { Parent::erase(e); } /// Node validity check /// This function gives back true if the given node is valid, /// ie. it is a real node of the graph. /// /// \warning A Node pointing to a removed item /// could become valid again later if new nodes are /// added to the graph. bool valid(Node n) const { return Parent::valid(n); } /// Arc validity check /// This function gives back true if the given arc is valid, /// ie. it is a real arc of the graph. /// /// \warning An Arc pointing to a removed item /// could become valid again later if new edges are /// added to the graph. bool valid(Arc a) const { return Parent::valid(a); } /// Edge validity check /// This function gives back true if the given edge is valid, /// ie. it is a real arc of the graph. /// /// \warning A Edge pointing to a removed item /// could become valid again later if new edges are /// added to the graph. bool valid(Edge e) const { return Parent::valid(e); } /// \brief Change the end \c u of \c e to \c n /// /// This function changes the end \c u of \c e to node \c n. /// ///\note The EdgeIts and ArcIts referencing the ///changed edge are invalidated and if the changed node is the ///base node of an iterator then this iterator is also ///invalidated. /// ///\warning This functionality cannot be used together with the ///Snapshot feature. void changeU(Edge e, Node n) { Parent::changeU(e,n); } /// \brief Change the end \c v of \c e to \c n /// /// This function changes the end \c v of \c e to \c n. /// ///\note The EdgeIts referencing the changed edge remain ///valid, however ArcIts and if the changed node is the ///base node of an iterator then this iterator is invalidated. /// ///\warning This functionality cannot be used together with the ///Snapshot feature. void changeV(Edge e, Node n) { Parent::changeV(e,n); } /// \brief Contract two nodes. /// /// This function contracts two nodes. /// Node \p b will be removed but instead of deleting /// its neighboring arcs, they will be joined to \p a. /// The last parameter \p r controls whether to remove loops. \c true /// means that loops will be removed. /// /// \note The ArcIts referencing a moved arc remain /// valid. /// ///\warning This functionality cannot be used together with the ///Snapshot feature. void contract(Node a, Node b, bool r = true) { for(IncEdgeIt e(*this, b); e!=INVALID;) { IncEdgeIt f = e; ++f; if (r && runningNode(e) == a) { erase(e); } else if (u(e) == b) { changeU(e, a); } else { changeV(e, a); } e = f; } erase(b); } /// \brief Class to make a snapshot of the graph and restore /// it later. /// /// Class to make a snapshot of the graph and restore it later. /// /// The newly added nodes and edges can be removed /// using the restore() function. /// /// \warning Edge and node deletions and other modifications /// (e.g. changing nodes of edges, contracting nodes) cannot be /// restored. These events invalidate the snapshot. class Snapshot { protected: typedef Parent::NodeNotifier NodeNotifier; class NodeObserverProxy : public NodeNotifier::ObserverBase { public: NodeObserverProxy(Snapshot& _snapshot) : snapshot(_snapshot) {} using NodeNotifier::ObserverBase::attach; using NodeNotifier::ObserverBase::detach; using NodeNotifier::ObserverBase::attached; protected: virtual void add(const Node& node) { snapshot.addNode(node); } virtual void add(const std::vector& nodes) { for (int i = nodes.size() - 1; i >= 0; ++i) { snapshot.addNode(nodes[i]); } } virtual void erase(const Node& node) { snapshot.eraseNode(node); } virtual void erase(const std::vector& nodes) { for (int i = 0; i < int(nodes.size()); ++i) { snapshot.eraseNode(nodes[i]); } } virtual void build() { Node node; std::vector nodes; for (notifier()->first(node); node != INVALID; notifier()->next(node)) { nodes.push_back(node); } for (int i = nodes.size() - 1; i >= 0; --i) { snapshot.addNode(nodes[i]); } } virtual void clear() { Node node; for (notifier()->first(node); node != INVALID; notifier()->next(node)) { snapshot.eraseNode(node); } } Snapshot& snapshot; }; class EdgeObserverProxy : public EdgeNotifier::ObserverBase { public: EdgeObserverProxy(Snapshot& _snapshot) : snapshot(_snapshot) {} using EdgeNotifier::ObserverBase::attach; using EdgeNotifier::ObserverBase::detach; using EdgeNotifier::ObserverBase::attached; protected: virtual void add(const Edge& edge) { snapshot.addEdge(edge); } virtual void add(const std::vector& edges) { for (int i = edges.size() - 1; i >= 0; ++i) { snapshot.addEdge(edges[i]); } } virtual void erase(const Edge& edge) { snapshot.eraseEdge(edge); } virtual void erase(const std::vector& edges) { for (int i = 0; i < int(edges.size()); ++i) { snapshot.eraseEdge(edges[i]); } } virtual void build() { Edge edge; std::vector edges; for (notifier()->first(edge); edge != INVALID; notifier()->next(edge)) { edges.push_back(edge); } for (int i = edges.size() - 1; i >= 0; --i) { snapshot.addEdge(edges[i]); } } virtual void clear() { Edge edge; for (notifier()->first(edge); edge != INVALID; notifier()->next(edge)) { snapshot.eraseEdge(edge); } } Snapshot& snapshot; }; ListGraph *graph; NodeObserverProxy node_observer_proxy; EdgeObserverProxy edge_observer_proxy; std::list added_nodes; std::list added_edges; void addNode(const Node& node) { added_nodes.push_front(node); } void eraseNode(const Node& node) { std::list::iterator it = std::find(added_nodes.begin(), added_nodes.end(), node); if (it == added_nodes.end()) { clear(); edge_observer_proxy.detach(); throw NodeNotifier::ImmediateDetach(); } else { added_nodes.erase(it); } } void addEdge(const Edge& edge) { added_edges.push_front(edge); } void eraseEdge(const Edge& edge) { std::list::iterator it = std::find(added_edges.begin(), added_edges.end(), edge); if (it == added_edges.end()) { clear(); node_observer_proxy.detach(); throw EdgeNotifier::ImmediateDetach(); } else { added_edges.erase(it); } } void attach(ListGraph &_graph) { graph = &_graph; node_observer_proxy.attach(graph->notifier(Node())); edge_observer_proxy.attach(graph->notifier(Edge())); } void detach() { node_observer_proxy.detach(); edge_observer_proxy.detach(); } bool attached() const { return node_observer_proxy.attached(); } void clear() { added_nodes.clear(); added_edges.clear(); } public: /// \brief Default constructor. /// /// Default constructor. /// To actually make a snapshot you must call save(). Snapshot() : graph(0), node_observer_proxy(*this), edge_observer_proxy(*this) {} /// \brief Constructor that immediately makes a snapshot. /// /// This constructor immediately makes a snapshot of the graph. /// \param _graph The graph we make a snapshot of. Snapshot(ListGraph &_graph) : node_observer_proxy(*this), edge_observer_proxy(*this) { attach(_graph); } /// \brief Make a snapshot. /// /// Make a snapshot of the graph. /// /// This function can be called more than once. In case of a repeated /// call, the previous snapshot gets lost. /// \param _graph The graph we make the snapshot of. void save(ListGraph &_graph) { if (attached()) { detach(); clear(); } attach(_graph); } /// \brief Undo the changes until the last snapshot. // /// Undo the changes until the last snapshot created by save(). void restore() { detach(); for(std::list::iterator it = added_edges.begin(); it != added_edges.end(); ++it) { graph->erase(*it); } for(std::list::iterator it = added_nodes.begin(); it != added_nodes.end(); ++it) { graph->erase(*it); } clear(); } /// \brief Gives back true when the snapshot is valid. /// /// Gives back true when the snapshot is valid. bool valid() const { return attached(); } }; }; /// @} } //namespace lemon #endif