| 1 | /* -*- mode: C++; indent-tabs-mode: nil; -*- |
|---|
| 2 | * |
|---|
| 3 | * This file is a part of LEMON, a generic C++ optimization library. |
|---|
| 4 | * |
|---|
| 5 | * Copyright (C) 2003-2009 |
|---|
| 6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|---|
| 7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
|---|
| 8 | * |
|---|
| 9 | * Permission to use, modify and distribute this software is granted |
|---|
| 10 | * provided that this copyright notice appears in all copies. For |
|---|
| 11 | * precise terms see the accompanying LICENSE file. |
|---|
| 12 | * |
|---|
| 13 | * This software is provided "AS IS" with no warranty of any kind, |
|---|
| 14 | * express or implied, and with no claim as to its suitability for any |
|---|
| 15 | * purpose. |
|---|
| 16 | * |
|---|
| 17 | */ |
|---|
| 18 | |
|---|
| 19 | #ifndef LEMON_MAPS_H |
|---|
| 20 | #define LEMON_MAPS_H |
|---|
| 21 | |
|---|
| 22 | #include <iterator> |
|---|
| 23 | #include <functional> |
|---|
| 24 | #include <vector> |
|---|
| 25 | |
|---|
| 26 | #include <lemon/core.h> |
|---|
| 27 | |
|---|
| 28 | ///\file |
|---|
| 29 | ///\ingroup maps |
|---|
| 30 | ///\brief Miscellaneous property maps |
|---|
| 31 | |
|---|
| 32 | #include <map> |
|---|
| 33 | |
|---|
| 34 | namespace lemon { |
|---|
| 35 | |
|---|
| 36 | /// \addtogroup maps |
|---|
| 37 | /// @{ |
|---|
| 38 | |
|---|
| 39 | /// Base class of maps. |
|---|
| 40 | |
|---|
| 41 | /// Base class of maps. It provides the necessary type definitions |
|---|
| 42 | /// required by the map %concepts. |
|---|
| 43 | template<typename K, typename V> |
|---|
| 44 | class MapBase { |
|---|
| 45 | public: |
|---|
| 46 | /// \brief The key type of the map. |
|---|
| 47 | typedef K Key; |
|---|
| 48 | /// \brief The value type of the map. |
|---|
| 49 | /// (The type of objects associated with the keys). |
|---|
| 50 | typedef V Value; |
|---|
| 51 | }; |
|---|
| 52 | |
|---|
| 53 | |
|---|
| 54 | /// Null map. (a.k.a. DoNothingMap) |
|---|
| 55 | |
|---|
| 56 | /// This map can be used if you have to provide a map only for |
|---|
| 57 | /// its type definitions, or if you have to provide a writable map, |
|---|
| 58 | /// but data written to it is not required (i.e. it will be sent to |
|---|
| 59 | /// <tt>/dev/null</tt>). |
|---|
| 60 | /// It conforms the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|---|
| 61 | /// |
|---|
| 62 | /// \sa ConstMap |
|---|
| 63 | template<typename K, typename V> |
|---|
| 64 | class NullMap : public MapBase<K, V> { |
|---|
| 65 | public: |
|---|
| 66 | typedef MapBase<K, V> Parent; |
|---|
| 67 | typedef typename Parent::Key Key; |
|---|
| 68 | typedef typename Parent::Value Value; |
|---|
| 69 | |
|---|
| 70 | /// Gives back a default constructed element. |
|---|
| 71 | Value operator[](const Key&) const { return Value(); } |
|---|
| 72 | /// Absorbs the value. |
|---|
| 73 | void set(const Key&, const Value&) {} |
|---|
| 74 | }; |
|---|
| 75 | |
|---|
| 76 | /// Returns a \c NullMap class |
|---|
| 77 | |
|---|
| 78 | /// This function just returns a \c NullMap class. |
|---|
| 79 | /// \relates NullMap |
|---|
| 80 | template <typename K, typename V> |
|---|
| 81 | NullMap<K, V> nullMap() { |
|---|
| 82 | return NullMap<K, V>(); |
|---|
| 83 | } |
|---|
| 84 | |
|---|
| 85 | |
|---|
| 86 | /// Constant map. |
|---|
| 87 | |
|---|
| 88 | /// This \ref concepts::ReadMap "readable map" assigns a specified |
|---|
| 89 | /// value to each key. |
|---|
| 90 | /// |
|---|
| 91 | /// In other aspects it is equivalent to \c NullMap. |
|---|
| 92 | /// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap" |
|---|
| 93 | /// concept, but it absorbs the data written to it. |
|---|
| 94 | /// |
|---|
| 95 | /// The simplest way of using this map is through the constMap() |
|---|
| 96 | /// function. |
|---|
| 97 | /// |
|---|
| 98 | /// \sa NullMap |
|---|
| 99 | /// \sa IdentityMap |
|---|
| 100 | template<typename K, typename V> |
|---|
| 101 | class ConstMap : public MapBase<K, V> { |
|---|
| 102 | private: |
|---|
| 103 | V _value; |
|---|
| 104 | public: |
|---|
| 105 | typedef MapBase<K, V> Parent; |
|---|
| 106 | typedef typename Parent::Key Key; |
|---|
| 107 | typedef typename Parent::Value Value; |
|---|
| 108 | |
|---|
| 109 | /// Default constructor |
|---|
| 110 | |
|---|
| 111 | /// Default constructor. |
|---|
| 112 | /// The value of the map will be default constructed. |
|---|
| 113 | ConstMap() {} |
|---|
| 114 | |
|---|
| 115 | /// Constructor with specified initial value |
|---|
| 116 | |
|---|
| 117 | /// Constructor with specified initial value. |
|---|
| 118 | /// \param v The initial value of the map. |
|---|
| 119 | ConstMap(const Value &v) : _value(v) {} |
|---|
| 120 | |
|---|
| 121 | /// Gives back the specified value. |
|---|
| 122 | Value operator[](const Key&) const { return _value; } |
|---|
| 123 | |
|---|
| 124 | /// Absorbs the value. |
|---|
| 125 | void set(const Key&, const Value&) {} |
|---|
| 126 | |
|---|
| 127 | /// Sets the value that is assigned to each key. |
|---|
| 128 | void setAll(const Value &v) { |
|---|
| 129 | _value = v; |
|---|
| 130 | } |
|---|
| 131 | |
|---|
| 132 | template<typename V1> |
|---|
| 133 | ConstMap(const ConstMap<K, V1> &, const Value &v) : _value(v) {} |
|---|
| 134 | }; |
|---|
| 135 | |
|---|
| 136 | /// Returns a \c ConstMap class |
|---|
| 137 | |
|---|
| 138 | /// This function just returns a \c ConstMap class. |
|---|
| 139 | /// \relates ConstMap |
|---|
| 140 | template<typename K, typename V> |
|---|
| 141 | inline ConstMap<K, V> constMap(const V &v) { |
|---|
| 142 | return ConstMap<K, V>(v); |
|---|
| 143 | } |
|---|
| 144 | |
|---|
| 145 | template<typename K, typename V> |
|---|
| 146 | inline ConstMap<K, V> constMap() { |
|---|
| 147 | return ConstMap<K, V>(); |
|---|
| 148 | } |
|---|
| 149 | |
|---|
| 150 | |
|---|
| 151 | template<typename T, T v> |
|---|
| 152 | struct Const {}; |
|---|
| 153 | |
|---|
| 154 | /// Constant map with inlined constant value. |
|---|
| 155 | |
|---|
| 156 | /// This \ref concepts::ReadMap "readable map" assigns a specified |
|---|
| 157 | /// value to each key. |
|---|
| 158 | /// |
|---|
| 159 | /// In other aspects it is equivalent to \c NullMap. |
|---|
| 160 | /// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap" |
|---|
| 161 | /// concept, but it absorbs the data written to it. |
|---|
| 162 | /// |
|---|
| 163 | /// The simplest way of using this map is through the constMap() |
|---|
| 164 | /// function. |
|---|
| 165 | /// |
|---|
| 166 | /// \sa NullMap |
|---|
| 167 | /// \sa IdentityMap |
|---|
| 168 | template<typename K, typename V, V v> |
|---|
| 169 | class ConstMap<K, Const<V, v> > : public MapBase<K, V> { |
|---|
| 170 | public: |
|---|
| 171 | typedef MapBase<K, V> Parent; |
|---|
| 172 | typedef typename Parent::Key Key; |
|---|
| 173 | typedef typename Parent::Value Value; |
|---|
| 174 | |
|---|
| 175 | /// Constructor. |
|---|
| 176 | ConstMap() {} |
|---|
| 177 | |
|---|
| 178 | /// Gives back the specified value. |
|---|
| 179 | Value operator[](const Key&) const { return v; } |
|---|
| 180 | |
|---|
| 181 | /// Absorbs the value. |
|---|
| 182 | void set(const Key&, const Value&) {} |
|---|
| 183 | }; |
|---|
| 184 | |
|---|
| 185 | /// Returns a \c ConstMap class with inlined constant value |
|---|
| 186 | |
|---|
| 187 | /// This function just returns a \c ConstMap class with inlined |
|---|
| 188 | /// constant value. |
|---|
| 189 | /// \relates ConstMap |
|---|
| 190 | template<typename K, typename V, V v> |
|---|
| 191 | inline ConstMap<K, Const<V, v> > constMap() { |
|---|
| 192 | return ConstMap<K, Const<V, v> >(); |
|---|
| 193 | } |
|---|
| 194 | |
|---|
| 195 | |
|---|
| 196 | /// Identity map. |
|---|
| 197 | |
|---|
| 198 | /// This \ref concepts::ReadMap "read-only map" gives back the given |
|---|
| 199 | /// key as value without any modification. |
|---|
| 200 | /// |
|---|
| 201 | /// \sa ConstMap |
|---|
| 202 | template <typename T> |
|---|
| 203 | class IdentityMap : public MapBase<T, T> { |
|---|
| 204 | public: |
|---|
| 205 | typedef MapBase<T, T> Parent; |
|---|
| 206 | typedef typename Parent::Key Key; |
|---|
| 207 | typedef typename Parent::Value Value; |
|---|
| 208 | |
|---|
| 209 | /// Gives back the given value without any modification. |
|---|
| 210 | Value operator[](const Key &k) const { |
|---|
| 211 | return k; |
|---|
| 212 | } |
|---|
| 213 | }; |
|---|
| 214 | |
|---|
| 215 | /// Returns an \c IdentityMap class |
|---|
| 216 | |
|---|
| 217 | /// This function just returns an \c IdentityMap class. |
|---|
| 218 | /// \relates IdentityMap |
|---|
| 219 | template<typename T> |
|---|
| 220 | inline IdentityMap<T> identityMap() { |
|---|
| 221 | return IdentityMap<T>(); |
|---|
| 222 | } |
|---|
| 223 | |
|---|
| 224 | |
|---|
| 225 | /// \brief Map for storing values for integer keys from the range |
|---|
| 226 | /// <tt>[0..size-1]</tt>. |
|---|
| 227 | /// |
|---|
| 228 | /// This map is essentially a wrapper for \c std::vector. It assigns |
|---|
| 229 | /// values to integer keys from the range <tt>[0..size-1]</tt>. |
|---|
| 230 | /// It can be used with some data structures, for example |
|---|
| 231 | /// \c UnionFind, \c BinHeap, when the used items are small |
|---|
| 232 | /// integers. This map conforms the \ref concepts::ReferenceMap |
|---|
| 233 | /// "ReferenceMap" concept. |
|---|
| 234 | /// |
|---|
| 235 | /// The simplest way of using this map is through the rangeMap() |
|---|
| 236 | /// function. |
|---|
| 237 | template <typename V> |
|---|
| 238 | class RangeMap : public MapBase<int, V> { |
|---|
| 239 | template <typename V1> |
|---|
| 240 | friend class RangeMap; |
|---|
| 241 | private: |
|---|
| 242 | |
|---|
| 243 | typedef std::vector<V> Vector; |
|---|
| 244 | Vector _vector; |
|---|
| 245 | |
|---|
| 246 | public: |
|---|
| 247 | |
|---|
| 248 | typedef MapBase<int, V> Parent; |
|---|
| 249 | /// Key type |
|---|
| 250 | typedef typename Parent::Key Key; |
|---|
| 251 | /// Value type |
|---|
| 252 | typedef typename Parent::Value Value; |
|---|
| 253 | /// Reference type |
|---|
| 254 | typedef typename Vector::reference Reference; |
|---|
| 255 | /// Const reference type |
|---|
| 256 | typedef typename Vector::const_reference ConstReference; |
|---|
| 257 | |
|---|
| 258 | typedef True ReferenceMapTag; |
|---|
| 259 | |
|---|
| 260 | public: |
|---|
| 261 | |
|---|
| 262 | /// Constructor with specified default value. |
|---|
| 263 | RangeMap(int size = 0, const Value &value = Value()) |
|---|
| 264 | : _vector(size, value) {} |
|---|
| 265 | |
|---|
| 266 | /// Constructs the map from an appropriate \c std::vector. |
|---|
| 267 | template <typename V1> |
|---|
| 268 | RangeMap(const std::vector<V1>& vector) |
|---|
| 269 | : _vector(vector.begin(), vector.end()) {} |
|---|
| 270 | |
|---|
| 271 | /// Constructs the map from another \c RangeMap. |
|---|
| 272 | template <typename V1> |
|---|
| 273 | RangeMap(const RangeMap<V1> &c) |
|---|
| 274 | : _vector(c._vector.begin(), c._vector.end()) {} |
|---|
| 275 | |
|---|
| 276 | /// Returns the size of the map. |
|---|
| 277 | int size() { |
|---|
| 278 | return _vector.size(); |
|---|
| 279 | } |
|---|
| 280 | |
|---|
| 281 | /// Resizes the map. |
|---|
| 282 | |
|---|
| 283 | /// Resizes the underlying \c std::vector container, so changes the |
|---|
| 284 | /// keyset of the map. |
|---|
| 285 | /// \param size The new size of the map. The new keyset will be the |
|---|
| 286 | /// range <tt>[0..size-1]</tt>. |
|---|
| 287 | /// \param value The default value to assign to the new keys. |
|---|
| 288 | void resize(int size, const Value &value = Value()) { |
|---|
| 289 | _vector.resize(size, value); |
|---|
| 290 | } |
|---|
| 291 | |
|---|
| 292 | private: |
|---|
| 293 | |
|---|
| 294 | RangeMap& operator=(const RangeMap&); |
|---|
| 295 | |
|---|
| 296 | public: |
|---|
| 297 | |
|---|
| 298 | ///\e |
|---|
| 299 | Reference operator[](const Key &k) { |
|---|
| 300 | return _vector[k]; |
|---|
| 301 | } |
|---|
| 302 | |
|---|
| 303 | ///\e |
|---|
| 304 | ConstReference operator[](const Key &k) const { |
|---|
| 305 | return _vector[k]; |
|---|
| 306 | } |
|---|
| 307 | |
|---|
| 308 | ///\e |
|---|
| 309 | void set(const Key &k, const Value &v) { |
|---|
| 310 | _vector[k] = v; |
|---|
| 311 | } |
|---|
| 312 | }; |
|---|
| 313 | |
|---|
| 314 | /// Returns a \c RangeMap class |
|---|
| 315 | |
|---|
| 316 | /// This function just returns a \c RangeMap class. |
|---|
| 317 | /// \relates RangeMap |
|---|
| 318 | template<typename V> |
|---|
| 319 | inline RangeMap<V> rangeMap(int size = 0, const V &value = V()) { |
|---|
| 320 | return RangeMap<V>(size, value); |
|---|
| 321 | } |
|---|
| 322 | |
|---|
| 323 | /// \brief Returns a \c RangeMap class created from an appropriate |
|---|
| 324 | /// \c std::vector |
|---|
| 325 | |
|---|
| 326 | /// This function just returns a \c RangeMap class created from an |
|---|
| 327 | /// appropriate \c std::vector. |
|---|
| 328 | /// \relates RangeMap |
|---|
| 329 | template<typename V> |
|---|
| 330 | inline RangeMap<V> rangeMap(const std::vector<V> &vector) { |
|---|
| 331 | return RangeMap<V>(vector); |
|---|
| 332 | } |
|---|
| 333 | |
|---|
| 334 | |
|---|
| 335 | /// Map type based on \c std::map |
|---|
| 336 | |
|---|
| 337 | /// This map is essentially a wrapper for \c std::map with addition |
|---|
| 338 | /// that you can specify a default value for the keys that are not |
|---|
| 339 | /// stored actually. This value can be different from the default |
|---|
| 340 | /// contructed value (i.e. \c %Value()). |
|---|
| 341 | /// This type conforms the \ref concepts::ReferenceMap "ReferenceMap" |
|---|
| 342 | /// concept. |
|---|
| 343 | /// |
|---|
| 344 | /// This map is useful if a default value should be assigned to most of |
|---|
| 345 | /// the keys and different values should be assigned only to a few |
|---|
| 346 | /// keys (i.e. the map is "sparse"). |
|---|
| 347 | /// The name of this type also refers to this important usage. |
|---|
| 348 | /// |
|---|
| 349 | /// Apart form that this map can be used in many other cases since it |
|---|
| 350 | /// is based on \c std::map, which is a general associative container. |
|---|
| 351 | /// However keep in mind that it is usually not as efficient as other |
|---|
| 352 | /// maps. |
|---|
| 353 | /// |
|---|
| 354 | /// The simplest way of using this map is through the sparseMap() |
|---|
| 355 | /// function. |
|---|
| 356 | template <typename K, typename V, typename Compare = std::less<K> > |
|---|
| 357 | class SparseMap : public MapBase<K, V> { |
|---|
| 358 | template <typename K1, typename V1, typename C1> |
|---|
| 359 | friend class SparseMap; |
|---|
| 360 | public: |
|---|
| 361 | |
|---|
| 362 | typedef MapBase<K, V> Parent; |
|---|
| 363 | /// Key type |
|---|
| 364 | typedef typename Parent::Key Key; |
|---|
| 365 | /// Value type |
|---|
| 366 | typedef typename Parent::Value Value; |
|---|
| 367 | /// Reference type |
|---|
| 368 | typedef Value& Reference; |
|---|
| 369 | /// Const reference type |
|---|
| 370 | typedef const Value& ConstReference; |
|---|
| 371 | |
|---|
| 372 | typedef True ReferenceMapTag; |
|---|
| 373 | |
|---|
| 374 | private: |
|---|
| 375 | |
|---|
| 376 | typedef std::map<K, V, Compare> Map; |
|---|
| 377 | Map _map; |
|---|
| 378 | Value _value; |
|---|
| 379 | |
|---|
| 380 | public: |
|---|
| 381 | |
|---|
| 382 | /// \brief Constructor with specified default value. |
|---|
| 383 | SparseMap(const Value &value = Value()) : _value(value) {} |
|---|
| 384 | /// \brief Constructs the map from an appropriate \c std::map, and |
|---|
| 385 | /// explicitly specifies a default value. |
|---|
| 386 | template <typename V1, typename Comp1> |
|---|
| 387 | SparseMap(const std::map<Key, V1, Comp1> &map, |
|---|
| 388 | const Value &value = Value()) |
|---|
| 389 | : _map(map.begin(), map.end()), _value(value) {} |
|---|
| 390 | |
|---|
| 391 | /// \brief Constructs the map from another \c SparseMap. |
|---|
| 392 | template<typename V1, typename Comp1> |
|---|
| 393 | SparseMap(const SparseMap<Key, V1, Comp1> &c) |
|---|
| 394 | : _map(c._map.begin(), c._map.end()), _value(c._value) {} |
|---|
| 395 | |
|---|
| 396 | private: |
|---|
| 397 | |
|---|
| 398 | SparseMap& operator=(const SparseMap&); |
|---|
| 399 | |
|---|
| 400 | public: |
|---|
| 401 | |
|---|
| 402 | ///\e |
|---|
| 403 | Reference operator[](const Key &k) { |
|---|
| 404 | typename Map::iterator it = _map.lower_bound(k); |
|---|
| 405 | if (it != _map.end() && !_map.key_comp()(k, it->first)) |
|---|
| 406 | return it->second; |
|---|
| 407 | else |
|---|
| 408 | return _map.insert(it, std::make_pair(k, _value))->second; |
|---|
| 409 | } |
|---|
| 410 | |
|---|
| 411 | ///\e |
|---|
| 412 | ConstReference operator[](const Key &k) const { |
|---|
| 413 | typename Map::const_iterator it = _map.find(k); |
|---|
| 414 | if (it != _map.end()) |
|---|
| 415 | return it->second; |
|---|
| 416 | else |
|---|
| 417 | return _value; |
|---|
| 418 | } |
|---|
| 419 | |
|---|
| 420 | ///\e |
|---|
| 421 | void set(const Key &k, const Value &v) { |
|---|
| 422 | typename Map::iterator it = _map.lower_bound(k); |
|---|
| 423 | if (it != _map.end() && !_map.key_comp()(k, it->first)) |
|---|
| 424 | it->second = v; |
|---|
| 425 | else |
|---|
| 426 | _map.insert(it, std::make_pair(k, v)); |
|---|
| 427 | } |
|---|
| 428 | |
|---|
| 429 | ///\e |
|---|
| 430 | void setAll(const Value &v) { |
|---|
| 431 | _value = v; |
|---|
| 432 | _map.clear(); |
|---|
| 433 | } |
|---|
| 434 | }; |
|---|
| 435 | |
|---|
| 436 | /// Returns a \c SparseMap class |
|---|
| 437 | |
|---|
| 438 | /// This function just returns a \c SparseMap class with specified |
|---|
| 439 | /// default value. |
|---|
| 440 | /// \relates SparseMap |
|---|
| 441 | template<typename K, typename V, typename Compare> |
|---|
| 442 | inline SparseMap<K, V, Compare> sparseMap(const V& value = V()) { |
|---|
| 443 | return SparseMap<K, V, Compare>(value); |
|---|
| 444 | } |
|---|
| 445 | |
|---|
| 446 | template<typename K, typename V> |
|---|
| 447 | inline SparseMap<K, V, std::less<K> > sparseMap(const V& value = V()) { |
|---|
| 448 | return SparseMap<K, V, std::less<K> >(value); |
|---|
| 449 | } |
|---|
| 450 | |
|---|
| 451 | /// \brief Returns a \c SparseMap class created from an appropriate |
|---|
| 452 | /// \c std::map |
|---|
| 453 | |
|---|
| 454 | /// This function just returns a \c SparseMap class created from an |
|---|
| 455 | /// appropriate \c std::map. |
|---|
| 456 | /// \relates SparseMap |
|---|
| 457 | template<typename K, typename V, typename Compare> |
|---|
| 458 | inline SparseMap<K, V, Compare> |
|---|
| 459 | sparseMap(const std::map<K, V, Compare> &map, const V& value = V()) |
|---|
| 460 | { |
|---|
| 461 | return SparseMap<K, V, Compare>(map, value); |
|---|
| 462 | } |
|---|
| 463 | |
|---|
| 464 | /// @} |
|---|
| 465 | |
|---|
| 466 | /// \addtogroup map_adaptors |
|---|
| 467 | /// @{ |
|---|
| 468 | |
|---|
| 469 | /// Composition of two maps |
|---|
| 470 | |
|---|
| 471 | /// This \ref concepts::ReadMap "read-only map" returns the |
|---|
| 472 | /// composition of two given maps. That is to say, if \c m1 is of |
|---|
| 473 | /// type \c M1 and \c m2 is of \c M2, then for |
|---|
| 474 | /// \code |
|---|
| 475 | /// ComposeMap<M1, M2> cm(m1,m2); |
|---|
| 476 | /// \endcode |
|---|
| 477 | /// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>. |
|---|
| 478 | /// |
|---|
| 479 | /// The \c Key type of the map is inherited from \c M2 and the |
|---|
| 480 | /// \c Value type is from \c M1. |
|---|
| 481 | /// \c M2::Value must be convertible to \c M1::Key. |
|---|
| 482 | /// |
|---|
| 483 | /// The simplest way of using this map is through the composeMap() |
|---|
| 484 | /// function. |
|---|
| 485 | /// |
|---|
| 486 | /// \sa CombineMap |
|---|
| 487 | template <typename M1, typename M2> |
|---|
| 488 | class ComposeMap : public MapBase<typename M2::Key, typename M1::Value> { |
|---|
| 489 | const M1 &_m1; |
|---|
| 490 | const M2 &_m2; |
|---|
| 491 | public: |
|---|
| 492 | typedef MapBase<typename M2::Key, typename M1::Value> Parent; |
|---|
| 493 | typedef typename Parent::Key Key; |
|---|
| 494 | typedef typename Parent::Value Value; |
|---|
| 495 | |
|---|
| 496 | /// Constructor |
|---|
| 497 | ComposeMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
|---|
| 498 | |
|---|
| 499 | /// \e |
|---|
| 500 | typename MapTraits<M1>::ConstReturnValue |
|---|
| 501 | operator[](const Key &k) const { return _m1[_m2[k]]; } |
|---|
| 502 | }; |
|---|
| 503 | |
|---|
| 504 | /// Returns a \c ComposeMap class |
|---|
| 505 | |
|---|
| 506 | /// This function just returns a \c ComposeMap class. |
|---|
| 507 | /// |
|---|
| 508 | /// If \c m1 and \c m2 are maps and the \c Value type of \c m2 is |
|---|
| 509 | /// convertible to the \c Key of \c m1, then <tt>composeMap(m1,m2)[x]</tt> |
|---|
| 510 | /// will be equal to <tt>m1[m2[x]]</tt>. |
|---|
| 511 | /// |
|---|
| 512 | /// \relates ComposeMap |
|---|
| 513 | template <typename M1, typename M2> |
|---|
| 514 | inline ComposeMap<M1, M2> composeMap(const M1 &m1, const M2 &m2) { |
|---|
| 515 | return ComposeMap<M1, M2>(m1, m2); |
|---|
| 516 | } |
|---|
| 517 | |
|---|
| 518 | |
|---|
| 519 | /// Combination of two maps using an STL (binary) functor. |
|---|
| 520 | |
|---|
| 521 | /// This \ref concepts::ReadMap "read-only map" takes two maps and a |
|---|
| 522 | /// binary functor and returns the combination of the two given maps |
|---|
| 523 | /// using the functor. |
|---|
| 524 | /// That is to say, if \c m1 is of type \c M1 and \c m2 is of \c M2 |
|---|
| 525 | /// and \c f is of \c F, then for |
|---|
| 526 | /// \code |
|---|
| 527 | /// CombineMap<M1,M2,F,V> cm(m1,m2,f); |
|---|
| 528 | /// \endcode |
|---|
| 529 | /// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>. |
|---|
| 530 | /// |
|---|
| 531 | /// The \c Key type of the map is inherited from \c M1 (\c M1::Key |
|---|
| 532 | /// must be convertible to \c M2::Key) and the \c Value type is \c V. |
|---|
| 533 | /// \c M2::Value and \c M1::Value must be convertible to the |
|---|
| 534 | /// corresponding input parameter of \c F and the return type of \c F |
|---|
| 535 | /// must be convertible to \c V. |
|---|
| 536 | /// |
|---|
| 537 | /// The simplest way of using this map is through the combineMap() |
|---|
| 538 | /// function. |
|---|
| 539 | /// |
|---|
| 540 | /// \sa ComposeMap |
|---|
| 541 | template<typename M1, typename M2, typename F, |
|---|
| 542 | typename V = typename F::result_type> |
|---|
| 543 | class CombineMap : public MapBase<typename M1::Key, V> { |
|---|
| 544 | const M1 &_m1; |
|---|
| 545 | const M2 &_m2; |
|---|
| 546 | F _f; |
|---|
| 547 | public: |
|---|
| 548 | typedef MapBase<typename M1::Key, V> Parent; |
|---|
| 549 | typedef typename Parent::Key Key; |
|---|
| 550 | typedef typename Parent::Value Value; |
|---|
| 551 | |
|---|
| 552 | /// Constructor |
|---|
| 553 | CombineMap(const M1 &m1, const M2 &m2, const F &f = F()) |
|---|
| 554 | : _m1(m1), _m2(m2), _f(f) {} |
|---|
| 555 | /// \e |
|---|
| 556 | Value operator[](const Key &k) const { return _f(_m1[k],_m2[k]); } |
|---|
| 557 | }; |
|---|
| 558 | |
|---|
| 559 | /// Returns a \c CombineMap class |
|---|
| 560 | |
|---|
| 561 | /// This function just returns a \c CombineMap class. |
|---|
| 562 | /// |
|---|
| 563 | /// For example, if \c m1 and \c m2 are both maps with \c double |
|---|
| 564 | /// values, then |
|---|
| 565 | /// \code |
|---|
| 566 | /// combineMap(m1,m2,std::plus<double>()) |
|---|
| 567 | /// \endcode |
|---|
| 568 | /// is equivalent to |
|---|
| 569 | /// \code |
|---|
| 570 | /// addMap(m1,m2) |
|---|
| 571 | /// \endcode |
|---|
| 572 | /// |
|---|
| 573 | /// This function is specialized for adaptable binary function |
|---|
| 574 | /// classes and C++ functions. |
|---|
| 575 | /// |
|---|
| 576 | /// \relates CombineMap |
|---|
| 577 | template<typename M1, typename M2, typename F, typename V> |
|---|
| 578 | inline CombineMap<M1, M2, F, V> |
|---|
| 579 | combineMap(const M1 &m1, const M2 &m2, const F &f) { |
|---|
| 580 | return CombineMap<M1, M2, F, V>(m1,m2,f); |
|---|
| 581 | } |
|---|
| 582 | |
|---|
| 583 | template<typename M1, typename M2, typename F> |
|---|
| 584 | inline CombineMap<M1, M2, F, typename F::result_type> |
|---|
| 585 | combineMap(const M1 &m1, const M2 &m2, const F &f) { |
|---|
| 586 | return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f); |
|---|
| 587 | } |
|---|
| 588 | |
|---|
| 589 | template<typename M1, typename M2, typename K1, typename K2, typename V> |
|---|
| 590 | inline CombineMap<M1, M2, V (*)(K1, K2), V> |
|---|
| 591 | combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) { |
|---|
| 592 | return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f); |
|---|
| 593 | } |
|---|
| 594 | |
|---|
| 595 | |
|---|
| 596 | /// Converts an STL style (unary) functor to a map |
|---|
| 597 | |
|---|
| 598 | /// This \ref concepts::ReadMap "read-only map" returns the value |
|---|
| 599 | /// of a given functor. Actually, it just wraps the functor and |
|---|
| 600 | /// provides the \c Key and \c Value typedefs. |
|---|
| 601 | /// |
|---|
| 602 | /// Template parameters \c K and \c V will become its \c Key and |
|---|
| 603 | /// \c Value. In most cases they have to be given explicitly because |
|---|
| 604 | /// a functor typically does not provide \c argument_type and |
|---|
| 605 | /// \c result_type typedefs. |
|---|
| 606 | /// Parameter \c F is the type of the used functor. |
|---|
| 607 | /// |
|---|
| 608 | /// The simplest way of using this map is through the functorToMap() |
|---|
| 609 | /// function. |
|---|
| 610 | /// |
|---|
| 611 | /// \sa MapToFunctor |
|---|
| 612 | template<typename F, |
|---|
| 613 | typename K = typename F::argument_type, |
|---|
| 614 | typename V = typename F::result_type> |
|---|
| 615 | class FunctorToMap : public MapBase<K, V> { |
|---|
| 616 | F _f; |
|---|
| 617 | public: |
|---|
| 618 | typedef MapBase<K, V> Parent; |
|---|
| 619 | typedef typename Parent::Key Key; |
|---|
| 620 | typedef typename Parent::Value Value; |
|---|
| 621 | |
|---|
| 622 | /// Constructor |
|---|
| 623 | FunctorToMap(const F &f = F()) : _f(f) {} |
|---|
| 624 | /// \e |
|---|
| 625 | Value operator[](const Key &k) const { return _f(k); } |
|---|
| 626 | }; |
|---|
| 627 | |
|---|
| 628 | /// Returns a \c FunctorToMap class |
|---|
| 629 | |
|---|
| 630 | /// This function just returns a \c FunctorToMap class. |
|---|
| 631 | /// |
|---|
| 632 | /// This function is specialized for adaptable binary function |
|---|
| 633 | /// classes and C++ functions. |
|---|
| 634 | /// |
|---|
| 635 | /// \relates FunctorToMap |
|---|
| 636 | template<typename K, typename V, typename F> |
|---|
| 637 | inline FunctorToMap<F, K, V> functorToMap(const F &f) { |
|---|
| 638 | return FunctorToMap<F, K, V>(f); |
|---|
| 639 | } |
|---|
| 640 | |
|---|
| 641 | template <typename F> |
|---|
| 642 | inline FunctorToMap<F, typename F::argument_type, typename F::result_type> |
|---|
| 643 | functorToMap(const F &f) |
|---|
| 644 | { |
|---|
| 645 | return FunctorToMap<F, typename F::argument_type, |
|---|
| 646 | typename F::result_type>(f); |
|---|
| 647 | } |
|---|
| 648 | |
|---|
| 649 | template <typename K, typename V> |
|---|
| 650 | inline FunctorToMap<V (*)(K), K, V> functorToMap(V (*f)(K)) { |
|---|
| 651 | return FunctorToMap<V (*)(K), K, V>(f); |
|---|
| 652 | } |
|---|
| 653 | |
|---|
| 654 | |
|---|
| 655 | /// Converts a map to an STL style (unary) functor |
|---|
| 656 | |
|---|
| 657 | /// This class converts a map to an STL style (unary) functor. |
|---|
| 658 | /// That is it provides an <tt>operator()</tt> to read its values. |
|---|
| 659 | /// |
|---|
| 660 | /// For the sake of convenience it also works as a usual |
|---|
| 661 | /// \ref concepts::ReadMap "readable map", i.e. <tt>operator[]</tt> |
|---|
| 662 | /// and the \c Key and \c Value typedefs also exist. |
|---|
| 663 | /// |
|---|
| 664 | /// The simplest way of using this map is through the mapToFunctor() |
|---|
| 665 | /// function. |
|---|
| 666 | /// |
|---|
| 667 | ///\sa FunctorToMap |
|---|
| 668 | template <typename M> |
|---|
| 669 | class MapToFunctor : public MapBase<typename M::Key, typename M::Value> { |
|---|
| 670 | const M &_m; |
|---|
| 671 | public: |
|---|
| 672 | typedef MapBase<typename M::Key, typename M::Value> Parent; |
|---|
| 673 | typedef typename Parent::Key Key; |
|---|
| 674 | typedef typename Parent::Value Value; |
|---|
| 675 | |
|---|
| 676 | typedef typename Parent::Key argument_type; |
|---|
| 677 | typedef typename Parent::Value result_type; |
|---|
| 678 | |
|---|
| 679 | /// Constructor |
|---|
| 680 | MapToFunctor(const M &m) : _m(m) {} |
|---|
| 681 | /// \e |
|---|
| 682 | Value operator()(const Key &k) const { return _m[k]; } |
|---|
| 683 | /// \e |
|---|
| 684 | Value operator[](const Key &k) const { return _m[k]; } |
|---|
| 685 | }; |
|---|
| 686 | |
|---|
| 687 | /// Returns a \c MapToFunctor class |
|---|
| 688 | |
|---|
| 689 | /// This function just returns a \c MapToFunctor class. |
|---|
| 690 | /// \relates MapToFunctor |
|---|
| 691 | template<typename M> |
|---|
| 692 | inline MapToFunctor<M> mapToFunctor(const M &m) { |
|---|
| 693 | return MapToFunctor<M>(m); |
|---|
| 694 | } |
|---|
| 695 | |
|---|
| 696 | |
|---|
| 697 | /// \brief Map adaptor to convert the \c Value type of a map to |
|---|
| 698 | /// another type using the default conversion. |
|---|
| 699 | |
|---|
| 700 | /// Map adaptor to convert the \c Value type of a \ref concepts::ReadMap |
|---|
| 701 | /// "readable map" to another type using the default conversion. |
|---|
| 702 | /// The \c Key type of it is inherited from \c M and the \c Value |
|---|
| 703 | /// type is \c V. |
|---|
| 704 | /// This type conforms the \ref concepts::ReadMap "ReadMap" concept. |
|---|
| 705 | /// |
|---|
| 706 | /// The simplest way of using this map is through the convertMap() |
|---|
| 707 | /// function. |
|---|
| 708 | template <typename M, typename V> |
|---|
| 709 | class ConvertMap : public MapBase<typename M::Key, V> { |
|---|
| 710 | const M &_m; |
|---|
| 711 | public: |
|---|
| 712 | typedef MapBase<typename M::Key, V> Parent; |
|---|
| 713 | typedef typename Parent::Key Key; |
|---|
| 714 | typedef typename Parent::Value Value; |
|---|
| 715 | |
|---|
| 716 | /// Constructor |
|---|
| 717 | |
|---|
| 718 | /// Constructor. |
|---|
| 719 | /// \param m The underlying map. |
|---|
| 720 | ConvertMap(const M &m) : _m(m) {} |
|---|
| 721 | |
|---|
| 722 | /// \e |
|---|
| 723 | Value operator[](const Key &k) const { return _m[k]; } |
|---|
| 724 | }; |
|---|
| 725 | |
|---|
| 726 | /// Returns a \c ConvertMap class |
|---|
| 727 | |
|---|
| 728 | /// This function just returns a \c ConvertMap class. |
|---|
| 729 | /// \relates ConvertMap |
|---|
| 730 | template<typename V, typename M> |
|---|
| 731 | inline ConvertMap<M, V> convertMap(const M &map) { |
|---|
| 732 | return ConvertMap<M, V>(map); |
|---|
| 733 | } |
|---|
| 734 | |
|---|
| 735 | |
|---|
| 736 | /// Applies all map setting operations to two maps |
|---|
| 737 | |
|---|
| 738 | /// This map has two \ref concepts::WriteMap "writable map" parameters |
|---|
| 739 | /// and each write request will be passed to both of them. |
|---|
| 740 | /// If \c M1 is also \ref concepts::ReadMap "readable", then the read |
|---|
| 741 | /// operations will return the corresponding values of \c M1. |
|---|
| 742 | /// |
|---|
| 743 | /// The \c Key and \c Value types are inherited from \c M1. |
|---|
| 744 | /// The \c Key and \c Value of \c M2 must be convertible from those |
|---|
| 745 | /// of \c M1. |
|---|
| 746 | /// |
|---|
| 747 | /// The simplest way of using this map is through the forkMap() |
|---|
| 748 | /// function. |
|---|
| 749 | template<typename M1, typename M2> |
|---|
| 750 | class ForkMap : public MapBase<typename M1::Key, typename M1::Value> { |
|---|
| 751 | M1 &_m1; |
|---|
| 752 | M2 &_m2; |
|---|
| 753 | public: |
|---|
| 754 | typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
|---|
| 755 | typedef typename Parent::Key Key; |
|---|
| 756 | typedef typename Parent::Value Value; |
|---|
| 757 | |
|---|
| 758 | /// Constructor |
|---|
| 759 | ForkMap(M1 &m1, M2 &m2) : _m1(m1), _m2(m2) {} |
|---|
| 760 | /// Returns the value associated with the given key in the first map. |
|---|
| 761 | Value operator[](const Key &k) const { return _m1[k]; } |
|---|
| 762 | /// Sets the value associated with the given key in both maps. |
|---|
| 763 | void set(const Key &k, const Value &v) { _m1.set(k,v); _m2.set(k,v); } |
|---|
| 764 | }; |
|---|
| 765 | |
|---|
| 766 | /// Returns a \c ForkMap class |
|---|
| 767 | |
|---|
| 768 | /// This function just returns a \c ForkMap class. |
|---|
| 769 | /// \relates ForkMap |
|---|
| 770 | template <typename M1, typename M2> |
|---|
| 771 | inline ForkMap<M1,M2> forkMap(M1 &m1, M2 &m2) { |
|---|
| 772 | return ForkMap<M1,M2>(m1,m2); |
|---|
| 773 | } |
|---|
| 774 | |
|---|
| 775 | |
|---|
| 776 | /// Sum of two maps |
|---|
| 777 | |
|---|
| 778 | /// This \ref concepts::ReadMap "read-only map" returns the sum |
|---|
| 779 | /// of the values of the two given maps. |
|---|
| 780 | /// Its \c Key and \c Value types are inherited from \c M1. |
|---|
| 781 | /// The \c Key and \c Value of \c M2 must be convertible to those of |
|---|
| 782 | /// \c M1. |
|---|
| 783 | /// |
|---|
| 784 | /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
|---|
| 785 | /// \code |
|---|
| 786 | /// AddMap<M1,M2> am(m1,m2); |
|---|
| 787 | /// \endcode |
|---|
| 788 | /// <tt>am[x]</tt> will be equal to <tt>m1[x]+m2[x]</tt>. |
|---|
| 789 | /// |
|---|
| 790 | /// The simplest way of using this map is through the addMap() |
|---|
| 791 | /// function. |
|---|
| 792 | /// |
|---|
| 793 | /// \sa SubMap, MulMap, DivMap |
|---|
| 794 | /// \sa ShiftMap, ShiftWriteMap |
|---|
| 795 | template<typename M1, typename M2> |
|---|
| 796 | class AddMap : public MapBase<typename M1::Key, typename M1::Value> { |
|---|
| 797 | const M1 &_m1; |
|---|
| 798 | const M2 &_m2; |
|---|
| 799 | public: |
|---|
| 800 | typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
|---|
| 801 | typedef typename Parent::Key Key; |
|---|
| 802 | typedef typename Parent::Value Value; |
|---|
| 803 | |
|---|
| 804 | /// Constructor |
|---|
| 805 | AddMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
|---|
| 806 | /// \e |
|---|
| 807 | Value operator[](const Key &k) const { return _m1[k]+_m2[k]; } |
|---|
| 808 | }; |
|---|
| 809 | |
|---|
| 810 | /// Returns an \c AddMap class |
|---|
| 811 | |
|---|
| 812 | /// This function just returns an \c AddMap class. |
|---|
| 813 | /// |
|---|
| 814 | /// For example, if \c m1 and \c m2 are both maps with \c double |
|---|
| 815 | /// values, then <tt>addMap(m1,m2)[x]</tt> will be equal to |
|---|
| 816 | /// <tt>m1[x]+m2[x]</tt>. |
|---|
| 817 | /// |
|---|
| 818 | /// \relates AddMap |
|---|
| 819 | template<typename M1, typename M2> |
|---|
| 820 | inline AddMap<M1, M2> addMap(const M1 &m1, const M2 &m2) { |
|---|
| 821 | return AddMap<M1, M2>(m1,m2); |
|---|
| 822 | } |
|---|
| 823 | |
|---|
| 824 | |
|---|
| 825 | /// Difference of two maps |
|---|
| 826 | |
|---|
| 827 | /// This \ref concepts::ReadMap "read-only map" returns the difference |
|---|
| 828 | /// of the values of the two given maps. |
|---|
| 829 | /// Its \c Key and \c Value types are inherited from \c M1. |
|---|
| 830 | /// The \c Key and \c Value of \c M2 must be convertible to those of |
|---|
| 831 | /// \c M1. |
|---|
| 832 | /// |
|---|
| 833 | /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
|---|
| 834 | /// \code |
|---|
| 835 | /// SubMap<M1,M2> sm(m1,m2); |
|---|
| 836 | /// \endcode |
|---|
| 837 | /// <tt>sm[x]</tt> will be equal to <tt>m1[x]-m2[x]</tt>. |
|---|
| 838 | /// |
|---|
| 839 | /// The simplest way of using this map is through the subMap() |
|---|
| 840 | /// function. |
|---|
| 841 | /// |
|---|
| 842 | /// \sa AddMap, MulMap, DivMap |
|---|
| 843 | template<typename M1, typename M2> |
|---|
| 844 | class SubMap : public MapBase<typename M1::Key, typename M1::Value> { |
|---|
| 845 | const M1 &_m1; |
|---|
| 846 | const M2 &_m2; |
|---|
| 847 | public: |
|---|
| 848 | typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
|---|
| 849 | typedef typename Parent::Key Key; |
|---|
| 850 | typedef typename Parent::Value Value; |
|---|
| 851 | |
|---|
| 852 | /// Constructor |
|---|
| 853 | SubMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
|---|
| 854 | /// \e |
|---|
| 855 | Value operator[](const Key &k) const { return _m1[k]-_m2[k]; } |
|---|
| 856 | }; |
|---|
| 857 | |
|---|
| 858 | /// Returns a \c SubMap class |
|---|
| 859 | |
|---|
| 860 | /// This function just returns a \c SubMap class. |
|---|
| 861 | /// |
|---|
| 862 | /// For example, if \c m1 and \c m2 are both maps with \c double |
|---|
| 863 | /// values, then <tt>subMap(m1,m2)[x]</tt> will be equal to |
|---|
| 864 | /// <tt>m1[x]-m2[x]</tt>. |
|---|
| 865 | /// |
|---|
| 866 | /// \relates SubMap |
|---|
| 867 | template<typename M1, typename M2> |
|---|
| 868 | inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) { |
|---|
| 869 | return SubMap<M1, M2>(m1,m2); |
|---|
| 870 | } |
|---|
| 871 | |
|---|
| 872 | |
|---|
| 873 | /// Product of two maps |
|---|
| 874 | |
|---|
| 875 | /// This \ref concepts::ReadMap "read-only map" returns the product |
|---|
| 876 | /// of the values of the two given maps. |
|---|
| 877 | /// Its \c Key and \c Value types are inherited from \c M1. |
|---|
| 878 | /// The \c Key and \c Value of \c M2 must be convertible to those of |
|---|
| 879 | /// \c M1. |
|---|
| 880 | /// |
|---|
| 881 | /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
|---|
| 882 | /// \code |
|---|
| 883 | /// MulMap<M1,M2> mm(m1,m2); |
|---|
| 884 | /// \endcode |
|---|
| 885 | /// <tt>mm[x]</tt> will be equal to <tt>m1[x]*m2[x]</tt>. |
|---|
| 886 | /// |
|---|
| 887 | /// The simplest way of using this map is through the mulMap() |
|---|
| 888 | /// function. |
|---|
| 889 | /// |
|---|
| 890 | /// \sa AddMap, SubMap, DivMap |
|---|
| 891 | /// \sa ScaleMap, ScaleWriteMap |
|---|
| 892 | template<typename M1, typename M2> |
|---|
| 893 | class MulMap : public MapBase<typename M1::Key, typename M1::Value> { |
|---|
| 894 | const M1 &_m1; |
|---|
| 895 | const M2 &_m2; |
|---|
| 896 | public: |
|---|
| 897 | typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
|---|
| 898 | typedef typename Parent::Key Key; |
|---|
| 899 | typedef typename Parent::Value Value; |
|---|
| 900 | |
|---|
| 901 | /// Constructor |
|---|
| 902 | MulMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {} |
|---|
| 903 | /// \e |
|---|
| 904 | Value operator[](const Key &k) const { return _m1[k]*_m2[k]; } |
|---|
| 905 | }; |
|---|
| 906 | |
|---|
| 907 | /// Returns a \c MulMap class |
|---|
| 908 | |
|---|
| 909 | /// This function just returns a \c MulMap class. |
|---|
| 910 | /// |
|---|
| 911 | /// For example, if \c m1 and \c m2 are both maps with \c double |
|---|
| 912 | /// values, then <tt>mulMap(m1,m2)[x]</tt> will be equal to |
|---|
| 913 | /// <tt>m1[x]*m2[x]</tt>. |
|---|
| 914 | /// |
|---|
| 915 | /// \relates MulMap |
|---|
| 916 | template<typename M1, typename M2> |
|---|
| 917 | inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) { |
|---|
| 918 | return MulMap<M1, M2>(m1,m2); |
|---|
| 919 | } |
|---|
| 920 | |
|---|
| 921 | |
|---|
| 922 | /// Quotient of two maps |
|---|
| 923 | |
|---|
| 924 | /// This \ref concepts::ReadMap "read-only map" returns the quotient |
|---|
| 925 | /// of the values of the two given maps. |
|---|
| 926 | /// Its \c Key and \c Value types are inherited from \c M1. |
|---|
| 927 | /// The \c Key and \c Value of \c M2 must be convertible to those of |
|---|
| 928 | /// \c M1. |
|---|
| 929 | /// |
|---|
| 930 | /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
|---|
| 931 | /// \code |
|---|
| 932 | /// DivMap<M1,M2> dm(m1,m2); |
|---|
| 933 | /// \endcode |
|---|
| 934 | /// <tt>dm[x]</tt> will be equal to <tt>m1[x]/m2[x]</tt>. |
|---|
| 935 | /// |
|---|
| 936 | /// The simplest way of using this map is through the divMap() |
|---|
| 937 | /// function. |
|---|
| 938 | /// |
|---|
| 939 | /// \sa AddMap, SubMap, MulMap |
|---|
| 940 | template<typename M1, typename M2> |
|---|
| 941 | class DivMap : public MapBase<typename M1::Key, typename M1::Value> { |
|---|
| 942 | const M1 &_m1; |
|---|
| 943 | const M2 &_m2; |
|---|
| 944 | public: |
|---|
| 945 | typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
|---|
| 946 | typedef typename Parent::Key Key; |
|---|
| 947 | typedef typename Parent::Value Value; |
|---|
| 948 | |
|---|
| 949 | /// Constructor |
|---|
| 950 | DivMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {} |
|---|
| 951 | /// \e |
|---|
| 952 | Value operator[](const Key &k) const { return _m1[k]/_m2[k]; } |
|---|
| 953 | }; |
|---|
| 954 | |
|---|
| 955 | /// Returns a \c DivMap class |
|---|
| 956 | |
|---|
| 957 | /// This function just returns a \c DivMap class. |
|---|
| 958 | /// |
|---|
| 959 | /// For example, if \c m1 and \c m2 are both maps with \c double |
|---|
| 960 | /// values, then <tt>divMap(m1,m2)[x]</tt> will be equal to |
|---|
| 961 | /// <tt>m1[x]/m2[x]</tt>. |
|---|
| 962 | /// |
|---|
| 963 | /// \relates DivMap |
|---|
| 964 | template<typename M1, typename M2> |
|---|
| 965 | inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) { |
|---|
| 966 | return DivMap<M1, M2>(m1,m2); |
|---|
| 967 | } |
|---|
| 968 | |
|---|
| 969 | |
|---|
| 970 | /// Shifts a map with a constant. |
|---|
| 971 | |
|---|
| 972 | /// This \ref concepts::ReadMap "read-only map" returns the sum of |
|---|
| 973 | /// the given map and a constant value (i.e. it shifts the map with |
|---|
| 974 | /// the constant). Its \c Key and \c Value are inherited from \c M. |
|---|
| 975 | /// |
|---|
| 976 | /// Actually, |
|---|
| 977 | /// \code |
|---|
| 978 | /// ShiftMap<M> sh(m,v); |
|---|
| 979 | /// \endcode |
|---|
| 980 | /// is equivalent to |
|---|
| 981 | /// \code |
|---|
| 982 | /// ConstMap<M::Key, M::Value> cm(v); |
|---|
| 983 | /// AddMap<M, ConstMap<M::Key, M::Value> > sh(m,cm); |
|---|
| 984 | /// \endcode |
|---|
| 985 | /// |
|---|
| 986 | /// The simplest way of using this map is through the shiftMap() |
|---|
| 987 | /// function. |
|---|
| 988 | /// |
|---|
| 989 | /// \sa ShiftWriteMap |
|---|
| 990 | template<typename M, typename C = typename M::Value> |
|---|
| 991 | class ShiftMap : public MapBase<typename M::Key, typename M::Value> { |
|---|
| 992 | const M &_m; |
|---|
| 993 | C _v; |
|---|
| 994 | public: |
|---|
| 995 | typedef MapBase<typename M::Key, typename M::Value> Parent; |
|---|
| 996 | typedef typename Parent::Key Key; |
|---|
| 997 | typedef typename Parent::Value Value; |
|---|
| 998 | |
|---|
| 999 | /// Constructor |
|---|
| 1000 | |
|---|
| 1001 | /// Constructor. |
|---|
| 1002 | /// \param m The undelying map. |
|---|
| 1003 | /// \param v The constant value. |
|---|
| 1004 | ShiftMap(const M &m, const C &v) : _m(m), _v(v) {} |
|---|
| 1005 | /// \e |
|---|
| 1006 | Value operator[](const Key &k) const { return _m[k]+_v; } |
|---|
| 1007 | }; |
|---|
| 1008 | |
|---|
| 1009 | /// Shifts a map with a constant (read-write version). |
|---|
| 1010 | |
|---|
| 1011 | /// This \ref concepts::ReadWriteMap "read-write map" returns the sum |
|---|
| 1012 | /// of the given map and a constant value (i.e. it shifts the map with |
|---|
| 1013 | /// the constant). Its \c Key and \c Value are inherited from \c M. |
|---|
| 1014 | /// It makes also possible to write the map. |
|---|
| 1015 | /// |
|---|
| 1016 | /// The simplest way of using this map is through the shiftWriteMap() |
|---|
| 1017 | /// function. |
|---|
| 1018 | /// |
|---|
| 1019 | /// \sa ShiftMap |
|---|
| 1020 | template<typename M, typename C = typename M::Value> |
|---|
| 1021 | class ShiftWriteMap : public MapBase<typename M::Key, typename M::Value> { |
|---|
| 1022 | M &_m; |
|---|
| 1023 | C _v; |
|---|
| 1024 | public: |
|---|
| 1025 | typedef MapBase<typename M::Key, typename M::Value> Parent; |
|---|
| 1026 | typedef typename Parent::Key Key; |
|---|
| 1027 | typedef typename Parent::Value Value; |
|---|
| 1028 | |
|---|
| 1029 | /// Constructor |
|---|
| 1030 | |
|---|
| 1031 | /// Constructor. |
|---|
| 1032 | /// \param m The undelying map. |
|---|
| 1033 | /// \param v The constant value. |
|---|
| 1034 | ShiftWriteMap(M &m, const C &v) : _m(m), _v(v) {} |
|---|
| 1035 | /// \e |
|---|
| 1036 | Value operator[](const Key &k) const { return _m[k]+_v; } |
|---|
| 1037 | /// \e |
|---|
| 1038 | void set(const Key &k, const Value &v) { _m.set(k, v-_v); } |
|---|
| 1039 | }; |
|---|
| 1040 | |
|---|
| 1041 | /// Returns a \c ShiftMap class |
|---|
| 1042 | |
|---|
| 1043 | /// This function just returns a \c ShiftMap class. |
|---|
| 1044 | /// |
|---|
| 1045 | /// For example, if \c m is a map with \c double values and \c v is |
|---|
| 1046 | /// \c double, then <tt>shiftMap(m,v)[x]</tt> will be equal to |
|---|
| 1047 | /// <tt>m[x]+v</tt>. |
|---|
| 1048 | /// |
|---|
| 1049 | /// \relates ShiftMap |
|---|
| 1050 | template<typename M, typename C> |
|---|
| 1051 | inline ShiftMap<M, C> shiftMap(const M &m, const C &v) { |
|---|
| 1052 | return ShiftMap<M, C>(m,v); |
|---|
| 1053 | } |
|---|
| 1054 | |
|---|
| 1055 | /// Returns a \c ShiftWriteMap class |
|---|
| 1056 | |
|---|
| 1057 | /// This function just returns a \c ShiftWriteMap class. |
|---|
| 1058 | /// |
|---|
| 1059 | /// For example, if \c m is a map with \c double values and \c v is |
|---|
| 1060 | /// \c double, then <tt>shiftWriteMap(m,v)[x]</tt> will be equal to |
|---|
| 1061 | /// <tt>m[x]+v</tt>. |
|---|
| 1062 | /// Moreover it makes also possible to write the map. |
|---|
| 1063 | /// |
|---|
| 1064 | /// \relates ShiftWriteMap |
|---|
| 1065 | template<typename M, typename C> |
|---|
| 1066 | inline ShiftWriteMap<M, C> shiftWriteMap(M &m, const C &v) { |
|---|
| 1067 | return ShiftWriteMap<M, C>(m,v); |
|---|
| 1068 | } |
|---|
| 1069 | |
|---|
| 1070 | |
|---|
| 1071 | /// Scales a map with a constant. |
|---|
| 1072 | |
|---|
| 1073 | /// This \ref concepts::ReadMap "read-only map" returns the value of |
|---|
| 1074 | /// the given map multiplied from the left side with a constant value. |
|---|
| 1075 | /// Its \c Key and \c Value are inherited from \c M. |
|---|
| 1076 | /// |
|---|
| 1077 | /// Actually, |
|---|
| 1078 | /// \code |
|---|
| 1079 | /// ScaleMap<M> sc(m,v); |
|---|
| 1080 | /// \endcode |
|---|
| 1081 | /// is equivalent to |
|---|
| 1082 | /// \code |
|---|
| 1083 | /// ConstMap<M::Key, M::Value> cm(v); |
|---|
| 1084 | /// MulMap<ConstMap<M::Key, M::Value>, M> sc(cm,m); |
|---|
| 1085 | /// \endcode |
|---|
| 1086 | /// |
|---|
| 1087 | /// The simplest way of using this map is through the scaleMap() |
|---|
| 1088 | /// function. |
|---|
| 1089 | /// |
|---|
| 1090 | /// \sa ScaleWriteMap |
|---|
| 1091 | template<typename M, typename C = typename M::Value> |
|---|
| 1092 | class ScaleMap : public MapBase<typename M::Key, typename M::Value> { |
|---|
| 1093 | const M &_m; |
|---|
| 1094 | C _v; |
|---|
| 1095 | public: |
|---|
| 1096 | typedef MapBase<typename M::Key, typename M::Value> Parent; |
|---|
| 1097 | typedef typename Parent::Key Key; |
|---|
| 1098 | typedef typename Parent::Value Value; |
|---|
| 1099 | |
|---|
| 1100 | /// Constructor |
|---|
| 1101 | |
|---|
| 1102 | /// Constructor. |
|---|
| 1103 | /// \param m The undelying map. |
|---|
| 1104 | /// \param v The constant value. |
|---|
| 1105 | ScaleMap(const M &m, const C &v) : _m(m), _v(v) {} |
|---|
| 1106 | /// \e |
|---|
| 1107 | Value operator[](const Key &k) const { return _v*_m[k]; } |
|---|
| 1108 | }; |
|---|
| 1109 | |
|---|
| 1110 | /// Scales a map with a constant (read-write version). |
|---|
| 1111 | |
|---|
| 1112 | /// This \ref concepts::ReadWriteMap "read-write map" returns the value of |
|---|
| 1113 | /// the given map multiplied from the left side with a constant value. |
|---|
| 1114 | /// Its \c Key and \c Value are inherited from \c M. |
|---|
| 1115 | /// It can also be used as write map if the \c / operator is defined |
|---|
| 1116 | /// between \c Value and \c C and the given multiplier is not zero. |
|---|
| 1117 | /// |
|---|
| 1118 | /// The simplest way of using this map is through the scaleWriteMap() |
|---|
| 1119 | /// function. |
|---|
| 1120 | /// |
|---|
| 1121 | /// \sa ScaleMap |
|---|
| 1122 | template<typename M, typename C = typename M::Value> |
|---|
| 1123 | class ScaleWriteMap : public MapBase<typename M::Key, typename M::Value> { |
|---|
| 1124 | M &_m; |
|---|
| 1125 | C _v; |
|---|
| 1126 | public: |
|---|
| 1127 | typedef MapBase<typename M::Key, typename M::Value> Parent; |
|---|
| 1128 | typedef typename Parent::Key Key; |
|---|
| 1129 | typedef typename Parent::Value Value; |
|---|
| 1130 | |
|---|
| 1131 | /// Constructor |
|---|
| 1132 | |
|---|
| 1133 | /// Constructor. |
|---|
| 1134 | /// \param m The undelying map. |
|---|
| 1135 | /// \param v The constant value. |
|---|
| 1136 | ScaleWriteMap(M &m, const C &v) : _m(m), _v(v) {} |
|---|
| 1137 | /// \e |
|---|
| 1138 | Value operator[](const Key &k) const { return _v*_m[k]; } |
|---|
| 1139 | /// \e |
|---|
| 1140 | void set(const Key &k, const Value &v) { _m.set(k, v/_v); } |
|---|
| 1141 | }; |
|---|
| 1142 | |
|---|
| 1143 | /// Returns a \c ScaleMap class |
|---|
| 1144 | |
|---|
| 1145 | /// This function just returns a \c ScaleMap class. |
|---|
| 1146 | /// |
|---|
| 1147 | /// For example, if \c m is a map with \c double values and \c v is |
|---|
| 1148 | /// \c double, then <tt>scaleMap(m,v)[x]</tt> will be equal to |
|---|
| 1149 | /// <tt>v*m[x]</tt>. |
|---|
| 1150 | /// |
|---|
| 1151 | /// \relates ScaleMap |
|---|
| 1152 | template<typename M, typename C> |
|---|
| 1153 | inline ScaleMap<M, C> scaleMap(const M &m, const C &v) { |
|---|
| 1154 | return ScaleMap<M, C>(m,v); |
|---|
| 1155 | } |
|---|
| 1156 | |
|---|
| 1157 | /// Returns a \c ScaleWriteMap class |
|---|
| 1158 | |
|---|
| 1159 | /// This function just returns a \c ScaleWriteMap class. |
|---|
| 1160 | /// |
|---|
| 1161 | /// For example, if \c m is a map with \c double values and \c v is |
|---|
| 1162 | /// \c double, then <tt>scaleWriteMap(m,v)[x]</tt> will be equal to |
|---|
| 1163 | /// <tt>v*m[x]</tt>. |
|---|
| 1164 | /// Moreover it makes also possible to write the map. |
|---|
| 1165 | /// |
|---|
| 1166 | /// \relates ScaleWriteMap |
|---|
| 1167 | template<typename M, typename C> |
|---|
| 1168 | inline ScaleWriteMap<M, C> scaleWriteMap(M &m, const C &v) { |
|---|
| 1169 | return ScaleWriteMap<M, C>(m,v); |
|---|
| 1170 | } |
|---|
| 1171 | |
|---|
| 1172 | |
|---|
| 1173 | /// Negative of a map |
|---|
| 1174 | |
|---|
| 1175 | /// This \ref concepts::ReadMap "read-only map" returns the negative |
|---|
| 1176 | /// of the values of the given map (using the unary \c - operator). |
|---|
| 1177 | /// Its \c Key and \c Value are inherited from \c M. |
|---|
| 1178 | /// |
|---|
| 1179 | /// If M::Value is \c int, \c double etc., then |
|---|
| 1180 | /// \code |
|---|
| 1181 | /// NegMap<M> neg(m); |
|---|
| 1182 | /// \endcode |
|---|
| 1183 | /// is equivalent to |
|---|
| 1184 | /// \code |
|---|
| 1185 | /// ScaleMap<M> neg(m,-1); |
|---|
| 1186 | /// \endcode |
|---|
| 1187 | /// |
|---|
| 1188 | /// The simplest way of using this map is through the negMap() |
|---|
| 1189 | /// function. |
|---|
| 1190 | /// |
|---|
| 1191 | /// \sa NegWriteMap |
|---|
| 1192 | template<typename M> |
|---|
| 1193 | class NegMap : public MapBase<typename M::Key, typename M::Value> { |
|---|
| 1194 | const M& _m; |
|---|
| 1195 | public: |
|---|
| 1196 | typedef MapBase<typename M::Key, typename M::Value> Parent; |
|---|
| 1197 | typedef typename Parent::Key Key; |
|---|
| 1198 | typedef typename Parent::Value Value; |
|---|
| 1199 | |
|---|
| 1200 | /// Constructor |
|---|
| 1201 | NegMap(const M &m) : _m(m) {} |
|---|
| 1202 | /// \e |
|---|
| 1203 | Value operator[](const Key &k) const { return -_m[k]; } |
|---|
| 1204 | }; |
|---|
| 1205 | |
|---|
| 1206 | /// Negative of a map (read-write version) |
|---|
| 1207 | |
|---|
| 1208 | /// This \ref concepts::ReadWriteMap "read-write map" returns the |
|---|
| 1209 | /// negative of the values of the given map (using the unary \c - |
|---|
| 1210 | /// operator). |
|---|
| 1211 | /// Its \c Key and \c Value are inherited from \c M. |
|---|
| 1212 | /// It makes also possible to write the map. |
|---|
| 1213 | /// |
|---|
| 1214 | /// If M::Value is \c int, \c double etc., then |
|---|
| 1215 | /// \code |
|---|
| 1216 | /// NegWriteMap<M> neg(m); |
|---|
| 1217 | /// \endcode |
|---|
| 1218 | /// is equivalent to |
|---|
| 1219 | /// \code |
|---|
| 1220 | /// ScaleWriteMap<M> neg(m,-1); |
|---|
| 1221 | /// \endcode |
|---|
| 1222 | /// |
|---|
| 1223 | /// The simplest way of using this map is through the negWriteMap() |
|---|
| 1224 | /// function. |
|---|
| 1225 | /// |
|---|
| 1226 | /// \sa NegMap |
|---|
| 1227 | template<typename M> |
|---|
| 1228 | class NegWriteMap : public MapBase<typename M::Key, typename M::Value> { |
|---|
| 1229 | M &_m; |
|---|
| 1230 | public: |
|---|
| 1231 | typedef MapBase<typename M::Key, typename M::Value> Parent; |
|---|
| 1232 | typedef typename Parent::Key Key; |
|---|
| 1233 | typedef typename Parent::Value Value; |
|---|
| 1234 | |
|---|
| 1235 | /// Constructor |
|---|
| 1236 | NegWriteMap(M &m) : _m(m) {} |
|---|
| 1237 | /// \e |
|---|
| 1238 | Value operator[](const Key &k) const { return -_m[k]; } |
|---|
| 1239 | /// \e |
|---|
| 1240 | void set(const Key &k, const Value &v) { _m.set(k, -v); } |
|---|
| 1241 | }; |
|---|
| 1242 | |
|---|
| 1243 | /// Returns a \c NegMap class |
|---|
| 1244 | |
|---|
| 1245 | /// This function just returns a \c NegMap class. |
|---|
| 1246 | /// |
|---|
| 1247 | /// For example, if \c m is a map with \c double values, then |
|---|
| 1248 | /// <tt>negMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>. |
|---|
| 1249 | /// |
|---|
| 1250 | /// \relates NegMap |
|---|
| 1251 | template <typename M> |
|---|
| 1252 | inline NegMap<M> negMap(const M &m) { |
|---|
| 1253 | return NegMap<M>(m); |
|---|
| 1254 | } |
|---|
| 1255 | |
|---|
| 1256 | /// Returns a \c NegWriteMap class |
|---|
| 1257 | |
|---|
| 1258 | /// This function just returns a \c NegWriteMap class. |
|---|
| 1259 | /// |
|---|
| 1260 | /// For example, if \c m is a map with \c double values, then |
|---|
| 1261 | /// <tt>negWriteMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>. |
|---|
| 1262 | /// Moreover it makes also possible to write the map. |
|---|
| 1263 | /// |
|---|
| 1264 | /// \relates NegWriteMap |
|---|
| 1265 | template <typename M> |
|---|
| 1266 | inline NegWriteMap<M> negWriteMap(M &m) { |
|---|
| 1267 | return NegWriteMap<M>(m); |
|---|
| 1268 | } |
|---|
| 1269 | |
|---|
| 1270 | |
|---|
| 1271 | /// Absolute value of a map |
|---|
| 1272 | |
|---|
| 1273 | /// This \ref concepts::ReadMap "read-only map" returns the absolute |
|---|
| 1274 | /// value of the values of the given map. |
|---|
| 1275 | /// Its \c Key and \c Value are inherited from \c M. |
|---|
| 1276 | /// \c Value must be comparable to \c 0 and the unary \c - |
|---|
| 1277 | /// operator must be defined for it, of course. |
|---|
| 1278 | /// |
|---|
| 1279 | /// The simplest way of using this map is through the absMap() |
|---|
| 1280 | /// function. |
|---|
| 1281 | template<typename M> |
|---|
| 1282 | class AbsMap : public MapBase<typename M::Key, typename M::Value> { |
|---|
| 1283 | const M &_m; |
|---|
| 1284 | public: |
|---|
| 1285 | typedef MapBase<typename M::Key, typename M::Value> Parent; |
|---|
| 1286 | typedef typename Parent::Key Key; |
|---|
| 1287 | typedef typename Parent::Value Value; |
|---|
| 1288 | |
|---|
| 1289 | /// Constructor |
|---|
| 1290 | AbsMap(const M &m) : _m(m) {} |
|---|
| 1291 | /// \e |
|---|
| 1292 | Value operator[](const Key &k) const { |
|---|
| 1293 | Value tmp = _m[k]; |
|---|
| 1294 | return tmp >= 0 ? tmp : -tmp; |
|---|
| 1295 | } |
|---|
| 1296 | |
|---|
| 1297 | }; |
|---|
| 1298 | |
|---|
| 1299 | /// Returns an \c AbsMap class |
|---|
| 1300 | |
|---|
| 1301 | /// This function just returns an \c AbsMap class. |
|---|
| 1302 | /// |
|---|
| 1303 | /// For example, if \c m is a map with \c double values, then |
|---|
| 1304 | /// <tt>absMap(m)[x]</tt> will be equal to <tt>m[x]</tt> if |
|---|
| 1305 | /// it is positive or zero and <tt>-m[x]</tt> if <tt>m[x]</tt> is |
|---|
| 1306 | /// negative. |
|---|
| 1307 | /// |
|---|
| 1308 | /// \relates AbsMap |
|---|
| 1309 | template<typename M> |
|---|
| 1310 | inline AbsMap<M> absMap(const M &m) { |
|---|
| 1311 | return AbsMap<M>(m); |
|---|
| 1312 | } |
|---|
| 1313 | |
|---|
| 1314 | /// @} |
|---|
| 1315 | |
|---|
| 1316 | // Logical maps and map adaptors: |
|---|
| 1317 | |
|---|
| 1318 | /// \addtogroup maps |
|---|
| 1319 | /// @{ |
|---|
| 1320 | |
|---|
| 1321 | /// Constant \c true map. |
|---|
| 1322 | |
|---|
| 1323 | /// This \ref concepts::ReadMap "read-only map" assigns \c true to |
|---|
| 1324 | /// each key. |
|---|
| 1325 | /// |
|---|
| 1326 | /// Note that |
|---|
| 1327 | /// \code |
|---|
| 1328 | /// TrueMap<K> tm; |
|---|
| 1329 | /// \endcode |
|---|
| 1330 | /// is equivalent to |
|---|
| 1331 | /// \code |
|---|
| 1332 | /// ConstMap<K,bool> tm(true); |
|---|
| 1333 | /// \endcode |
|---|
| 1334 | /// |
|---|
| 1335 | /// \sa FalseMap |
|---|
| 1336 | /// \sa ConstMap |
|---|
| 1337 | template <typename K> |
|---|
| 1338 | class TrueMap : public MapBase<K, bool> { |
|---|
| 1339 | public: |
|---|
| 1340 | typedef MapBase<K, bool> Parent; |
|---|
| 1341 | typedef typename Parent::Key Key; |
|---|
| 1342 | typedef typename Parent::Value Value; |
|---|
| 1343 | |
|---|
| 1344 | /// Gives back \c true. |
|---|
| 1345 | Value operator[](const Key&) const { return true; } |
|---|
| 1346 | }; |
|---|
| 1347 | |
|---|
| 1348 | /// Returns a \c TrueMap class |
|---|
| 1349 | |
|---|
| 1350 | /// This function just returns a \c TrueMap class. |
|---|
| 1351 | /// \relates TrueMap |
|---|
| 1352 | template<typename K> |
|---|
| 1353 | inline TrueMap<K> trueMap() { |
|---|
| 1354 | return TrueMap<K>(); |
|---|
| 1355 | } |
|---|
| 1356 | |
|---|
| 1357 | |
|---|
| 1358 | /// Constant \c false map. |
|---|
| 1359 | |
|---|
| 1360 | /// This \ref concepts::ReadMap "read-only map" assigns \c false to |
|---|
| 1361 | /// each key. |
|---|
| 1362 | /// |
|---|
| 1363 | /// Note that |
|---|
| 1364 | /// \code |
|---|
| 1365 | /// FalseMap<K> fm; |
|---|
| 1366 | /// \endcode |
|---|
| 1367 | /// is equivalent to |
|---|
| 1368 | /// \code |
|---|
| 1369 | /// ConstMap<K,bool> fm(false); |
|---|
| 1370 | /// \endcode |
|---|
| 1371 | /// |
|---|
| 1372 | /// \sa TrueMap |
|---|
| 1373 | /// \sa ConstMap |
|---|
| 1374 | template <typename K> |
|---|
| 1375 | class FalseMap : public MapBase<K, bool> { |
|---|
| 1376 | public: |
|---|
| 1377 | typedef MapBase<K, bool> Parent; |
|---|
| 1378 | typedef typename Parent::Key Key; |
|---|
| 1379 | typedef typename Parent::Value Value; |
|---|
| 1380 | |
|---|
| 1381 | /// Gives back \c false. |
|---|
| 1382 | Value operator[](const Key&) const { return false; } |
|---|
| 1383 | }; |
|---|
| 1384 | |
|---|
| 1385 | /// Returns a \c FalseMap class |
|---|
| 1386 | |
|---|
| 1387 | /// This function just returns a \c FalseMap class. |
|---|
| 1388 | /// \relates FalseMap |
|---|
| 1389 | template<typename K> |
|---|
| 1390 | inline FalseMap<K> falseMap() { |
|---|
| 1391 | return FalseMap<K>(); |
|---|
| 1392 | } |
|---|
| 1393 | |
|---|
| 1394 | /// @} |
|---|
| 1395 | |
|---|
| 1396 | /// \addtogroup map_adaptors |
|---|
| 1397 | /// @{ |
|---|
| 1398 | |
|---|
| 1399 | /// Logical 'and' of two maps |
|---|
| 1400 | |
|---|
| 1401 | /// This \ref concepts::ReadMap "read-only map" returns the logical |
|---|
| 1402 | /// 'and' of the values of the two given maps. |
|---|
| 1403 | /// Its \c Key type is inherited from \c M1 and its \c Value type is |
|---|
| 1404 | /// \c bool. \c M2::Key must be convertible to \c M1::Key. |
|---|
| 1405 | /// |
|---|
| 1406 | /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
|---|
| 1407 | /// \code |
|---|
| 1408 | /// AndMap<M1,M2> am(m1,m2); |
|---|
| 1409 | /// \endcode |
|---|
| 1410 | /// <tt>am[x]</tt> will be equal to <tt>m1[x]&&m2[x]</tt>. |
|---|
| 1411 | /// |
|---|
| 1412 | /// The simplest way of using this map is through the andMap() |
|---|
| 1413 | /// function. |
|---|
| 1414 | /// |
|---|
| 1415 | /// \sa OrMap |
|---|
| 1416 | /// \sa NotMap, NotWriteMap |
|---|
| 1417 | template<typename M1, typename M2> |
|---|
| 1418 | class AndMap : public MapBase<typename M1::Key, bool> { |
|---|
| 1419 | const M1 &_m1; |
|---|
| 1420 | const M2 &_m2; |
|---|
| 1421 | public: |
|---|
| 1422 | typedef MapBase<typename M1::Key, bool> Parent; |
|---|
| 1423 | typedef typename Parent::Key Key; |
|---|
| 1424 | typedef typename Parent::Value Value; |
|---|
| 1425 | |
|---|
| 1426 | /// Constructor |
|---|
| 1427 | AndMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
|---|
| 1428 | /// \e |
|---|
| 1429 | Value operator[](const Key &k) const { return _m1[k]&&_m2[k]; } |
|---|
| 1430 | }; |
|---|
| 1431 | |
|---|
| 1432 | /// Returns an \c AndMap class |
|---|
| 1433 | |
|---|
| 1434 | /// This function just returns an \c AndMap class. |
|---|
| 1435 | /// |
|---|
| 1436 | /// For example, if \c m1 and \c m2 are both maps with \c bool values, |
|---|
| 1437 | /// then <tt>andMap(m1,m2)[x]</tt> will be equal to |
|---|
| 1438 | /// <tt>m1[x]&&m2[x]</tt>. |
|---|
| 1439 | /// |
|---|
| 1440 | /// \relates AndMap |
|---|
| 1441 | template<typename M1, typename M2> |
|---|
| 1442 | inline AndMap<M1, M2> andMap(const M1 &m1, const M2 &m2) { |
|---|
| 1443 | return AndMap<M1, M2>(m1,m2); |
|---|
| 1444 | } |
|---|
| 1445 | |
|---|
| 1446 | |
|---|
| 1447 | /// Logical 'or' of two maps |
|---|
| 1448 | |
|---|
| 1449 | /// This \ref concepts::ReadMap "read-only map" returns the logical |
|---|
| 1450 | /// 'or' of the values of the two given maps. |
|---|
| 1451 | /// Its \c Key type is inherited from \c M1 and its \c Value type is |
|---|
| 1452 | /// \c bool. \c M2::Key must be convertible to \c M1::Key. |
|---|
| 1453 | /// |
|---|
| 1454 | /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
|---|
| 1455 | /// \code |
|---|
| 1456 | /// OrMap<M1,M2> om(m1,m2); |
|---|
| 1457 | /// \endcode |
|---|
| 1458 | /// <tt>om[x]</tt> will be equal to <tt>m1[x]||m2[x]</tt>. |
|---|
| 1459 | /// |
|---|
| 1460 | /// The simplest way of using this map is through the orMap() |
|---|
| 1461 | /// function. |
|---|
| 1462 | /// |
|---|
| 1463 | /// \sa AndMap |
|---|
| 1464 | /// \sa NotMap, NotWriteMap |
|---|
| 1465 | template<typename M1, typename M2> |
|---|
| 1466 | class OrMap : public MapBase<typename M1::Key, bool> { |
|---|
| 1467 | const M1 &_m1; |
|---|
| 1468 | const M2 &_m2; |
|---|
| 1469 | public: |
|---|
| 1470 | typedef MapBase<typename M1::Key, bool> Parent; |
|---|
| 1471 | typedef typename Parent::Key Key; |
|---|
| 1472 | typedef typename Parent::Value Value; |
|---|
| 1473 | |
|---|
| 1474 | /// Constructor |
|---|
| 1475 | OrMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
|---|
| 1476 | /// \e |
|---|
| 1477 | Value operator[](const Key &k) const { return _m1[k]||_m2[k]; } |
|---|
| 1478 | }; |
|---|
| 1479 | |
|---|
| 1480 | /// Returns an \c OrMap class |
|---|
| 1481 | |
|---|
| 1482 | /// This function just returns an \c OrMap class. |
|---|
| 1483 | /// |
|---|
| 1484 | /// For example, if \c m1 and \c m2 are both maps with \c bool values, |
|---|
| 1485 | /// then <tt>orMap(m1,m2)[x]</tt> will be equal to |
|---|
| 1486 | /// <tt>m1[x]||m2[x]</tt>. |
|---|
| 1487 | /// |
|---|
| 1488 | /// \relates OrMap |
|---|
| 1489 | template<typename M1, typename M2> |
|---|
| 1490 | inline OrMap<M1, M2> orMap(const M1 &m1, const M2 &m2) { |
|---|
| 1491 | return OrMap<M1, M2>(m1,m2); |
|---|
| 1492 | } |
|---|
| 1493 | |
|---|
| 1494 | |
|---|
| 1495 | /// Logical 'not' of a map |
|---|
| 1496 | |
|---|
| 1497 | /// This \ref concepts::ReadMap "read-only map" returns the logical |
|---|
| 1498 | /// negation of the values of the given map. |
|---|
| 1499 | /// Its \c Key is inherited from \c M and its \c Value is \c bool. |
|---|
| 1500 | /// |
|---|
| 1501 | /// The simplest way of using this map is through the notMap() |
|---|
| 1502 | /// function. |
|---|
| 1503 | /// |
|---|
| 1504 | /// \sa NotWriteMap |
|---|
| 1505 | template <typename M> |
|---|
| 1506 | class NotMap : public MapBase<typename M::Key, bool> { |
|---|
| 1507 | const M &_m; |
|---|
| 1508 | public: |
|---|
| 1509 | typedef MapBase<typename M::Key, bool> Parent; |
|---|
| 1510 | typedef typename Parent::Key Key; |
|---|
| 1511 | typedef typename Parent::Value Value; |
|---|
| 1512 | |
|---|
| 1513 | /// Constructor |
|---|
| 1514 | NotMap(const M &m) : _m(m) {} |
|---|
| 1515 | /// \e |
|---|
| 1516 | Value operator[](const Key &k) const { return !_m[k]; } |
|---|
| 1517 | }; |
|---|
| 1518 | |
|---|
| 1519 | /// Logical 'not' of a map (read-write version) |
|---|
| 1520 | |
|---|
| 1521 | /// This \ref concepts::ReadWriteMap "read-write map" returns the |
|---|
| 1522 | /// logical negation of the values of the given map. |
|---|
| 1523 | /// Its \c Key is inherited from \c M and its \c Value is \c bool. |
|---|
| 1524 | /// It makes also possible to write the map. When a value is set, |
|---|
| 1525 | /// the opposite value is set to the original map. |
|---|
| 1526 | /// |
|---|
| 1527 | /// The simplest way of using this map is through the notWriteMap() |
|---|
| 1528 | /// function. |
|---|
| 1529 | /// |
|---|
| 1530 | /// \sa NotMap |
|---|
| 1531 | template <typename M> |
|---|
| 1532 | class NotWriteMap : public MapBase<typename M::Key, bool> { |
|---|
| 1533 | M &_m; |
|---|
| 1534 | public: |
|---|
| 1535 | typedef MapBase<typename M::Key, bool> Parent; |
|---|
| 1536 | typedef typename Parent::Key Key; |
|---|
| 1537 | typedef typename Parent::Value Value; |
|---|
| 1538 | |
|---|
| 1539 | /// Constructor |
|---|
| 1540 | NotWriteMap(M &m) : _m(m) {} |
|---|
| 1541 | /// \e |
|---|
| 1542 | Value operator[](const Key &k) const { return !_m[k]; } |
|---|
| 1543 | /// \e |
|---|
| 1544 | void set(const Key &k, bool v) { _m.set(k, !v); } |
|---|
| 1545 | }; |
|---|
| 1546 | |
|---|
| 1547 | /// Returns a \c NotMap class |
|---|
| 1548 | |
|---|
| 1549 | /// This function just returns a \c NotMap class. |
|---|
| 1550 | /// |
|---|
| 1551 | /// For example, if \c m is a map with \c bool values, then |
|---|
| 1552 | /// <tt>notMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>. |
|---|
| 1553 | /// |
|---|
| 1554 | /// \relates NotMap |
|---|
| 1555 | template <typename M> |
|---|
| 1556 | inline NotMap<M> notMap(const M &m) { |
|---|
| 1557 | return NotMap<M>(m); |
|---|
| 1558 | } |
|---|
| 1559 | |
|---|
| 1560 | /// Returns a \c NotWriteMap class |
|---|
| 1561 | |
|---|
| 1562 | /// This function just returns a \c NotWriteMap class. |
|---|
| 1563 | /// |
|---|
| 1564 | /// For example, if \c m is a map with \c bool values, then |
|---|
| 1565 | /// <tt>notWriteMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>. |
|---|
| 1566 | /// Moreover it makes also possible to write the map. |
|---|
| 1567 | /// |
|---|
| 1568 | /// \relates NotWriteMap |
|---|
| 1569 | template <typename M> |
|---|
| 1570 | inline NotWriteMap<M> notWriteMap(M &m) { |
|---|
| 1571 | return NotWriteMap<M>(m); |
|---|
| 1572 | } |
|---|
| 1573 | |
|---|
| 1574 | |
|---|
| 1575 | /// Combination of two maps using the \c == operator |
|---|
| 1576 | |
|---|
| 1577 | /// This \ref concepts::ReadMap "read-only map" assigns \c true to |
|---|
| 1578 | /// the keys for which the corresponding values of the two maps are |
|---|
| 1579 | /// equal. |
|---|
| 1580 | /// Its \c Key type is inherited from \c M1 and its \c Value type is |
|---|
| 1581 | /// \c bool. \c M2::Key must be convertible to \c M1::Key. |
|---|
| 1582 | /// |
|---|
| 1583 | /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
|---|
| 1584 | /// \code |
|---|
| 1585 | /// EqualMap<M1,M2> em(m1,m2); |
|---|
| 1586 | /// \endcode |
|---|
| 1587 | /// <tt>em[x]</tt> will be equal to <tt>m1[x]==m2[x]</tt>. |
|---|
| 1588 | /// |
|---|
| 1589 | /// The simplest way of using this map is through the equalMap() |
|---|
| 1590 | /// function. |
|---|
| 1591 | /// |
|---|
| 1592 | /// \sa LessMap |
|---|
| 1593 | template<typename M1, typename M2> |
|---|
| 1594 | class EqualMap : public MapBase<typename M1::Key, bool> { |
|---|
| 1595 | const M1 &_m1; |
|---|
| 1596 | const M2 &_m2; |
|---|
| 1597 | public: |
|---|
| 1598 | typedef MapBase<typename M1::Key, bool> Parent; |
|---|
| 1599 | typedef typename Parent::Key Key; |
|---|
| 1600 | typedef typename Parent::Value Value; |
|---|
| 1601 | |
|---|
| 1602 | /// Constructor |
|---|
| 1603 | EqualMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
|---|
| 1604 | /// \e |
|---|
| 1605 | Value operator[](const Key &k) const { return _m1[k]==_m2[k]; } |
|---|
| 1606 | }; |
|---|
| 1607 | |
|---|
| 1608 | /// Returns an \c EqualMap class |
|---|
| 1609 | |
|---|
| 1610 | /// This function just returns an \c EqualMap class. |
|---|
| 1611 | /// |
|---|
| 1612 | /// For example, if \c m1 and \c m2 are maps with keys and values of |
|---|
| 1613 | /// the same type, then <tt>equalMap(m1,m2)[x]</tt> will be equal to |
|---|
| 1614 | /// <tt>m1[x]==m2[x]</tt>. |
|---|
| 1615 | /// |
|---|
| 1616 | /// \relates EqualMap |
|---|
| 1617 | template<typename M1, typename M2> |
|---|
| 1618 | inline EqualMap<M1, M2> equalMap(const M1 &m1, const M2 &m2) { |
|---|
| 1619 | return EqualMap<M1, M2>(m1,m2); |
|---|
| 1620 | } |
|---|
| 1621 | |
|---|
| 1622 | |
|---|
| 1623 | /// Combination of two maps using the \c < operator |
|---|
| 1624 | |
|---|
| 1625 | /// This \ref concepts::ReadMap "read-only map" assigns \c true to |
|---|
| 1626 | /// the keys for which the corresponding value of the first map is |
|---|
| 1627 | /// less then the value of the second map. |
|---|
| 1628 | /// Its \c Key type is inherited from \c M1 and its \c Value type is |
|---|
| 1629 | /// \c bool. \c M2::Key must be convertible to \c M1::Key. |
|---|
| 1630 | /// |
|---|
| 1631 | /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
|---|
| 1632 | /// \code |
|---|
| 1633 | /// LessMap<M1,M2> lm(m1,m2); |
|---|
| 1634 | /// \endcode |
|---|
| 1635 | /// <tt>lm[x]</tt> will be equal to <tt>m1[x]<m2[x]</tt>. |
|---|
| 1636 | /// |
|---|
| 1637 | /// The simplest way of using this map is through the lessMap() |
|---|
| 1638 | /// function. |
|---|
| 1639 | /// |
|---|
| 1640 | /// \sa EqualMap |
|---|
| 1641 | template<typename M1, typename M2> |
|---|
| 1642 | class LessMap : public MapBase<typename M1::Key, bool> { |
|---|
| 1643 | const M1 &_m1; |
|---|
| 1644 | const M2 &_m2; |
|---|
| 1645 | public: |
|---|
| 1646 | typedef MapBase<typename M1::Key, bool> Parent; |
|---|
| 1647 | typedef typename Parent::Key Key; |
|---|
| 1648 | typedef typename Parent::Value Value; |
|---|
| 1649 | |
|---|
| 1650 | /// Constructor |
|---|
| 1651 | LessMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
|---|
| 1652 | /// \e |
|---|
| 1653 | Value operator[](const Key &k) const { return _m1[k]<_m2[k]; } |
|---|
| 1654 | }; |
|---|
| 1655 | |
|---|
| 1656 | /// Returns an \c LessMap class |
|---|
| 1657 | |
|---|
| 1658 | /// This function just returns an \c LessMap class. |
|---|
| 1659 | /// |
|---|
| 1660 | /// For example, if \c m1 and \c m2 are maps with keys and values of |
|---|
| 1661 | /// the same type, then <tt>lessMap(m1,m2)[x]</tt> will be equal to |
|---|
| 1662 | /// <tt>m1[x]<m2[x]</tt>. |
|---|
| 1663 | /// |
|---|
| 1664 | /// \relates LessMap |
|---|
| 1665 | template<typename M1, typename M2> |
|---|
| 1666 | inline LessMap<M1, M2> lessMap(const M1 &m1, const M2 &m2) { |
|---|
| 1667 | return LessMap<M1, M2>(m1,m2); |
|---|
| 1668 | } |
|---|
| 1669 | |
|---|
| 1670 | namespace _maps_bits { |
|---|
| 1671 | |
|---|
| 1672 | template <typename _Iterator, typename Enable = void> |
|---|
| 1673 | struct IteratorTraits { |
|---|
| 1674 | typedef typename std::iterator_traits<_Iterator>::value_type Value; |
|---|
| 1675 | }; |
|---|
| 1676 | |
|---|
| 1677 | template <typename _Iterator> |
|---|
| 1678 | struct IteratorTraits<_Iterator, |
|---|
| 1679 | typename exists<typename _Iterator::container_type>::type> |
|---|
| 1680 | { |
|---|
| 1681 | typedef typename _Iterator::container_type::value_type Value; |
|---|
| 1682 | }; |
|---|
| 1683 | |
|---|
| 1684 | } |
|---|
| 1685 | |
|---|
| 1686 | /// @} |
|---|
| 1687 | |
|---|
| 1688 | /// \addtogroup maps |
|---|
| 1689 | /// @{ |
|---|
| 1690 | |
|---|
| 1691 | /// \brief Writable bool map for logging each \c true assigned element |
|---|
| 1692 | /// |
|---|
| 1693 | /// A \ref concepts::WriteMap "writable" bool map for logging |
|---|
| 1694 | /// each \c true assigned element, i.e it copies subsequently each |
|---|
| 1695 | /// keys set to \c true to the given iterator. |
|---|
| 1696 | /// The most important usage of it is storing certain nodes or arcs |
|---|
| 1697 | /// that were marked \c true by an algorithm. |
|---|
| 1698 | /// |
|---|
| 1699 | /// There are several algorithms that provide solutions through bool |
|---|
| 1700 | /// maps and most of them assign \c true at most once for each key. |
|---|
| 1701 | /// In these cases it is a natural request to store each \c true |
|---|
| 1702 | /// assigned elements (in order of the assignment), which can be |
|---|
| 1703 | /// easily done with LoggerBoolMap. |
|---|
| 1704 | /// |
|---|
| 1705 | /// The simplest way of using this map is through the loggerBoolMap() |
|---|
| 1706 | /// function. |
|---|
| 1707 | /// |
|---|
| 1708 | /// \tparam It The type of the iterator. |
|---|
| 1709 | /// \tparam Ke The key type of the map. The default value set |
|---|
| 1710 | /// according to the iterator type should work in most cases. |
|---|
| 1711 | /// |
|---|
| 1712 | /// \note The container of the iterator must contain enough space |
|---|
| 1713 | /// for the elements or the iterator should be an inserter iterator. |
|---|
| 1714 | #ifdef DOXYGEN |
|---|
| 1715 | template <typename It, typename Ke> |
|---|
| 1716 | #else |
|---|
| 1717 | template <typename It, |
|---|
| 1718 | typename Ke=typename _maps_bits::IteratorTraits<It>::Value> |
|---|
| 1719 | #endif |
|---|
| 1720 | class LoggerBoolMap { |
|---|
| 1721 | public: |
|---|
| 1722 | typedef It Iterator; |
|---|
| 1723 | |
|---|
| 1724 | typedef Ke Key; |
|---|
| 1725 | typedef bool Value; |
|---|
| 1726 | |
|---|
| 1727 | /// Constructor |
|---|
| 1728 | LoggerBoolMap(Iterator it) |
|---|
| 1729 | : _begin(it), _end(it) {} |
|---|
| 1730 | |
|---|
| 1731 | /// Gives back the given iterator set for the first key |
|---|
| 1732 | Iterator begin() const { |
|---|
| 1733 | return _begin; |
|---|
| 1734 | } |
|---|
| 1735 | |
|---|
| 1736 | /// Gives back the the 'after the last' iterator |
|---|
| 1737 | Iterator end() const { |
|---|
| 1738 | return _end; |
|---|
| 1739 | } |
|---|
| 1740 | |
|---|
| 1741 | /// The set function of the map |
|---|
| 1742 | void set(const Key& key, Value value) { |
|---|
| 1743 | if (value) { |
|---|
| 1744 | *_end++ = key; |
|---|
| 1745 | } |
|---|
| 1746 | } |
|---|
| 1747 | |
|---|
| 1748 | private: |
|---|
| 1749 | Iterator _begin; |
|---|
| 1750 | Iterator _end; |
|---|
| 1751 | }; |
|---|
| 1752 | |
|---|
| 1753 | /// Returns a \c LoggerBoolMap class |
|---|
| 1754 | |
|---|
| 1755 | /// This function just returns a \c LoggerBoolMap class. |
|---|
| 1756 | /// |
|---|
| 1757 | /// The most important usage of it is storing certain nodes or arcs |
|---|
| 1758 | /// that were marked \c true by an algorithm. |
|---|
| 1759 | /// For example it makes easier to store the nodes in the processing |
|---|
| 1760 | /// order of Dfs algorithm, as the following examples show. |
|---|
| 1761 | /// \code |
|---|
| 1762 | /// std::vector<Node> v; |
|---|
| 1763 | /// dfs(g,s).processedMap(loggerBoolMap(std::back_inserter(v))).run(); |
|---|
| 1764 | /// \endcode |
|---|
| 1765 | /// \code |
|---|
| 1766 | /// std::vector<Node> v(countNodes(g)); |
|---|
| 1767 | /// dfs(g,s).processedMap(loggerBoolMap(v.begin())).run(); |
|---|
| 1768 | /// \endcode |
|---|
| 1769 | /// |
|---|
| 1770 | /// \note The container of the iterator must contain enough space |
|---|
| 1771 | /// for the elements or the iterator should be an inserter iterator. |
|---|
| 1772 | /// |
|---|
| 1773 | /// \note LoggerBoolMap is just \ref concepts::WriteMap "writable", so |
|---|
| 1774 | /// it cannot be used when a readable map is needed, for example as |
|---|
| 1775 | /// \c ReachedMap for \c Bfs, \c Dfs and \c Dijkstra algorithms. |
|---|
| 1776 | /// |
|---|
| 1777 | /// \relates LoggerBoolMap |
|---|
| 1778 | template<typename Iterator> |
|---|
| 1779 | inline LoggerBoolMap<Iterator> loggerBoolMap(Iterator it) { |
|---|
| 1780 | return LoggerBoolMap<Iterator>(it); |
|---|
| 1781 | } |
|---|
| 1782 | |
|---|
| 1783 | /// @} |
|---|
| 1784 | |
|---|
| 1785 | /// \addtogroup graph_maps |
|---|
| 1786 | /// @{ |
|---|
| 1787 | |
|---|
| 1788 | /// Provides an immutable and unique id for each item in the graph. |
|---|
| 1789 | |
|---|
| 1790 | /// The IdMap class provides a unique and immutable id for each item of the |
|---|
| 1791 | /// same type (e.g. node) in the graph. This id is <ul><li>\b unique: |
|---|
| 1792 | /// different items (nodes) get different ids <li>\b immutable: the id of an |
|---|
| 1793 | /// item (node) does not change (even if you delete other nodes). </ul> |
|---|
| 1794 | /// Through this map you get access (i.e. can read) the inner id values of |
|---|
| 1795 | /// the items stored in the graph. This map can be inverted with its member |
|---|
| 1796 | /// class \c InverseMap or with the \c operator() member. |
|---|
| 1797 | /// |
|---|
| 1798 | template <typename _Graph, typename _Item> |
|---|
| 1799 | class IdMap { |
|---|
| 1800 | public: |
|---|
| 1801 | typedef _Graph Graph; |
|---|
| 1802 | typedef int Value; |
|---|
| 1803 | typedef _Item Item; |
|---|
| 1804 | typedef _Item Key; |
|---|
| 1805 | |
|---|
| 1806 | /// \brief Constructor. |
|---|
| 1807 | /// |
|---|
| 1808 | /// Constructor of the map. |
|---|
| 1809 | explicit IdMap(const Graph& graph) : _graph(&graph) {} |
|---|
| 1810 | |
|---|
| 1811 | /// \brief Gives back the \e id of the item. |
|---|
| 1812 | /// |
|---|
| 1813 | /// Gives back the immutable and unique \e id of the item. |
|---|
| 1814 | int operator[](const Item& item) const { return _graph->id(item);} |
|---|
| 1815 | |
|---|
| 1816 | /// \brief Gives back the item by its id. |
|---|
| 1817 | /// |
|---|
| 1818 | /// Gives back the item by its id. |
|---|
| 1819 | Item operator()(int id) { return _graph->fromId(id, Item()); } |
|---|
| 1820 | |
|---|
| 1821 | private: |
|---|
| 1822 | const Graph* _graph; |
|---|
| 1823 | |
|---|
| 1824 | public: |
|---|
| 1825 | |
|---|
| 1826 | /// \brief The class represents the inverse of its owner (IdMap). |
|---|
| 1827 | /// |
|---|
| 1828 | /// The class represents the inverse of its owner (IdMap). |
|---|
| 1829 | /// \see inverse() |
|---|
| 1830 | class InverseMap { |
|---|
| 1831 | public: |
|---|
| 1832 | |
|---|
| 1833 | /// \brief Constructor. |
|---|
| 1834 | /// |
|---|
| 1835 | /// Constructor for creating an id-to-item map. |
|---|
| 1836 | explicit InverseMap(const Graph& graph) : _graph(&graph) {} |
|---|
| 1837 | |
|---|
| 1838 | /// \brief Constructor. |
|---|
| 1839 | /// |
|---|
| 1840 | /// Constructor for creating an id-to-item map. |
|---|
| 1841 | explicit InverseMap(const IdMap& map) : _graph(map._graph) {} |
|---|
| 1842 | |
|---|
| 1843 | /// \brief Gives back the given item from its id. |
|---|
| 1844 | /// |
|---|
| 1845 | /// Gives back the given item from its id. |
|---|
| 1846 | /// |
|---|
| 1847 | Item operator[](int id) const { return _graph->fromId(id, Item());} |
|---|
| 1848 | |
|---|
| 1849 | private: |
|---|
| 1850 | const Graph* _graph; |
|---|
| 1851 | }; |
|---|
| 1852 | |
|---|
| 1853 | /// \brief Gives back the inverse of the map. |
|---|
| 1854 | /// |
|---|
| 1855 | /// Gives back the inverse of the IdMap. |
|---|
| 1856 | InverseMap inverse() const { return InverseMap(*_graph);} |
|---|
| 1857 | |
|---|
| 1858 | }; |
|---|
| 1859 | |
|---|
| 1860 | |
|---|
| 1861 | /// \brief General invertable graph-map type. |
|---|
| 1862 | |
|---|
| 1863 | /// This type provides simple invertable graph-maps. |
|---|
| 1864 | /// The InvertableMap wraps an arbitrary ReadWriteMap |
|---|
| 1865 | /// and if a key is set to a new value then store it |
|---|
| 1866 | /// in the inverse map. |
|---|
| 1867 | /// |
|---|
| 1868 | /// The values of the map can be accessed |
|---|
| 1869 | /// with stl compatible forward iterator. |
|---|
| 1870 | /// |
|---|
| 1871 | /// \tparam _Graph The graph type. |
|---|
| 1872 | /// \tparam _Item The item type of the graph. |
|---|
| 1873 | /// \tparam _Value The value type of the map. |
|---|
| 1874 | /// |
|---|
| 1875 | /// \see IterableValueMap |
|---|
| 1876 | template <typename _Graph, typename _Item, typename _Value> |
|---|
| 1877 | class InvertableMap |
|---|
| 1878 | : protected ItemSetTraits<_Graph, _Item>::template Map<_Value>::Type { |
|---|
| 1879 | private: |
|---|
| 1880 | |
|---|
| 1881 | typedef typename ItemSetTraits<_Graph, _Item>:: |
|---|
| 1882 | template Map<_Value>::Type Map; |
|---|
| 1883 | typedef _Graph Graph; |
|---|
| 1884 | |
|---|
| 1885 | typedef std::map<_Value, _Item> Container; |
|---|
| 1886 | Container _inv_map; |
|---|
| 1887 | |
|---|
| 1888 | public: |
|---|
| 1889 | |
|---|
| 1890 | /// The key type of InvertableMap (Node, Arc, Edge). |
|---|
| 1891 | typedef typename Map::Key Key; |
|---|
| 1892 | /// The value type of the InvertableMap. |
|---|
| 1893 | typedef typename Map::Value Value; |
|---|
| 1894 | |
|---|
| 1895 | /// \brief Constructor. |
|---|
| 1896 | /// |
|---|
| 1897 | /// Construct a new InvertableMap for the graph. |
|---|
| 1898 | /// |
|---|
| 1899 | explicit InvertableMap(const Graph& graph) : Map(graph) {} |
|---|
| 1900 | |
|---|
| 1901 | /// \brief Forward iterator for values. |
|---|
| 1902 | /// |
|---|
| 1903 | /// This iterator is an stl compatible forward |
|---|
| 1904 | /// iterator on the values of the map. The values can |
|---|
| 1905 | /// be accessed in the [beginValue, endValue) range. |
|---|
| 1906 | /// |
|---|
| 1907 | class ValueIterator |
|---|
| 1908 | : public std::iterator<std::forward_iterator_tag, Value> { |
|---|
| 1909 | friend class InvertableMap; |
|---|
| 1910 | private: |
|---|
| 1911 | ValueIterator(typename Container::const_iterator _it) |
|---|
| 1912 | : it(_it) {} |
|---|
| 1913 | public: |
|---|
| 1914 | |
|---|
| 1915 | ValueIterator() {} |
|---|
| 1916 | |
|---|
| 1917 | ValueIterator& operator++() { ++it; return *this; } |
|---|
| 1918 | ValueIterator operator++(int) { |
|---|
| 1919 | ValueIterator tmp(*this); |
|---|
| 1920 | operator++(); |
|---|
| 1921 | return tmp; |
|---|
| 1922 | } |
|---|
| 1923 | |
|---|
| 1924 | const Value& operator*() const { return it->first; } |
|---|
| 1925 | const Value* operator->() const { return &(it->first); } |
|---|
| 1926 | |
|---|
| 1927 | bool operator==(ValueIterator jt) const { return it == jt.it; } |
|---|
| 1928 | bool operator!=(ValueIterator jt) const { return it != jt.it; } |
|---|
| 1929 | |
|---|
| 1930 | private: |
|---|
| 1931 | typename Container::const_iterator it; |
|---|
| 1932 | }; |
|---|
| 1933 | |
|---|
| 1934 | /// \brief Returns an iterator to the first value. |
|---|
| 1935 | /// |
|---|
| 1936 | /// Returns an stl compatible iterator to the |
|---|
| 1937 | /// first value of the map. The values of the |
|---|
| 1938 | /// map can be accessed in the [beginValue, endValue) |
|---|
| 1939 | /// range. |
|---|
| 1940 | ValueIterator beginValue() const { |
|---|
| 1941 | return ValueIterator(_inv_map.begin()); |
|---|
| 1942 | } |
|---|
| 1943 | |
|---|
| 1944 | /// \brief Returns an iterator after the last value. |
|---|
| 1945 | /// |
|---|
| 1946 | /// Returns an stl compatible iterator after the |
|---|
| 1947 | /// last value of the map. The values of the |
|---|
| 1948 | /// map can be accessed in the [beginValue, endValue) |
|---|
| 1949 | /// range. |
|---|
| 1950 | ValueIterator endValue() const { |
|---|
| 1951 | return ValueIterator(_inv_map.end()); |
|---|
| 1952 | } |
|---|
| 1953 | |
|---|
| 1954 | /// \brief The setter function of the map. |
|---|
| 1955 | /// |
|---|
| 1956 | /// Sets the mapped value. |
|---|
| 1957 | void set(const Key& key, const Value& val) { |
|---|
| 1958 | Value oldval = Map::operator[](key); |
|---|
| 1959 | typename Container::iterator it = _inv_map.find(oldval); |
|---|
| 1960 | if (it != _inv_map.end() && it->second == key) { |
|---|
| 1961 | _inv_map.erase(it); |
|---|
| 1962 | } |
|---|
| 1963 | _inv_map.insert(make_pair(val, key)); |
|---|
| 1964 | Map::set(key, val); |
|---|
| 1965 | } |
|---|
| 1966 | |
|---|
| 1967 | /// \brief The getter function of the map. |
|---|
| 1968 | /// |
|---|
| 1969 | /// It gives back the value associated with the key. |
|---|
| 1970 | typename MapTraits<Map>::ConstReturnValue |
|---|
| 1971 | operator[](const Key& key) const { |
|---|
| 1972 | return Map::operator[](key); |
|---|
| 1973 | } |
|---|
| 1974 | |
|---|
| 1975 | /// \brief Gives back the item by its value. |
|---|
| 1976 | /// |
|---|
| 1977 | /// Gives back the item by its value. |
|---|
| 1978 | Key operator()(const Value& key) const { |
|---|
| 1979 | typename Container::const_iterator it = _inv_map.find(key); |
|---|
| 1980 | return it != _inv_map.end() ? it->second : INVALID; |
|---|
| 1981 | } |
|---|
| 1982 | |
|---|
| 1983 | protected: |
|---|
| 1984 | |
|---|
| 1985 | /// \brief Erase the key from the map. |
|---|
| 1986 | /// |
|---|
| 1987 | /// Erase the key to the map. It is called by the |
|---|
| 1988 | /// \c AlterationNotifier. |
|---|
| 1989 | virtual void erase(const Key& key) { |
|---|
| 1990 | Value val = Map::operator[](key); |
|---|
| 1991 | typename Container::iterator it = _inv_map.find(val); |
|---|
| 1992 | if (it != _inv_map.end() && it->second == key) { |
|---|
| 1993 | _inv_map.erase(it); |
|---|
| 1994 | } |
|---|
| 1995 | Map::erase(key); |
|---|
| 1996 | } |
|---|
| 1997 | |
|---|
| 1998 | /// \brief Erase more keys from the map. |
|---|
| 1999 | /// |
|---|
| 2000 | /// Erase more keys from the map. It is called by the |
|---|
| 2001 | /// \c AlterationNotifier. |
|---|
| 2002 | virtual void erase(const std::vector<Key>& keys) { |
|---|
| 2003 | for (int i = 0; i < int(keys.size()); ++i) { |
|---|
| 2004 | Value val = Map::operator[](keys[i]); |
|---|
| 2005 | typename Container::iterator it = _inv_map.find(val); |
|---|
| 2006 | if (it != _inv_map.end() && it->second == keys[i]) { |
|---|
| 2007 | _inv_map.erase(it); |
|---|
| 2008 | } |
|---|
| 2009 | } |
|---|
| 2010 | Map::erase(keys); |
|---|
| 2011 | } |
|---|
| 2012 | |
|---|
| 2013 | /// \brief Clear the keys from the map and inverse map. |
|---|
| 2014 | /// |
|---|
| 2015 | /// Clear the keys from the map and inverse map. It is called by the |
|---|
| 2016 | /// \c AlterationNotifier. |
|---|
| 2017 | virtual void clear() { |
|---|
| 2018 | _inv_map.clear(); |
|---|
| 2019 | Map::clear(); |
|---|
| 2020 | } |
|---|
| 2021 | |
|---|
| 2022 | public: |
|---|
| 2023 | |
|---|
| 2024 | /// \brief The inverse map type. |
|---|
| 2025 | /// |
|---|
| 2026 | /// The inverse of this map. The subscript operator of the map |
|---|
| 2027 | /// gives back always the item what was last assigned to the value. |
|---|
| 2028 | class InverseMap { |
|---|
| 2029 | public: |
|---|
| 2030 | /// \brief Constructor of the InverseMap. |
|---|
| 2031 | /// |
|---|
| 2032 | /// Constructor of the InverseMap. |
|---|
| 2033 | explicit InverseMap(const InvertableMap& inverted) |
|---|
| 2034 | : _inverted(inverted) {} |
|---|
| 2035 | |
|---|
| 2036 | /// The value type of the InverseMap. |
|---|
| 2037 | typedef typename InvertableMap::Key Value; |
|---|
| 2038 | /// The key type of the InverseMap. |
|---|
| 2039 | typedef typename InvertableMap::Value Key; |
|---|
| 2040 | |
|---|
| 2041 | /// \brief Subscript operator. |
|---|
| 2042 | /// |
|---|
| 2043 | /// Subscript operator. It gives back always the item |
|---|
| 2044 | /// what was last assigned to the value. |
|---|
| 2045 | Value operator[](const Key& key) const { |
|---|
| 2046 | return _inverted(key); |
|---|
| 2047 | } |
|---|
| 2048 | |
|---|
| 2049 | private: |
|---|
| 2050 | const InvertableMap& _inverted; |
|---|
| 2051 | }; |
|---|
| 2052 | |
|---|
| 2053 | /// \brief It gives back the just readable inverse map. |
|---|
| 2054 | /// |
|---|
| 2055 | /// It gives back the just readable inverse map. |
|---|
| 2056 | InverseMap inverse() const { |
|---|
| 2057 | return InverseMap(*this); |
|---|
| 2058 | } |
|---|
| 2059 | |
|---|
| 2060 | }; |
|---|
| 2061 | |
|---|
| 2062 | /// \brief Provides a mutable, continuous and unique descriptor for each |
|---|
| 2063 | /// item in the graph. |
|---|
| 2064 | /// |
|---|
| 2065 | /// The DescriptorMap class provides a unique and continuous (but mutable) |
|---|
| 2066 | /// descriptor (id) for each item of the same type (e.g. node) in the |
|---|
| 2067 | /// graph. This id is <ul><li>\b unique: different items (nodes) get |
|---|
| 2068 | /// different ids <li>\b continuous: the range of the ids is the set of |
|---|
| 2069 | /// integers between 0 and \c n-1, where \c n is the number of the items of |
|---|
| 2070 | /// this type (e.g. nodes) (so the id of a node can change if you delete an |
|---|
| 2071 | /// other node, i.e. this id is mutable). </ul> This map can be inverted |
|---|
| 2072 | /// with its member class \c InverseMap, or with the \c operator() member. |
|---|
| 2073 | /// |
|---|
| 2074 | /// \tparam _Graph The graph class the \c DescriptorMap belongs to. |
|---|
| 2075 | /// \tparam _Item The Item is the Key of the Map. It may be Node, Arc or |
|---|
| 2076 | /// Edge. |
|---|
| 2077 | template <typename _Graph, typename _Item> |
|---|
| 2078 | class DescriptorMap |
|---|
| 2079 | : protected ItemSetTraits<_Graph, _Item>::template Map<int>::Type { |
|---|
| 2080 | |
|---|
| 2081 | typedef _Item Item; |
|---|
| 2082 | typedef typename ItemSetTraits<_Graph, _Item>::template Map<int>::Type Map; |
|---|
| 2083 | |
|---|
| 2084 | public: |
|---|
| 2085 | /// The graph class of DescriptorMap. |
|---|
| 2086 | typedef _Graph Graph; |
|---|
| 2087 | |
|---|
| 2088 | /// The key type of DescriptorMap (Node, Arc, Edge). |
|---|
| 2089 | typedef typename Map::Key Key; |
|---|
| 2090 | /// The value type of DescriptorMap. |
|---|
| 2091 | typedef typename Map::Value Value; |
|---|
| 2092 | |
|---|
| 2093 | /// \brief Constructor. |
|---|
| 2094 | /// |
|---|
| 2095 | /// Constructor for descriptor map. |
|---|
| 2096 | explicit DescriptorMap(const Graph& _graph) : Map(_graph) { |
|---|
| 2097 | Item it; |
|---|
| 2098 | const typename Map::Notifier* nf = Map::notifier(); |
|---|
| 2099 | for (nf->first(it); it != INVALID; nf->next(it)) { |
|---|
| 2100 | Map::set(it, _inv_map.size()); |
|---|
| 2101 | _inv_map.push_back(it); |
|---|
| 2102 | } |
|---|
| 2103 | } |
|---|
| 2104 | |
|---|
| 2105 | protected: |
|---|
| 2106 | |
|---|
| 2107 | /// \brief Add a new key to the map. |
|---|
| 2108 | /// |
|---|
| 2109 | /// Add a new key to the map. It is called by the |
|---|
| 2110 | /// \c AlterationNotifier. |
|---|
| 2111 | virtual void add(const Item& item) { |
|---|
| 2112 | Map::add(item); |
|---|
| 2113 | Map::set(item, _inv_map.size()); |
|---|
| 2114 | _inv_map.push_back(item); |
|---|
| 2115 | } |
|---|
| 2116 | |
|---|
| 2117 | /// \brief Add more new keys to the map. |
|---|
| 2118 | /// |
|---|
| 2119 | /// Add more new keys to the map. It is called by the |
|---|
| 2120 | /// \c AlterationNotifier. |
|---|
| 2121 | virtual void add(const std::vector<Item>& items) { |
|---|
| 2122 | Map::add(items); |
|---|
| 2123 | for (int i = 0; i < int(items.size()); ++i) { |
|---|
| 2124 | Map::set(items[i], _inv_map.size()); |
|---|
| 2125 | _inv_map.push_back(items[i]); |
|---|
| 2126 | } |
|---|
| 2127 | } |
|---|
| 2128 | |
|---|
| 2129 | /// \brief Erase the key from the map. |
|---|
| 2130 | /// |
|---|
| 2131 | /// Erase the key from the map. It is called by the |
|---|
| 2132 | /// \c AlterationNotifier. |
|---|
| 2133 | virtual void erase(const Item& item) { |
|---|
| 2134 | Map::set(_inv_map.back(), Map::operator[](item)); |
|---|
| 2135 | _inv_map[Map::operator[](item)] = _inv_map.back(); |
|---|
| 2136 | _inv_map.pop_back(); |
|---|
| 2137 | Map::erase(item); |
|---|
| 2138 | } |
|---|
| 2139 | |
|---|
| 2140 | /// \brief Erase more keys from the map. |
|---|
| 2141 | /// |
|---|
| 2142 | /// Erase more keys from the map. It is called by the |
|---|
| 2143 | /// \c AlterationNotifier. |
|---|
| 2144 | virtual void erase(const std::vector<Item>& items) { |
|---|
| 2145 | for (int i = 0; i < int(items.size()); ++i) { |
|---|
| 2146 | Map::set(_inv_map.back(), Map::operator[](items[i])); |
|---|
| 2147 | _inv_map[Map::operator[](items[i])] = _inv_map.back(); |
|---|
| 2148 | _inv_map.pop_back(); |
|---|
| 2149 | } |
|---|
| 2150 | Map::erase(items); |
|---|
| 2151 | } |
|---|
| 2152 | |
|---|
| 2153 | /// \brief Build the unique map. |
|---|
| 2154 | /// |
|---|
| 2155 | /// Build the unique map. It is called by the |
|---|
| 2156 | /// \c AlterationNotifier. |
|---|
| 2157 | virtual void build() { |
|---|
| 2158 | Map::build(); |
|---|
| 2159 | Item it; |
|---|
| 2160 | const typename Map::Notifier* nf = Map::notifier(); |
|---|
| 2161 | for (nf->first(it); it != INVALID; nf->next(it)) { |
|---|
| 2162 | Map::set(it, _inv_map.size()); |
|---|
| 2163 | _inv_map.push_back(it); |
|---|
| 2164 | } |
|---|
| 2165 | } |
|---|
| 2166 | |
|---|
| 2167 | /// \brief Clear the keys from the map. |
|---|
| 2168 | /// |
|---|
| 2169 | /// Clear the keys from the map. It is called by the |
|---|
| 2170 | /// \c AlterationNotifier. |
|---|
| 2171 | virtual void clear() { |
|---|
| 2172 | _inv_map.clear(); |
|---|
| 2173 | Map::clear(); |
|---|
| 2174 | } |
|---|
| 2175 | |
|---|
| 2176 | public: |
|---|
| 2177 | |
|---|
| 2178 | /// \brief Returns the maximal value plus one. |
|---|
| 2179 | /// |
|---|
| 2180 | /// Returns the maximal value plus one in the map. |
|---|
| 2181 | unsigned int size() const { |
|---|
| 2182 | return _inv_map.size(); |
|---|
| 2183 | } |
|---|
| 2184 | |
|---|
| 2185 | /// \brief Swaps the position of the two items in the map. |
|---|
| 2186 | /// |
|---|
| 2187 | /// Swaps the position of the two items in the map. |
|---|
| 2188 | void swap(const Item& p, const Item& q) { |
|---|
| 2189 | int pi = Map::operator[](p); |
|---|
| 2190 | int qi = Map::operator[](q); |
|---|
| 2191 | Map::set(p, qi); |
|---|
| 2192 | _inv_map[qi] = p; |
|---|
| 2193 | Map::set(q, pi); |
|---|
| 2194 | _inv_map[pi] = q; |
|---|
| 2195 | } |
|---|
| 2196 | |
|---|
| 2197 | /// \brief Gives back the \e descriptor of the item. |
|---|
| 2198 | /// |
|---|
| 2199 | /// Gives back the mutable and unique \e descriptor of the map. |
|---|
| 2200 | int operator[](const Item& item) const { |
|---|
| 2201 | return Map::operator[](item); |
|---|
| 2202 | } |
|---|
| 2203 | |
|---|
| 2204 | /// \brief Gives back the item by its descriptor. |
|---|
| 2205 | /// |
|---|
| 2206 | /// Gives back th item by its descriptor. |
|---|
| 2207 | Item operator()(int id) const { |
|---|
| 2208 | return _inv_map[id]; |
|---|
| 2209 | } |
|---|
| 2210 | |
|---|
| 2211 | private: |
|---|
| 2212 | |
|---|
| 2213 | typedef std::vector<Item> Container; |
|---|
| 2214 | Container _inv_map; |
|---|
| 2215 | |
|---|
| 2216 | public: |
|---|
| 2217 | /// \brief The inverse map type of DescriptorMap. |
|---|
| 2218 | /// |
|---|
| 2219 | /// The inverse map type of DescriptorMap. |
|---|
| 2220 | class InverseMap { |
|---|
| 2221 | public: |
|---|
| 2222 | /// \brief Constructor of the InverseMap. |
|---|
| 2223 | /// |
|---|
| 2224 | /// Constructor of the InverseMap. |
|---|
| 2225 | explicit InverseMap(const DescriptorMap& inverted) |
|---|
| 2226 | : _inverted(inverted) {} |
|---|
| 2227 | |
|---|
| 2228 | |
|---|
| 2229 | /// The value type of the InverseMap. |
|---|
| 2230 | typedef typename DescriptorMap::Key Value; |
|---|
| 2231 | /// The key type of the InverseMap. |
|---|
| 2232 | typedef typename DescriptorMap::Value Key; |
|---|
| 2233 | |
|---|
| 2234 | /// \brief Subscript operator. |
|---|
| 2235 | /// |
|---|
| 2236 | /// Subscript operator. It gives back the item |
|---|
| 2237 | /// that the descriptor belongs to currently. |
|---|
| 2238 | Value operator[](const Key& key) const { |
|---|
| 2239 | return _inverted(key); |
|---|
| 2240 | } |
|---|
| 2241 | |
|---|
| 2242 | /// \brief Size of the map. |
|---|
| 2243 | /// |
|---|
| 2244 | /// Returns the size of the map. |
|---|
| 2245 | unsigned int size() const { |
|---|
| 2246 | return _inverted.size(); |
|---|
| 2247 | } |
|---|
| 2248 | |
|---|
| 2249 | private: |
|---|
| 2250 | const DescriptorMap& _inverted; |
|---|
| 2251 | }; |
|---|
| 2252 | |
|---|
| 2253 | /// \brief Gives back the inverse of the map. |
|---|
| 2254 | /// |
|---|
| 2255 | /// Gives back the inverse of the map. |
|---|
| 2256 | const InverseMap inverse() const { |
|---|
| 2257 | return InverseMap(*this); |
|---|
| 2258 | } |
|---|
| 2259 | }; |
|---|
| 2260 | |
|---|
| 2261 | /// \brief Returns the source of the given arc. |
|---|
| 2262 | /// |
|---|
| 2263 | /// The SourceMap gives back the source Node of the given arc. |
|---|
| 2264 | /// \see TargetMap |
|---|
| 2265 | template <typename Digraph> |
|---|
| 2266 | class SourceMap { |
|---|
| 2267 | public: |
|---|
| 2268 | |
|---|
| 2269 | typedef typename Digraph::Node Value; |
|---|
| 2270 | typedef typename Digraph::Arc Key; |
|---|
| 2271 | |
|---|
| 2272 | /// \brief Constructor |
|---|
| 2273 | /// |
|---|
| 2274 | /// Constructor |
|---|
| 2275 | /// \param digraph The digraph that the map belongs to. |
|---|
| 2276 | explicit SourceMap(const Digraph& digraph) : _digraph(digraph) {} |
|---|
| 2277 | |
|---|
| 2278 | /// \brief The subscript operator. |
|---|
| 2279 | /// |
|---|
| 2280 | /// The subscript operator. |
|---|
| 2281 | /// \param arc The arc |
|---|
| 2282 | /// \return The source of the arc |
|---|
| 2283 | Value operator[](const Key& arc) const { |
|---|
| 2284 | return _digraph.source(arc); |
|---|
| 2285 | } |
|---|
| 2286 | |
|---|
| 2287 | private: |
|---|
| 2288 | const Digraph& _digraph; |
|---|
| 2289 | }; |
|---|
| 2290 | |
|---|
| 2291 | /// \brief Returns a \c SourceMap class. |
|---|
| 2292 | /// |
|---|
| 2293 | /// This function just returns an \c SourceMap class. |
|---|
| 2294 | /// \relates SourceMap |
|---|
| 2295 | template <typename Digraph> |
|---|
| 2296 | inline SourceMap<Digraph> sourceMap(const Digraph& digraph) { |
|---|
| 2297 | return SourceMap<Digraph>(digraph); |
|---|
| 2298 | } |
|---|
| 2299 | |
|---|
| 2300 | /// \brief Returns the target of the given arc. |
|---|
| 2301 | /// |
|---|
| 2302 | /// The TargetMap gives back the target Node of the given arc. |
|---|
| 2303 | /// \see SourceMap |
|---|
| 2304 | template <typename Digraph> |
|---|
| 2305 | class TargetMap { |
|---|
| 2306 | public: |
|---|
| 2307 | |
|---|
| 2308 | typedef typename Digraph::Node Value; |
|---|
| 2309 | typedef typename Digraph::Arc Key; |
|---|
| 2310 | |
|---|
| 2311 | /// \brief Constructor |
|---|
| 2312 | /// |
|---|
| 2313 | /// Constructor |
|---|
| 2314 | /// \param digraph The digraph that the map belongs to. |
|---|
| 2315 | explicit TargetMap(const Digraph& digraph) : _digraph(digraph) {} |
|---|
| 2316 | |
|---|
| 2317 | /// \brief The subscript operator. |
|---|
| 2318 | /// |
|---|
| 2319 | /// The subscript operator. |
|---|
| 2320 | /// \param e The arc |
|---|
| 2321 | /// \return The target of the arc |
|---|
| 2322 | Value operator[](const Key& e) const { |
|---|
| 2323 | return _digraph.target(e); |
|---|
| 2324 | } |
|---|
| 2325 | |
|---|
| 2326 | private: |
|---|
| 2327 | const Digraph& _digraph; |
|---|
| 2328 | }; |
|---|
| 2329 | |
|---|
| 2330 | /// \brief Returns a \c TargetMap class. |
|---|
| 2331 | /// |
|---|
| 2332 | /// This function just returns a \c TargetMap class. |
|---|
| 2333 | /// \relates TargetMap |
|---|
| 2334 | template <typename Digraph> |
|---|
| 2335 | inline TargetMap<Digraph> targetMap(const Digraph& digraph) { |
|---|
| 2336 | return TargetMap<Digraph>(digraph); |
|---|
| 2337 | } |
|---|
| 2338 | |
|---|
| 2339 | /// \brief Returns the "forward" directed arc view of an edge. |
|---|
| 2340 | /// |
|---|
| 2341 | /// Returns the "forward" directed arc view of an edge. |
|---|
| 2342 | /// \see BackwardMap |
|---|
| 2343 | template <typename Graph> |
|---|
| 2344 | class ForwardMap { |
|---|
| 2345 | public: |
|---|
| 2346 | |
|---|
| 2347 | typedef typename Graph::Arc Value; |
|---|
| 2348 | typedef typename Graph::Edge Key; |
|---|
| 2349 | |
|---|
| 2350 | /// \brief Constructor |
|---|
| 2351 | /// |
|---|
| 2352 | /// Constructor |
|---|
| 2353 | /// \param graph The graph that the map belongs to. |
|---|
| 2354 | explicit ForwardMap(const Graph& graph) : _graph(graph) {} |
|---|
| 2355 | |
|---|
| 2356 | /// \brief The subscript operator. |
|---|
| 2357 | /// |
|---|
| 2358 | /// The subscript operator. |
|---|
| 2359 | /// \param key An edge |
|---|
| 2360 | /// \return The "forward" directed arc view of edge |
|---|
| 2361 | Value operator[](const Key& key) const { |
|---|
| 2362 | return _graph.direct(key, true); |
|---|
| 2363 | } |
|---|
| 2364 | |
|---|
| 2365 | private: |
|---|
| 2366 | const Graph& _graph; |
|---|
| 2367 | }; |
|---|
| 2368 | |
|---|
| 2369 | /// \brief Returns a \c ForwardMap class. |
|---|
| 2370 | /// |
|---|
| 2371 | /// This function just returns an \c ForwardMap class. |
|---|
| 2372 | /// \relates ForwardMap |
|---|
| 2373 | template <typename Graph> |
|---|
| 2374 | inline ForwardMap<Graph> forwardMap(const Graph& graph) { |
|---|
| 2375 | return ForwardMap<Graph>(graph); |
|---|
| 2376 | } |
|---|
| 2377 | |
|---|
| 2378 | /// \brief Returns the "backward" directed arc view of an edge. |
|---|
| 2379 | /// |
|---|
| 2380 | /// Returns the "backward" directed arc view of an edge. |
|---|
| 2381 | /// \see ForwardMap |
|---|
| 2382 | template <typename Graph> |
|---|
| 2383 | class BackwardMap { |
|---|
| 2384 | public: |
|---|
| 2385 | |
|---|
| 2386 | typedef typename Graph::Arc Value; |
|---|
| 2387 | typedef typename Graph::Edge Key; |
|---|
| 2388 | |
|---|
| 2389 | /// \brief Constructor |
|---|
| 2390 | /// |
|---|
| 2391 | /// Constructor |
|---|
| 2392 | /// \param graph The graph that the map belongs to. |
|---|
| 2393 | explicit BackwardMap(const Graph& graph) : _graph(graph) {} |
|---|
| 2394 | |
|---|
| 2395 | /// \brief The subscript operator. |
|---|
| 2396 | /// |
|---|
| 2397 | /// The subscript operator. |
|---|
| 2398 | /// \param key An edge |
|---|
| 2399 | /// \return The "backward" directed arc view of edge |
|---|
| 2400 | Value operator[](const Key& key) const { |
|---|
| 2401 | return _graph.direct(key, false); |
|---|
| 2402 | } |
|---|
| 2403 | |
|---|
| 2404 | private: |
|---|
| 2405 | const Graph& _graph; |
|---|
| 2406 | }; |
|---|
| 2407 | |
|---|
| 2408 | /// \brief Returns a \c BackwardMap class |
|---|
| 2409 | |
|---|
| 2410 | /// This function just returns a \c BackwardMap class. |
|---|
| 2411 | /// \relates BackwardMap |
|---|
| 2412 | template <typename Graph> |
|---|
| 2413 | inline BackwardMap<Graph> backwardMap(const Graph& graph) { |
|---|
| 2414 | return BackwardMap<Graph>(graph); |
|---|
| 2415 | } |
|---|
| 2416 | |
|---|
| 2417 | /// \brief Potential difference map |
|---|
| 2418 | /// |
|---|
| 2419 | /// If there is an potential map on the nodes then we |
|---|
| 2420 | /// can get an arc map as we get the substraction of the |
|---|
| 2421 | /// values of the target and source. |
|---|
| 2422 | template <typename Digraph, typename NodeMap> |
|---|
| 2423 | class PotentialDifferenceMap { |
|---|
| 2424 | public: |
|---|
| 2425 | typedef typename Digraph::Arc Key; |
|---|
| 2426 | typedef typename NodeMap::Value Value; |
|---|
| 2427 | |
|---|
| 2428 | /// \brief Constructor |
|---|
| 2429 | /// |
|---|
| 2430 | /// Contructor of the map |
|---|
| 2431 | explicit PotentialDifferenceMap(const Digraph& digraph, |
|---|
| 2432 | const NodeMap& potential) |
|---|
| 2433 | : _digraph(digraph), _potential(potential) {} |
|---|
| 2434 | |
|---|
| 2435 | /// \brief Const subscription operator |
|---|
| 2436 | /// |
|---|
| 2437 | /// Const subscription operator |
|---|
| 2438 | Value operator[](const Key& arc) const { |
|---|
| 2439 | return _potential[_digraph.target(arc)] - |
|---|
| 2440 | _potential[_digraph.source(arc)]; |
|---|
| 2441 | } |
|---|
| 2442 | |
|---|
| 2443 | private: |
|---|
| 2444 | const Digraph& _digraph; |
|---|
| 2445 | const NodeMap& _potential; |
|---|
| 2446 | }; |
|---|
| 2447 | |
|---|
| 2448 | /// \brief Returns a PotentialDifferenceMap. |
|---|
| 2449 | /// |
|---|
| 2450 | /// This function just returns a PotentialDifferenceMap. |
|---|
| 2451 | /// \relates PotentialDifferenceMap |
|---|
| 2452 | template <typename Digraph, typename NodeMap> |
|---|
| 2453 | PotentialDifferenceMap<Digraph, NodeMap> |
|---|
| 2454 | potentialDifferenceMap(const Digraph& digraph, const NodeMap& potential) { |
|---|
| 2455 | return PotentialDifferenceMap<Digraph, NodeMap>(digraph, potential); |
|---|
| 2456 | } |
|---|
| 2457 | |
|---|
| 2458 | /// \brief Map of the node in-degrees. |
|---|
| 2459 | /// |
|---|
| 2460 | /// This map returns the in-degree of a node. Once it is constructed, |
|---|
| 2461 | /// the degrees are stored in a standard NodeMap, so each query is done |
|---|
| 2462 | /// in constant time. On the other hand, the values are updated automatically |
|---|
| 2463 | /// whenever the digraph changes. |
|---|
| 2464 | /// |
|---|
| 2465 | /// \warning Besides addNode() and addArc(), a digraph structure may provide |
|---|
| 2466 | /// alternative ways to modify the digraph. The correct behavior of InDegMap |
|---|
| 2467 | /// is not guarantied if these additional features are used. For example |
|---|
| 2468 | /// the functions \ref ListDigraph::changeSource() "changeSource()", |
|---|
| 2469 | /// \ref ListDigraph::changeTarget() "changeTarget()" and |
|---|
| 2470 | /// \ref ListDigraph::reverseArc() "reverseArc()" |
|---|
| 2471 | /// of \ref ListDigraph will \e not update the degree values correctly. |
|---|
| 2472 | /// |
|---|
| 2473 | /// \sa OutDegMap |
|---|
| 2474 | |
|---|
| 2475 | template <typename _Digraph> |
|---|
| 2476 | class InDegMap |
|---|
| 2477 | : protected ItemSetTraits<_Digraph, typename _Digraph::Arc> |
|---|
| 2478 | ::ItemNotifier::ObserverBase { |
|---|
| 2479 | |
|---|
| 2480 | public: |
|---|
| 2481 | |
|---|
| 2482 | typedef _Digraph Digraph; |
|---|
| 2483 | typedef int Value; |
|---|
| 2484 | typedef typename Digraph::Node Key; |
|---|
| 2485 | |
|---|
| 2486 | typedef typename ItemSetTraits<Digraph, typename Digraph::Arc> |
|---|
| 2487 | ::ItemNotifier::ObserverBase Parent; |
|---|
| 2488 | |
|---|
| 2489 | private: |
|---|
| 2490 | |
|---|
| 2491 | class AutoNodeMap |
|---|
| 2492 | : public ItemSetTraits<Digraph, Key>::template Map<int>::Type { |
|---|
| 2493 | public: |
|---|
| 2494 | |
|---|
| 2495 | typedef typename ItemSetTraits<Digraph, Key>:: |
|---|
| 2496 | template Map<int>::Type Parent; |
|---|
| 2497 | |
|---|
| 2498 | AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {} |
|---|
| 2499 | |
|---|
| 2500 | virtual void add(const Key& key) { |
|---|
| 2501 | Parent::add(key); |
|---|
| 2502 | Parent::set(key, 0); |
|---|
| 2503 | } |
|---|
| 2504 | |
|---|
| 2505 | virtual void add(const std::vector<Key>& keys) { |
|---|
| 2506 | Parent::add(keys); |
|---|
| 2507 | for (int i = 0; i < int(keys.size()); ++i) { |
|---|
| 2508 | Parent::set(keys[i], 0); |
|---|
| 2509 | } |
|---|
| 2510 | } |
|---|
| 2511 | |
|---|
| 2512 | virtual void build() { |
|---|
| 2513 | Parent::build(); |
|---|
| 2514 | Key it; |
|---|
| 2515 | typename Parent::Notifier* nf = Parent::notifier(); |
|---|
| 2516 | for (nf->first(it); it != INVALID; nf->next(it)) { |
|---|
| 2517 | Parent::set(it, 0); |
|---|
| 2518 | } |
|---|
| 2519 | } |
|---|
| 2520 | }; |
|---|
| 2521 | |
|---|
| 2522 | public: |
|---|
| 2523 | |
|---|
| 2524 | /// \brief Constructor. |
|---|
| 2525 | /// |
|---|
| 2526 | /// Constructor for creating in-degree map. |
|---|
| 2527 | explicit InDegMap(const Digraph& digraph) |
|---|
| 2528 | : _digraph(digraph), _deg(digraph) { |
|---|
| 2529 | Parent::attach(_digraph.notifier(typename Digraph::Arc())); |
|---|
| 2530 | |
|---|
| 2531 | for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
|---|
| 2532 | _deg[it] = countInArcs(_digraph, it); |
|---|
| 2533 | } |
|---|
| 2534 | } |
|---|
| 2535 | |
|---|
| 2536 | /// Gives back the in-degree of a Node. |
|---|
| 2537 | int operator[](const Key& key) const { |
|---|
| 2538 | return _deg[key]; |
|---|
| 2539 | } |
|---|
| 2540 | |
|---|
| 2541 | protected: |
|---|
| 2542 | |
|---|
| 2543 | typedef typename Digraph::Arc Arc; |
|---|
| 2544 | |
|---|
| 2545 | virtual void add(const Arc& arc) { |
|---|
| 2546 | ++_deg[_digraph.target(arc)]; |
|---|
| 2547 | } |
|---|
| 2548 | |
|---|
| 2549 | virtual void add(const std::vector<Arc>& arcs) { |
|---|
| 2550 | for (int i = 0; i < int(arcs.size()); ++i) { |
|---|
| 2551 | ++_deg[_digraph.target(arcs[i])]; |
|---|
| 2552 | } |
|---|
| 2553 | } |
|---|
| 2554 | |
|---|
| 2555 | virtual void erase(const Arc& arc) { |
|---|
| 2556 | --_deg[_digraph.target(arc)]; |
|---|
| 2557 | } |
|---|
| 2558 | |
|---|
| 2559 | virtual void erase(const std::vector<Arc>& arcs) { |
|---|
| 2560 | for (int i = 0; i < int(arcs.size()); ++i) { |
|---|
| 2561 | --_deg[_digraph.target(arcs[i])]; |
|---|
| 2562 | } |
|---|
| 2563 | } |
|---|
| 2564 | |
|---|
| 2565 | virtual void build() { |
|---|
| 2566 | for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
|---|
| 2567 | _deg[it] = countInArcs(_digraph, it); |
|---|
| 2568 | } |
|---|
| 2569 | } |
|---|
| 2570 | |
|---|
| 2571 | virtual void clear() { |
|---|
| 2572 | for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
|---|
| 2573 | _deg[it] = 0; |
|---|
| 2574 | } |
|---|
| 2575 | } |
|---|
| 2576 | private: |
|---|
| 2577 | |
|---|
| 2578 | const Digraph& _digraph; |
|---|
| 2579 | AutoNodeMap _deg; |
|---|
| 2580 | }; |
|---|
| 2581 | |
|---|
| 2582 | /// \brief Map of the node out-degrees. |
|---|
| 2583 | /// |
|---|
| 2584 | /// This map returns the out-degree of a node. Once it is constructed, |
|---|
| 2585 | /// the degrees are stored in a standard NodeMap, so each query is done |
|---|
| 2586 | /// in constant time. On the other hand, the values are updated automatically |
|---|
| 2587 | /// whenever the digraph changes. |
|---|
| 2588 | /// |
|---|
| 2589 | /// \warning Besides addNode() and addArc(), a digraph structure may provide |
|---|
| 2590 | /// alternative ways to modify the digraph. The correct behavior of OutDegMap |
|---|
| 2591 | /// is not guarantied if these additional features are used. For example |
|---|
| 2592 | /// the functions \ref ListDigraph::changeSource() "changeSource()", |
|---|
| 2593 | /// \ref ListDigraph::changeTarget() "changeTarget()" and |
|---|
| 2594 | /// \ref ListDigraph::reverseArc() "reverseArc()" |
|---|
| 2595 | /// of \ref ListDigraph will \e not update the degree values correctly. |
|---|
| 2596 | /// |
|---|
| 2597 | /// \sa InDegMap |
|---|
| 2598 | |
|---|
| 2599 | template <typename _Digraph> |
|---|
| 2600 | class OutDegMap |
|---|
| 2601 | : protected ItemSetTraits<_Digraph, typename _Digraph::Arc> |
|---|
| 2602 | ::ItemNotifier::ObserverBase { |
|---|
| 2603 | |
|---|
| 2604 | public: |
|---|
| 2605 | |
|---|
| 2606 | typedef _Digraph Digraph; |
|---|
| 2607 | typedef int Value; |
|---|
| 2608 | typedef typename Digraph::Node Key; |
|---|
| 2609 | |
|---|
| 2610 | typedef typename ItemSetTraits<Digraph, typename Digraph::Arc> |
|---|
| 2611 | ::ItemNotifier::ObserverBase Parent; |
|---|
| 2612 | |
|---|
| 2613 | private: |
|---|
| 2614 | |
|---|
| 2615 | class AutoNodeMap |
|---|
| 2616 | : public ItemSetTraits<Digraph, Key>::template Map<int>::Type { |
|---|
| 2617 | public: |
|---|
| 2618 | |
|---|
| 2619 | typedef typename ItemSetTraits<Digraph, Key>:: |
|---|
| 2620 | template Map<int>::Type Parent; |
|---|
| 2621 | |
|---|
| 2622 | AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {} |
|---|
| 2623 | |
|---|
| 2624 | virtual void add(const Key& key) { |
|---|
| 2625 | Parent::add(key); |
|---|
| 2626 | Parent::set(key, 0); |
|---|
| 2627 | } |
|---|
| 2628 | virtual void add(const std::vector<Key>& keys) { |
|---|
| 2629 | Parent::add(keys); |
|---|
| 2630 | for (int i = 0; i < int(keys.size()); ++i) { |
|---|
| 2631 | Parent::set(keys[i], 0); |
|---|
| 2632 | } |
|---|
| 2633 | } |
|---|
| 2634 | virtual void build() { |
|---|
| 2635 | Parent::build(); |
|---|
| 2636 | Key it; |
|---|
| 2637 | typename Parent::Notifier* nf = Parent::notifier(); |
|---|
| 2638 | for (nf->first(it); it != INVALID; nf->next(it)) { |
|---|
| 2639 | Parent::set(it, 0); |
|---|
| 2640 | } |
|---|
| 2641 | } |
|---|
| 2642 | }; |
|---|
| 2643 | |
|---|
| 2644 | public: |
|---|
| 2645 | |
|---|
| 2646 | /// \brief Constructor. |
|---|
| 2647 | /// |
|---|
| 2648 | /// Constructor for creating out-degree map. |
|---|
| 2649 | explicit OutDegMap(const Digraph& digraph) |
|---|
| 2650 | : _digraph(digraph), _deg(digraph) { |
|---|
| 2651 | Parent::attach(_digraph.notifier(typename Digraph::Arc())); |
|---|
| 2652 | |
|---|
| 2653 | for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
|---|
| 2654 | _deg[it] = countOutArcs(_digraph, it); |
|---|
| 2655 | } |
|---|
| 2656 | } |
|---|
| 2657 | |
|---|
| 2658 | /// Gives back the out-degree of a Node. |
|---|
| 2659 | int operator[](const Key& key) const { |
|---|
| 2660 | return _deg[key]; |
|---|
| 2661 | } |
|---|
| 2662 | |
|---|
| 2663 | protected: |
|---|
| 2664 | |
|---|
| 2665 | typedef typename Digraph::Arc Arc; |
|---|
| 2666 | |
|---|
| 2667 | virtual void add(const Arc& arc) { |
|---|
| 2668 | ++_deg[_digraph.source(arc)]; |
|---|
| 2669 | } |
|---|
| 2670 | |
|---|
| 2671 | virtual void add(const std::vector<Arc>& arcs) { |
|---|
| 2672 | for (int i = 0; i < int(arcs.size()); ++i) { |
|---|
| 2673 | ++_deg[_digraph.source(arcs[i])]; |
|---|
| 2674 | } |
|---|
| 2675 | } |
|---|
| 2676 | |
|---|
| 2677 | virtual void erase(const Arc& arc) { |
|---|
| 2678 | --_deg[_digraph.source(arc)]; |
|---|
| 2679 | } |
|---|
| 2680 | |
|---|
| 2681 | virtual void erase(const std::vector<Arc>& arcs) { |
|---|
| 2682 | for (int i = 0; i < int(arcs.size()); ++i) { |
|---|
| 2683 | --_deg[_digraph.source(arcs[i])]; |
|---|
| 2684 | } |
|---|
| 2685 | } |
|---|
| 2686 | |
|---|
| 2687 | virtual void build() { |
|---|
| 2688 | for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
|---|
| 2689 | _deg[it] = countOutArcs(_digraph, it); |
|---|
| 2690 | } |
|---|
| 2691 | } |
|---|
| 2692 | |
|---|
| 2693 | virtual void clear() { |
|---|
| 2694 | for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
|---|
| 2695 | _deg[it] = 0; |
|---|
| 2696 | } |
|---|
| 2697 | } |
|---|
| 2698 | private: |
|---|
| 2699 | |
|---|
| 2700 | const Digraph& _digraph; |
|---|
| 2701 | AutoNodeMap _deg; |
|---|
| 2702 | }; |
|---|
| 2703 | |
|---|
| 2704 | /// @} |
|---|
| 2705 | } |
|---|
| 2706 | |
|---|
| 2707 | #endif // LEMON_MAPS_H |
|---|