COIN-OR::LEMON - Graph Library

source: lemon-1.2/lemon/maps.h @ 80:15968e25ca08

Last change on this file since 80:15968e25ca08 was 80:15968e25ca08, checked in by Peter Kovacs <kpeter@…>, 12 years ago

Overall clean-up in maps.h

logical maps.

  • Small fixes and improvements in the code.
  • Fix the typedefs of RangeMap? to work correctly with bool type, too.
  • Rename template parameters, function parameters, and private members

in many classes to be uniform and to avoid parameter names starting
with underscore.

  • Use Key and Value types instead of K and V template parameters in

public functions.

  • Extend the documentation with examples (e.g. for basic arithmetic and

logical maps).

InserterBoolMap?, FillBoolMap?, SettingOrderBoolMap? are almost unchanged,
since they will be removed.

  • Also improve maps_test.cc to correctly check every map class, every

constructor, and every creator function.

File size: 53.8 KB
Line 
1/* -*- C++ -*-
2 *
3 * This file is a part of LEMON, a generic C++ optimization library
4 *
5 * Copyright (C) 2003-2008
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 *
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
12 *
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
15 * purpose.
16 *
17 */
18
19#ifndef LEMON_MAPS_H
20#define LEMON_MAPS_H
21
22#include <iterator>
23#include <functional>
24#include <vector>
25
26#include <lemon/bits/utility.h>
27#include <lemon/bits/traits.h>
28
29///\file
30///\ingroup maps
31///\brief Miscellaneous property maps
32
33#include <map>
34
35namespace lemon {
36
37  /// \addtogroup maps
38  /// @{
39
40  /// Base class of maps.
41
42  /// Base class of maps. It provides the necessary type definitions
43  /// required by the map %concepts.
44  template<typename K, typename V>
45  class MapBase {
46  public:
47    /// \biref The key type of the map.
48    typedef K Key;
49    /// \brief The value type of the map.
50    /// (The type of objects associated with the keys).
51    typedef V Value;
52  };
53
54
55  /// Null map. (a.k.a. DoNothingMap)
56
57  /// This map can be used if you have to provide a map only for
58  /// its type definitions, or if you have to provide a writable map,
59  /// but data written to it is not required (i.e. it will be sent to
60  /// <tt>/dev/null</tt>).
61  /// It conforms the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
62  ///
63  /// \sa ConstMap
64  template<typename K, typename V>
65  class NullMap : public MapBase<K, V> {
66  public:
67    typedef MapBase<K, V> Parent;
68    typedef typename Parent::Key Key;
69    typedef typename Parent::Value Value;
70
71    /// Gives back a default constructed element.
72    Value operator[](const Key&) const { return Value(); }
73    /// Absorbs the value.
74    void set(const Key&, const Value&) {}
75  };
76
77  /// Returns a \ref NullMap class
78
79  /// This function just returns a \ref NullMap class.
80  /// \relates NullMap
81  template <typename K, typename V>
82  NullMap<K, V> nullMap() {
83    return NullMap<K, V>();
84  }
85
86
87  /// Constant map.
88
89  /// This is a \ref concepts::ReadMap "readable" map which assigns a
90  /// specified value to each key.
91  ///
92  /// In other aspects it is equivalent to \ref NullMap.
93  /// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap"
94  /// concept, but it absorbs the data written to it.
95  ///
96  /// The simplest way of using this map is through the constMap()
97  /// function.
98  ///
99  /// \sa NullMap
100  /// \sa IdentityMap
101  template<typename K, typename V>
102  class ConstMap : public MapBase<K, V> {
103  private:
104    V _value;
105  public:
106    typedef MapBase<K, V> Parent;
107    typedef typename Parent::Key Key;
108    typedef typename Parent::Value Value;
109
110    /// Default constructor
111
112    /// Default constructor.
113    /// The value of the map will be default constructed.
114    ConstMap() {}
115
116    /// Constructor with specified initial value
117
118    /// Constructor with specified initial value.
119    /// \param v is the initial value of the map.
120    ConstMap(const Value &v) : _value(v) {}
121
122    /// Gives back the specified value.
123    Value operator[](const Key&) const { return _value; }
124
125    /// Absorbs the value.
126    void set(const Key&, const Value&) {}
127
128    /// Sets the value that is assigned to each key.
129    void setAll(const Value &v) {
130      _value = v;
131    }
132
133    template<typename V1>
134    ConstMap(const ConstMap<K, V1> &, const Value &v) : _value(v) {}
135  };
136
137  /// Returns a \ref ConstMap class
138
139  /// This function just returns a \ref ConstMap class.
140  /// \relates ConstMap
141  template<typename K, typename V>
142  inline ConstMap<K, V> constMap(const V &v) {
143    return ConstMap<K, V>(v);
144  }
145
146
147  template<typename T, T v>
148  struct Const {};
149
150  /// Constant map with inlined constant value.
151
152  /// This is a \ref concepts::ReadMap "readable" map which assigns a
153  /// specified value to each key.
154  ///
155  /// In other aspects it is equivalent to \ref NullMap.
156  /// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap"
157  /// concept, but it absorbs the data written to it.
158  ///
159  /// The simplest way of using this map is through the constMap()
160  /// function.
161  ///
162  /// \sa NullMap
163  /// \sa IdentityMap
164  template<typename K, typename V, V v>
165  class ConstMap<K, Const<V, v> > : public MapBase<K, V> {
166  public:
167    typedef MapBase<K, V> Parent;
168    typedef typename Parent::Key Key;
169    typedef typename Parent::Value Value;
170
171    /// Constructor.
172    ConstMap() {}
173
174    /// Gives back the specified value.
175    Value operator[](const Key&) const { return v; }
176
177    /// Absorbs the value.
178    void set(const Key&, const Value&) {}
179  };
180
181  /// Returns a \ref ConstMap class with inlined constant value
182
183  /// This function just returns a \ref ConstMap class with inlined
184  /// constant value.
185  /// \relates ConstMap
186  template<typename K, typename V, V v>
187  inline ConstMap<K, Const<V, v> > constMap() {
188    return ConstMap<K, Const<V, v> >();
189  }
190
191
192  /// \brief Identity map.
193  ///
194  /// This map gives back the given key as value without any
195  /// modification.
196  ///
197  /// \sa ConstMap
198  template <typename T>
199  class IdentityMap : public MapBase<T, T> {
200  public:
201    typedef MapBase<T, T> Parent;
202    typedef typename Parent::Key Key;
203    typedef typename Parent::Value Value;
204
205    /// Gives back the given value without any modification.
206    const T& operator[](const T& t) const {
207      return t;
208    }
209  };
210
211  /// Returns an \ref IdentityMap class
212
213  /// This function just returns an \ref IdentityMap class.
214  /// \relates IdentityMap
215  template<typename T>
216  inline IdentityMap<T> identityMap() {
217    return IdentityMap<T>();
218  }
219
220
221  /// \brief Map for storing values for integer keys from the range
222  /// <tt>[0..size-1]</tt>.
223  ///
224  /// This map is essentially a wrapper for \c std::vector. It assigns
225  /// values to integer keys from the range <tt>[0..size-1]</tt>.
226  /// It can be used with some data structures, for example
227  /// \ref UnionFind, \ref BinHeap, when the used items are small
228  /// integers. This map conforms the \ref concepts::ReferenceMap
229  /// "ReferenceMap" concept.
230  ///
231  /// The simplest way of using this map is through the rangeMap()
232  /// function.
233  template <typename V>
234  class RangeMap : public MapBase<int, V> {
235    template <typename V1>
236    friend class RangeMap;
237  private:
238
239    typedef std::vector<V> Vector;
240    Vector _vector;
241
242  public:
243
244    typedef MapBase<int, V> Parent;
245    /// Key type
246    typedef typename Parent::Key Key;
247    /// Value type
248    typedef typename Parent::Value Value;
249    /// Reference type
250    typedef typename Vector::reference Reference;
251    /// Const reference type
252    typedef typename Vector::const_reference ConstReference;
253
254    typedef True ReferenceMapTag;
255
256  public:
257
258    /// Constructor with specified default value.
259    RangeMap(int size = 0, const Value &value = Value())
260      : _vector(size, value) {}
261
262    /// Constructs the map from an appropriate \c std::vector.
263    template <typename V1>
264    RangeMap(const std::vector<V1>& vector)
265      : _vector(vector.begin(), vector.end()) {}
266
267    /// Constructs the map from another \ref RangeMap.
268    template <typename V1>
269    RangeMap(const RangeMap<V1> &c)
270      : _vector(c._vector.begin(), c._vector.end()) {}
271
272    /// Returns the size of the map.
273    int size() {
274      return _vector.size();
275    }
276
277    /// Resizes the map.
278
279    /// Resizes the underlying \c std::vector container, so changes the
280    /// keyset of the map.
281    /// \param size The new size of the map. The new keyset will be the
282    /// range <tt>[0..size-1]</tt>.
283    /// \param value The default value to assign to the new keys.
284    void resize(int size, const Value &value = Value()) {
285      _vector.resize(size, value);
286    }
287
288  private:
289
290    RangeMap& operator=(const RangeMap&);
291
292  public:
293
294    ///\e
295    Reference operator[](const Key &k) {
296      return _vector[k];
297    }
298
299    ///\e
300    ConstReference operator[](const Key &k) const {
301      return _vector[k];
302    }
303
304    ///\e
305    void set(const Key &k, const Value &v) {
306      _vector[k] = v;
307    }
308  };
309
310  /// Returns a \ref RangeMap class
311
312  /// This function just returns a \ref RangeMap class.
313  /// \relates RangeMap
314  template<typename V>
315  inline RangeMap<V> rangeMap(int size = 0, const V &value = V()) {
316    return RangeMap<V>(size, value);
317  }
318
319  /// \brief Returns a \ref RangeMap class created from an appropriate
320  /// \c std::vector
321
322  /// This function just returns a \ref RangeMap class created from an
323  /// appropriate \c std::vector.
324  /// \relates RangeMap
325  template<typename V>
326  inline RangeMap<V> rangeMap(const std::vector<V> &vector) {
327    return RangeMap<V>(vector);
328  }
329
330
331  /// Map type based on \c std::map
332
333  /// This map is essentially a wrapper for \c std::map with addition
334  /// that you can specify a default value for the keys that are not
335  /// stored actually. This value can be different from the default
336  /// contructed value (i.e. \c %Value()).
337  /// This type conforms the \ref concepts::ReferenceMap "ReferenceMap"
338  /// concept.
339  ///
340  /// This map is useful if a default value should be assigned to most of
341  /// the keys and different values should be assigned only to a few
342  /// keys (i.e. the map is "sparse").
343  /// The name of this type also refers to this important usage.
344  ///
345  /// Apart form that this map can be used in many other cases since it
346  /// is based on \c std::map, which is a general associative container.
347  /// However keep in mind that it is usually not as efficient as other
348  /// maps.
349  ///
350  /// The simplest way of using this map is through the sparseMap()
351  /// function.
352  template <typename K, typename V, typename Compare = std::less<K> >
353  class SparseMap : public MapBase<K, V> {
354    template <typename K1, typename V1, typename C1>
355    friend class SparseMap;
356  public:
357
358    typedef MapBase<K, V> Parent;
359    /// Key type
360    typedef typename Parent::Key Key;
361    /// Value type
362    typedef typename Parent::Value Value;
363    /// Reference type
364    typedef Value& Reference;
365    /// Const reference type
366    typedef const Value& ConstReference;
367
368    typedef True ReferenceMapTag;
369
370  private:
371
372    typedef std::map<K, V, Compare> Map;
373    Map _map;
374    Value _value;
375
376  public:
377
378    /// \brief Constructor with specified default value.
379    SparseMap(const Value &value = Value()) : _value(value) {}
380    /// \brief Constructs the map from an appropriate \c std::map, and
381    /// explicitly specifies a default value.
382    template <typename V1, typename Comp1>
383    SparseMap(const std::map<Key, V1, Comp1> &map,
384              const Value &value = Value())
385      : _map(map.begin(), map.end()), _value(value) {}
386
387    /// \brief Constructs the map from another \ref SparseMap.
388    template<typename V1, typename Comp1>
389    SparseMap(const SparseMap<Key, V1, Comp1> &c)
390      : _map(c._map.begin(), c._map.end()), _value(c._value) {}
391
392  private:
393
394    SparseMap& operator=(const SparseMap&);
395
396  public:
397
398    ///\e
399    Reference operator[](const Key &k) {
400      typename Map::iterator it = _map.lower_bound(k);
401      if (it != _map.end() && !_map.key_comp()(k, it->first))
402        return it->second;
403      else
404        return _map.insert(it, std::make_pair(k, _value))->second;
405    }
406
407    ///\e
408    ConstReference operator[](const Key &k) const {
409      typename Map::const_iterator it = _map.find(k);
410      if (it != _map.end())
411        return it->second;
412      else
413        return _value;
414    }
415
416    ///\e
417    void set(const Key &k, const Value &v) {
418      typename Map::iterator it = _map.lower_bound(k);
419      if (it != _map.end() && !_map.key_comp()(k, it->first))
420        it->second = v;
421      else
422        _map.insert(it, std::make_pair(k, v));
423    }
424
425    ///\e
426    void setAll(const Value &v) {
427      _value = v;
428      _map.clear();
429    }
430  };
431
432  /// Returns a \ref SparseMap class
433
434  /// This function just returns a \ref SparseMap class with specified
435  /// default value.
436  /// \relates SparseMap
437  template<typename K, typename V, typename Compare>
438  inline SparseMap<K, V, Compare> sparseMap(const V& value = V()) {
439    return SparseMap<K, V, Compare>(value);
440  }
441
442  template<typename K, typename V>
443  inline SparseMap<K, V, std::less<K> > sparseMap(const V& value = V()) {
444    return SparseMap<K, V, std::less<K> >(value);
445  }
446
447  /// \brief Returns a \ref SparseMap class created from an appropriate
448  /// \c std::map
449
450  /// This function just returns a \ref SparseMap class created from an
451  /// appropriate \c std::map.
452  /// \relates SparseMap
453  template<typename K, typename V, typename Compare>
454  inline SparseMap<K, V, Compare>
455    sparseMap(const std::map<K, V, Compare> &map, const V& value = V())
456  {
457    return SparseMap<K, V, Compare>(map, value);
458  }
459
460  /// @}
461
462  /// \addtogroup map_adaptors
463  /// @{
464
465  /// Composition of two maps
466
467  /// This \ref concepts::ReadMap "read only map" returns the
468  /// composition of two given maps. That is to say, if \c m1 is of
469  /// type \c M1 and \c m2 is of \c M2, then for
470  /// \code
471  ///   ComposeMap<M1, M2> cm(m1,m2);
472  /// \endcode
473  /// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>.
474  ///
475  /// The \c Key type of the map is inherited from \c M2 and the
476  /// \c Value type is from \c M1.
477  /// \c M2::Value must be convertible to \c M1::Key.
478  ///
479  /// The simplest way of using this map is through the composeMap()
480  /// function.
481  ///
482  /// \sa CombineMap
483  ///
484  /// \todo Check the requirements.
485  template <typename M1, typename M2>
486  class ComposeMap : public MapBase<typename M2::Key, typename M1::Value> {
487    const M1 &_m1;
488    const M2 &_m2;
489  public:
490    typedef MapBase<typename M2::Key, typename M1::Value> Parent;
491    typedef typename Parent::Key Key;
492    typedef typename Parent::Value Value;
493
494    /// Constructor
495    ComposeMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
496
497    /// \e
498    typename MapTraits<M1>::ConstReturnValue
499    operator[](const Key &k) const { return _m1[_m2[k]]; }
500  };
501
502  /// Returns a \ref ComposeMap class
503
504  /// This function just returns a \ref ComposeMap class.
505  ///
506  /// If \c m1 and \c m2 are maps and the \c Value type of \c m2 is
507  /// convertible to the \c Key of \c m1, then <tt>composeMap(m1,m2)[x]</tt>
508  /// will be equal to <tt>m1[m2[x]]</tt>.
509  ///
510  /// \relates ComposeMap
511  template <typename M1, typename M2>
512  inline ComposeMap<M1, M2> composeMap(const M1 &m1, const M2 &m2) {
513    return ComposeMap<M1, M2>(m1, m2);
514  }
515
516
517  /// Combination of two maps using an STL (binary) functor.
518
519  /// This \ref concepts::ReadMap "read only map" takes two maps and a
520  /// binary functor and returns the combination of the two given maps
521  /// using the functor.
522  /// That is to say, if \c m1 is of type \c M1 and \c m2 is of \c M2
523  /// and \c f is of \c F, then for
524  /// \code
525  ///   CombineMap<M1,M2,F,V> cm(m1,m2,f);
526  /// \endcode
527  /// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>.
528  ///
529  /// The \c Key type of the map is inherited from \c M1 (\c M1::Key
530  /// must be convertible to \c M2::Key) and the \c Value type is \c V.
531  /// \c M2::Value and \c M1::Value must be convertible to the
532  /// corresponding input parameter of \c F and the return type of \c F
533  /// must be convertible to \c V.
534  ///
535  /// The simplest way of using this map is through the combineMap()
536  /// function.
537  ///
538  /// \sa ComposeMap
539  ///
540  /// \todo Check the requirements.
541  template<typename M1, typename M2, typename F,
542           typename V = typename F::result_type>
543  class CombineMap : public MapBase<typename M1::Key, V> {
544    const M1 &_m1;
545    const M2 &_m2;
546    F _f;
547  public:
548    typedef MapBase<typename M1::Key, V> Parent;
549    typedef typename Parent::Key Key;
550    typedef typename Parent::Value Value;
551
552    /// Constructor
553    CombineMap(const M1 &m1, const M2 &m2, const F &f = F())
554      : _m1(m1), _m2(m2), _f(f) {}
555    /// \e
556    Value operator[](const Key &k) const { return _f(_m1[k],_m2[k]); }
557  };
558
559  /// Returns a \ref CombineMap class
560
561  /// This function just returns a \ref CombineMap class.
562  ///
563  /// For example, if \c m1 and \c m2 are both maps with \c double
564  /// values, then
565  /// \code
566  ///   combineMap(m1,m2,std::plus<double>())
567  /// \endcode
568  /// is equivalent to
569  /// \code
570  ///   addMap(m1,m2)
571  /// \endcode
572  ///
573  /// This function is specialized for adaptable binary function
574  /// classes and C++ functions.
575  ///
576  /// \relates CombineMap
577  template<typename M1, typename M2, typename F, typename V>
578  inline CombineMap<M1, M2, F, V>
579  combineMap(const M1 &m1, const M2 &m2, const F &f) {
580    return CombineMap<M1, M2, F, V>(m1,m2,f);
581  }
582
583  template<typename M1, typename M2, typename F>
584  inline CombineMap<M1, M2, F, typename F::result_type>
585  combineMap(const M1 &m1, const M2 &m2, const F &f) {
586    return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f);
587  }
588
589  template<typename M1, typename M2, typename K1, typename K2, typename V>
590  inline CombineMap<M1, M2, V (*)(K1, K2), V>
591  combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) {
592    return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f);
593  }
594
595
596  /// Converts an STL style (unary) functor to a map
597
598  /// This \ref concepts::ReadMap "read only map" returns the value
599  /// of a given functor. Actually, it just wraps the functor and
600  /// provides the \c Key and \c Value typedefs.
601  ///
602  /// Template parameters \c K and \c V will become its \c Key and
603  /// \c Value. In most cases they have to be given explicitly because
604  /// a functor typically does not provide \c argument_type and
605  /// \c result_type typedefs.
606  /// Parameter \c F is the type of the used functor.
607  ///
608  /// The simplest way of using this map is through the functorToMap()
609  /// function.
610  ///
611  /// \sa MapToFunctor
612  template<typename F,
613           typename K = typename F::argument_type,
614           typename V = typename F::result_type>
615  class FunctorToMap : public MapBase<K, V> {
616    const F &_f;
617  public:
618    typedef MapBase<K, V> Parent;
619    typedef typename Parent::Key Key;
620    typedef typename Parent::Value Value;
621
622    /// Constructor
623    FunctorToMap(const F &f = F()) : _f(f) {}
624    /// \e
625    Value operator[](const Key &k) const { return _f(k); }
626  };
627
628  /// Returns a \ref FunctorToMap class
629
630  /// This function just returns a \ref FunctorToMap class.
631  ///
632  /// This function is specialized for adaptable binary function
633  /// classes and C++ functions.
634  ///
635  /// \relates FunctorToMap
636  template<typename K, typename V, typename F>
637  inline FunctorToMap<F, K, V> functorToMap(const F &f) {
638    return FunctorToMap<F, K, V>(f);
639  }
640
641  template <typename F>
642  inline FunctorToMap<F, typename F::argument_type, typename F::result_type>
643    functorToMap(const F &f)
644  {
645    return FunctorToMap<F, typename F::argument_type,
646      typename F::result_type>(f);
647  }
648
649  template <typename K, typename V>
650  inline FunctorToMap<V (*)(K), K, V> functorToMap(V (*f)(K)) {
651    return FunctorToMap<V (*)(K), K, V>(f);
652  }
653
654
655  /// Converts a map to an STL style (unary) functor
656
657  /// This class converts a map to an STL style (unary) functor.
658  /// That is it provides an <tt>operator()</tt> to read its values.
659  ///
660  /// For the sake of convenience it also works as a usual
661  /// \ref concepts::ReadMap "readable map", i.e. <tt>operator[]</tt>
662  /// and the \c Key and \c Value typedefs also exist.
663  ///
664  /// The simplest way of using this map is through the mapToFunctor()
665  /// function.
666  ///
667  ///\sa FunctorToMap
668  template <typename M>
669  class MapToFunctor : public MapBase<typename M::Key, typename M::Value> {
670    const M &_m;
671  public:
672    typedef MapBase<typename M::Key, typename M::Value> Parent;
673    typedef typename Parent::Key Key;
674    typedef typename Parent::Value Value;
675
676    typedef typename Parent::Key argument_type;
677    typedef typename Parent::Value result_type;
678
679    /// Constructor
680    MapToFunctor(const M &m) : _m(m) {}
681    /// \e
682    Value operator()(const Key &k) const { return _m[k]; }
683    /// \e
684    Value operator[](const Key &k) const { return _m[k]; }
685  };
686
687  /// Returns a \ref MapToFunctor class
688
689  /// This function just returns a \ref MapToFunctor class.
690  /// \relates MapToFunctor
691  template<typename M>
692  inline MapToFunctor<M> mapToFunctor(const M &m) {
693    return MapToFunctor<M>(m);
694  }
695
696
697  /// \brief Map adaptor to convert the \c Value type of a map to
698  /// another type using the default conversion.
699
700  /// Map adaptor to convert the \c Value type of a \ref concepts::ReadMap
701  /// "readable map" to another type using the default conversion.
702  /// The \c Key type of it is inherited from \c M and the \c Value
703  /// type is \c V.
704  /// This type conforms the \ref concepts::ReadMap "ReadMap" concept.
705  ///
706  /// The simplest way of using this map is through the convertMap()
707  /// function.
708  template <typename M, typename V>
709  class ConvertMap : public MapBase<typename M::Key, V> {
710    const M &_m;
711  public:
712    typedef MapBase<typename M::Key, V> Parent;
713    typedef typename Parent::Key Key;
714    typedef typename Parent::Value Value;
715
716    /// Constructor
717
718    /// Constructor.
719    /// \param m The underlying map.
720    ConvertMap(const M &m) : _m(m) {}
721
722    /// \e
723    Value operator[](const Key &k) const { return _m[k]; }
724  };
725
726  /// Returns a \ref ConvertMap class
727
728  /// This function just returns a \ref ConvertMap class.
729  /// \relates ConvertMap
730  template<typename V, typename M>
731  inline ConvertMap<M, V> convertMap(const M &map) {
732    return ConvertMap<M, V>(map);
733  }
734
735
736  /// Applies all map setting operations to two maps
737
738  /// This map has two \ref concepts::WriteMap "writable map" parameters
739  /// and each write request will be passed to both of them.
740  /// If \c M1 is also \ref concepts::ReadMap "readable", then the read
741  /// operations will return the corresponding values of \c M1.
742  ///
743  /// The \c Key and \c Value types are inherited from \c M1.
744  /// The \c Key and \c Value of \c M2 must be convertible from those
745  /// of \c M1.
746  ///
747  /// The simplest way of using this map is through the forkMap()
748  /// function.
749  template<typename  M1, typename M2>
750  class ForkMap : public MapBase<typename M1::Key, typename M1::Value> {
751    M1 &_m1;
752    M2 &_m2;
753  public:
754    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
755    typedef typename Parent::Key Key;
756    typedef typename Parent::Value Value;
757
758    /// Constructor
759    ForkMap(M1 &m1, M2 &m2) : _m1(m1), _m2(m2) {}
760    /// Returns the value associated with the given key in the first map.
761    Value operator[](const Key &k) const { return _m1[k]; }
762    /// Sets the value associated with the given key in both maps.
763    void set(const Key &k, const Value &v) { _m1.set(k,v); _m2.set(k,v); }
764  };
765
766  /// Returns a \ref ForkMap class
767
768  /// This function just returns a \ref ForkMap class.
769  /// \relates ForkMap
770  template <typename M1, typename M2>
771  inline ForkMap<M1,M2> forkMap(M1 &m1, M2 &m2) {
772    return ForkMap<M1,M2>(m1,m2);
773  }
774
775
776  /// Simple wrapping of a map
777
778  /// This \ref concepts::ReadMap "read only map" returns the simple
779  /// wrapping of the given map. Sometimes the reference maps cannot be
780  /// combined with simple read maps. This map adaptor wraps the given
781  /// map to simple read map.
782  ///
783  /// The simplest way of using this map is through the wrapMap()
784  /// function.
785  ///
786  /// \sa WrapWriteMap
787  template<typename M>
788  class WrapMap : public MapBase<typename M::Key, typename M::Value> {
789    const M &_m;
790  public:
791    typedef MapBase<typename M::Key, typename M::Value> Parent;
792    typedef typename Parent::Key Key;
793    typedef typename Parent::Value Value;
794
795    /// Constructor
796    WrapMap(const M &m) : _m(m) {}
797    /// \e
798    Value operator[](const Key &k) const { return _m[k]; }
799  };
800
801  /// Returns a \ref WrapMap class
802
803  /// This function just returns a \ref WrapMap class.
804  /// \relates WrapMap
805  template<typename M>
806  inline WrapMap<M> wrapMap(const M &map) {
807    return WrapMap<M>(map);
808  }
809
810
811  /// Simple writable wrapping of a map
812
813  /// This \ref concepts::ReadWriteMap "read-write map" returns the simple
814  /// wrapping of the given map. Sometimes the reference maps cannot be
815  /// combined with simple read-write maps. This map adaptor wraps the
816  /// given map to simple read-write map.
817  ///
818  /// The simplest way of using this map is through the wrapWriteMap()
819  /// function.
820  ///
821  /// \sa WrapMap
822  template<typename M>
823  class WrapWriteMap : public MapBase<typename M::Key, typename M::Value> {
824    M &_m;
825  public:
826    typedef MapBase<typename M::Key, typename M::Value> Parent;
827    typedef typename Parent::Key Key;
828    typedef typename Parent::Value Value;
829
830    /// Constructor
831    WrapWriteMap(M &m) : _m(m) {}
832    /// \e
833    Value operator[](const Key &k) const { return _m[k]; }
834    /// \e
835    void set(const Key &k, const Value &c) { _m.set(k, c); }
836  };
837
838  ///Returns a \ref WrapWriteMap class
839
840  ///This function just returns a \ref WrapWriteMap class.
841  ///\relates WrapWriteMap
842  template<typename M>
843  inline WrapWriteMap<M> wrapWriteMap(M &map) {
844    return WrapWriteMap<M>(map);
845  }
846
847
848  /// Sum of two maps
849
850  /// This \ref concepts::ReadMap "read only map" returns the sum
851  /// of the values of the two given maps.
852  /// Its \c Key and \c Value types are inherited from \c M1.
853  /// The \c Key and \c Value of \c M2 must be convertible to those of
854  /// \c M1.
855  ///
856  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
857  /// \code
858  ///   AddMap<M1,M2> am(m1,m2);
859  /// \endcode
860  /// <tt>am[x]</tt> will be equal to <tt>m1[x]+m2[x]</tt>.
861  ///
862  /// The simplest way of using this map is through the addMap()
863  /// function.
864  ///
865  /// \sa SubMap, MulMap, DivMap
866  /// \sa ShiftMap, ShiftWriteMap
867  template<typename M1, typename M2>
868  class AddMap : public MapBase<typename M1::Key, typename M1::Value> {
869    const M1 &_m1;
870    const M2 &_m2;
871  public:
872    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
873    typedef typename Parent::Key Key;
874    typedef typename Parent::Value Value;
875
876    /// Constructor
877    AddMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
878    /// \e
879    Value operator[](const Key &k) const { return _m1[k]+_m2[k]; }
880  };
881
882  /// Returns an \ref AddMap class
883
884  /// This function just returns an \ref AddMap class.
885  ///
886  /// For example, if \c m1 and \c m2 are both maps with \c double
887  /// values, then <tt>addMap(m1,m2)[x]</tt> will be equal to
888  /// <tt>m1[x]+m2[x]</tt>.
889  ///
890  /// \relates AddMap
891  template<typename M1, typename M2>
892  inline AddMap<M1, M2> addMap(const M1 &m1, const M2 &m2) {
893    return AddMap<M1, M2>(m1,m2);
894  }
895
896
897  /// Difference of two maps
898
899  /// This \ref concepts::ReadMap "read only map" returns the difference
900  /// of the values of the two given maps.
901  /// Its \c Key and \c Value types are inherited from \c M1.
902  /// The \c Key and \c Value of \c M2 must be convertible to those of
903  /// \c M1.
904  ///
905  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
906  /// \code
907  ///   SubMap<M1,M2> sm(m1,m2);
908  /// \endcode
909  /// <tt>sm[x]</tt> will be equal to <tt>m1[x]-m2[x]</tt>.
910  ///
911  /// The simplest way of using this map is through the subMap()
912  /// function.
913  ///
914  /// \sa AddMap, MulMap, DivMap
915  template<typename M1, typename M2>
916  class SubMap : public MapBase<typename M1::Key, typename M1::Value> {
917    const M1 &_m1;
918    const M2 &_m2;
919  public:
920    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
921    typedef typename Parent::Key Key;
922    typedef typename Parent::Value Value;
923
924    /// Constructor
925    SubMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
926    /// \e
927    Value operator[](const Key &k) const { return _m1[k]-_m2[k]; }
928  };
929
930  /// Returns a \ref SubMap class
931
932  /// This function just returns a \ref SubMap class.
933  ///
934  /// For example, if \c m1 and \c m2 are both maps with \c double
935  /// values, then <tt>subMap(m1,m2)[x]</tt> will be equal to
936  /// <tt>m1[x]-m2[x]</tt>.
937  ///
938  /// \relates SubMap
939  template<typename M1, typename M2>
940  inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) {
941    return SubMap<M1, M2>(m1,m2);
942  }
943
944
945  /// Product of two maps
946
947  /// This \ref concepts::ReadMap "read only map" returns the product
948  /// of the values of the two given maps.
949  /// Its \c Key and \c Value types are inherited from \c M1.
950  /// The \c Key and \c Value of \c M2 must be convertible to those of
951  /// \c M1.
952  ///
953  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
954  /// \code
955  ///   MulMap<M1,M2> mm(m1,m2);
956  /// \endcode
957  /// <tt>mm[x]</tt> will be equal to <tt>m1[x]*m2[x]</tt>.
958  ///
959  /// The simplest way of using this map is through the mulMap()
960  /// function.
961  ///
962  /// \sa AddMap, SubMap, DivMap
963  /// \sa ScaleMap, ScaleWriteMap
964  template<typename M1, typename M2>
965  class MulMap : public MapBase<typename M1::Key, typename M1::Value> {
966    const M1 &_m1;
967    const M2 &_m2;
968  public:
969    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
970    typedef typename Parent::Key Key;
971    typedef typename Parent::Value Value;
972
973    /// Constructor
974    MulMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
975    /// \e
976    Value operator[](const Key &k) const { return _m1[k]*_m2[k]; }
977  };
978
979  /// Returns a \ref MulMap class
980
981  /// This function just returns a \ref MulMap class.
982  ///
983  /// For example, if \c m1 and \c m2 are both maps with \c double
984  /// values, then <tt>mulMap(m1,m2)[x]</tt> will be equal to
985  /// <tt>m1[x]*m2[x]</tt>.
986  ///
987  /// \relates MulMap
988  template<typename M1, typename M2>
989  inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) {
990    return MulMap<M1, M2>(m1,m2);
991  }
992
993
994  /// Quotient of two maps
995
996  /// This \ref concepts::ReadMap "read only map" returns the quotient
997  /// of the values of the two given maps.
998  /// Its \c Key and \c Value types are inherited from \c M1.
999  /// The \c Key and \c Value of \c M2 must be convertible to those of
1000  /// \c M1.
1001  ///
1002  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
1003  /// \code
1004  ///   DivMap<M1,M2> dm(m1,m2);
1005  /// \endcode
1006  /// <tt>dm[x]</tt> will be equal to <tt>m1[x]/m2[x]</tt>.
1007  ///
1008  /// The simplest way of using this map is through the divMap()
1009  /// function.
1010  ///
1011  /// \sa AddMap, SubMap, MulMap
1012  template<typename M1, typename M2>
1013  class DivMap : public MapBase<typename M1::Key, typename M1::Value> {
1014    const M1 &_m1;
1015    const M2 &_m2;
1016  public:
1017    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
1018    typedef typename Parent::Key Key;
1019    typedef typename Parent::Value Value;
1020
1021    /// Constructor
1022    DivMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
1023    /// \e
1024    Value operator[](const Key &k) const { return _m1[k]/_m2[k]; }
1025  };
1026
1027  /// Returns a \ref DivMap class
1028
1029  /// This function just returns a \ref DivMap class.
1030  ///
1031  /// For example, if \c m1 and \c m2 are both maps with \c double
1032  /// values, then <tt>divMap(m1,m2)[x]</tt> will be equal to
1033  /// <tt>m1[x]/m2[x]</tt>.
1034  ///
1035  /// \relates DivMap
1036  template<typename M1, typename M2>
1037  inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) {
1038    return DivMap<M1, M2>(m1,m2);
1039  }
1040
1041
1042  /// Shifts a map with a constant.
1043
1044  /// This \ref concepts::ReadMap "read only map" returns the sum of
1045  /// the given map and a constant value (i.e. it shifts the map with
1046  /// the constant). Its \c Key and \c Value are inherited from \c M.
1047  ///
1048  /// Actually,
1049  /// \code
1050  ///   ShiftMap<M> sh(m,v);
1051  /// \endcode
1052  /// is equivalent to
1053  /// \code
1054  ///   ConstMap<M::Key, M::Value> cm(v);
1055  ///   AddMap<M, ConstMap<M::Key, M::Value> > sh(m,cm);
1056  /// \endcode
1057  ///
1058  /// The simplest way of using this map is through the shiftMap()
1059  /// function.
1060  ///
1061  /// \sa ShiftWriteMap
1062  template<typename M, typename C = typename M::Value>
1063  class ShiftMap : public MapBase<typename M::Key, typename M::Value> {
1064    const M &_m;
1065    C _v;
1066  public:
1067    typedef MapBase<typename M::Key, typename M::Value> Parent;
1068    typedef typename Parent::Key Key;
1069    typedef typename Parent::Value Value;
1070
1071    /// Constructor
1072
1073    /// Constructor.
1074    /// \param m The undelying map.
1075    /// \param v The constant value.
1076    ShiftMap(const M &m, const C &v) : _m(m), _v(v) {}
1077    /// \e
1078    Value operator[](const Key &k) const { return _m[k]+_v; }
1079  };
1080
1081  /// Shifts a map with a constant (read-write version).
1082
1083  /// This \ref concepts::ReadWriteMap "read-write map" returns the sum
1084  /// of the given map and a constant value (i.e. it shifts the map with
1085  /// the constant). Its \c Key and \c Value are inherited from \c M.
1086  /// It makes also possible to write the map.
1087  ///
1088  /// The simplest way of using this map is through the shiftWriteMap()
1089  /// function.
1090  ///
1091  /// \sa ShiftMap
1092  template<typename M, typename C = typename M::Value>
1093  class ShiftWriteMap : public MapBase<typename M::Key, typename M::Value> {
1094    M &_m;
1095    C _v;
1096  public:
1097    typedef MapBase<typename M::Key, typename M::Value> Parent;
1098    typedef typename Parent::Key Key;
1099    typedef typename Parent::Value Value;
1100
1101    /// Constructor
1102
1103    /// Constructor.
1104    /// \param m The undelying map.
1105    /// \param v The constant value.
1106    ShiftWriteMap(M &m, const C &v) : _m(m), _v(v) {}
1107    /// \e
1108    Value operator[](const Key &k) const { return _m[k]+_v; }
1109    /// \e
1110    void set(const Key &k, const Value &v) { _m.set(k, v-_v); }
1111  };
1112
1113  /// Returns a \ref ShiftMap class
1114
1115  /// This function just returns a \ref ShiftMap class.
1116  ///
1117  /// For example, if \c m is a map with \c double values and \c v is
1118  /// \c double, then <tt>shiftMap(m,v)[x]</tt> will be equal to
1119  /// <tt>m[x]+v</tt>.
1120  ///
1121  /// \relates ShiftMap
1122  template<typename M, typename C>
1123  inline ShiftMap<M, C> shiftMap(const M &m, const C &v) {
1124    return ShiftMap<M, C>(m,v);
1125  }
1126
1127  /// Returns a \ref ShiftWriteMap class
1128
1129  /// This function just returns a \ref ShiftWriteMap class.
1130  ///
1131  /// For example, if \c m is a map with \c double values and \c v is
1132  /// \c double, then <tt>shiftWriteMap(m,v)[x]</tt> will be equal to
1133  /// <tt>m[x]+v</tt>.
1134  /// Moreover it makes also possible to write the map.
1135  ///
1136  /// \relates ShiftWriteMap
1137  template<typename M, typename C>
1138  inline ShiftWriteMap<M, C> shiftWriteMap(M &m, const C &v) {
1139    return ShiftWriteMap<M, C>(m,v);
1140  }
1141
1142
1143  /// Scales a map with a constant.
1144
1145  /// This \ref concepts::ReadMap "read only map" returns the value of
1146  /// the given map multiplied from the left side with a constant value.
1147  /// Its \c Key and \c Value are inherited from \c M.
1148  ///
1149  /// Actually,
1150  /// \code
1151  ///   ScaleMap<M> sc(m,v);
1152  /// \endcode
1153  /// is equivalent to
1154  /// \code
1155  ///   ConstMap<M::Key, M::Value> cm(v);
1156  ///   MulMap<ConstMap<M::Key, M::Value>, M> sc(cm,m);
1157  /// \endcode
1158  ///
1159  /// The simplest way of using this map is through the scaleMap()
1160  /// function.
1161  ///
1162  /// \sa ScaleWriteMap
1163  template<typename M, typename C = typename M::Value>
1164  class ScaleMap : public MapBase<typename M::Key, typename M::Value> {
1165    const M &_m;
1166    C _v;
1167  public:
1168    typedef MapBase<typename M::Key, typename M::Value> Parent;
1169    typedef typename Parent::Key Key;
1170    typedef typename Parent::Value Value;
1171
1172    /// Constructor
1173
1174    /// Constructor.
1175    /// \param m The undelying map.
1176    /// \param v The constant value.
1177    ScaleMap(const M &m, const C &v) : _m(m), _v(v) {}
1178    /// \e
1179    Value operator[](const Key &k) const { return _v*_m[k]; }
1180  };
1181
1182  /// Scales a map with a constant (read-write version).
1183
1184  /// This \ref concepts::ReadWriteMap "read-write map" returns the value of
1185  /// the given map multiplied from the left side with a constant value.
1186  /// Its \c Key and \c Value are inherited from \c M.
1187  /// It can also be used as write map if the \c / operator is defined
1188  /// between \c Value and \c C and the given multiplier is not zero.
1189  ///
1190  /// The simplest way of using this map is through the scaleWriteMap()
1191  /// function.
1192  ///
1193  /// \sa ScaleMap
1194  template<typename M, typename C = typename M::Value>
1195  class ScaleWriteMap : public MapBase<typename M::Key, typename M::Value> {
1196    M &_m;
1197    C _v;
1198  public:
1199    typedef MapBase<typename M::Key, typename M::Value> Parent;
1200    typedef typename Parent::Key Key;
1201    typedef typename Parent::Value Value;
1202
1203    /// Constructor
1204
1205    /// Constructor.
1206    /// \param m The undelying map.
1207    /// \param v The constant value.
1208    ScaleWriteMap(M &m, const C &v) : _m(m), _v(v) {}
1209    /// \e
1210    Value operator[](const Key &k) const { return _v*_m[k]; }
1211    /// \e
1212    void set(const Key &k, const Value &v) { _m.set(k, v/_v); }
1213  };
1214
1215  /// Returns a \ref ScaleMap class
1216
1217  /// This function just returns a \ref ScaleMap class.
1218  ///
1219  /// For example, if \c m is a map with \c double values and \c v is
1220  /// \c double, then <tt>scaleMap(m,v)[x]</tt> will be equal to
1221  /// <tt>v*m[x]</tt>.
1222  ///
1223  /// \relates ScaleMap
1224  template<typename M, typename C>
1225  inline ScaleMap<M, C> scaleMap(const M &m, const C &v) {
1226    return ScaleMap<M, C>(m,v);
1227  }
1228
1229  /// Returns a \ref ScaleWriteMap class
1230
1231  /// This function just returns a \ref ScaleWriteMap class.
1232  ///
1233  /// For example, if \c m is a map with \c double values and \c v is
1234  /// \c double, then <tt>scaleWriteMap(m,v)[x]</tt> will be equal to
1235  /// <tt>v*m[x]</tt>.
1236  /// Moreover it makes also possible to write the map.
1237  ///
1238  /// \relates ScaleWriteMap
1239  template<typename M, typename C>
1240  inline ScaleWriteMap<M, C> scaleWriteMap(M &m, const C &v) {
1241    return ScaleWriteMap<M, C>(m,v);
1242  }
1243
1244
1245  /// Negative of a map
1246
1247  /// This \ref concepts::ReadMap "read only map" returns the negative
1248  /// of the values of the given map (using the unary \c - operator).
1249  /// Its \c Key and \c Value are inherited from \c M.
1250  ///
1251  /// If M::Value is \c int, \c double etc., then
1252  /// \code
1253  ///   NegMap<M> neg(m);
1254  /// \endcode
1255  /// is equivalent to
1256  /// \code
1257  ///   ScaleMap<M> neg(m,-1);
1258  /// \endcode
1259  ///
1260  /// The simplest way of using this map is through the negMap()
1261  /// function.
1262  ///
1263  /// \sa NegWriteMap
1264  template<typename M>
1265  class NegMap : public MapBase<typename M::Key, typename M::Value> {
1266    const M& _m;
1267  public:
1268    typedef MapBase<typename M::Key, typename M::Value> Parent;
1269    typedef typename Parent::Key Key;
1270    typedef typename Parent::Value Value;
1271
1272    /// Constructor
1273    NegMap(const M &m) : _m(m) {}
1274    /// \e
1275    Value operator[](const Key &k) const { return -_m[k]; }
1276  };
1277
1278  /// Negative of a map (read-write version)
1279
1280  /// This \ref concepts::ReadWriteMap "read-write map" returns the
1281  /// negative of the values of the given map (using the unary \c -
1282  /// operator).
1283  /// Its \c Key and \c Value are inherited from \c M.
1284  /// It makes also possible to write the map.
1285  ///
1286  /// If M::Value is \c int, \c double etc., then
1287  /// \code
1288  ///   NegWriteMap<M> neg(m);
1289  /// \endcode
1290  /// is equivalent to
1291  /// \code
1292  ///   ScaleWriteMap<M> neg(m,-1);
1293  /// \endcode
1294  ///
1295  /// The simplest way of using this map is through the negWriteMap()
1296  /// function.
1297  ///
1298  /// \sa NegMap
1299  template<typename M>
1300  class NegWriteMap : public MapBase<typename M::Key, typename M::Value> {
1301    M &_m;
1302  public:
1303    typedef MapBase<typename M::Key, typename M::Value> Parent;
1304    typedef typename Parent::Key Key;
1305    typedef typename Parent::Value Value;
1306
1307    /// Constructor
1308    NegWriteMap(M &m) : _m(m) {}
1309    /// \e
1310    Value operator[](const Key &k) const { return -_m[k]; }
1311    /// \e
1312    void set(const Key &k, const Value &v) { _m.set(k, -v); }
1313  };
1314
1315  /// Returns a \ref NegMap class
1316
1317  /// This function just returns a \ref NegMap class.
1318  ///
1319  /// For example, if \c m is a map with \c double values, then
1320  /// <tt>negMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>.
1321  ///
1322  /// \relates NegMap
1323  template <typename M>
1324  inline NegMap<M> negMap(const M &m) {
1325    return NegMap<M>(m);
1326  }
1327
1328  /// Returns a \ref NegWriteMap class
1329
1330  /// This function just returns a \ref NegWriteMap class.
1331  ///
1332  /// For example, if \c m is a map with \c double values, then
1333  /// <tt>negWriteMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>.
1334  /// Moreover it makes also possible to write the map.
1335  ///
1336  /// \relates NegWriteMap
1337  template <typename M>
1338  inline NegWriteMap<M> negWriteMap(M &m) {
1339    return NegWriteMap<M>(m);
1340  }
1341
1342
1343  /// Absolute value of a map
1344
1345  /// This \ref concepts::ReadMap "read only map" returns the absolute
1346  /// value of the values of the given map.
1347  /// Its \c Key and \c Value are inherited from \c M.
1348  /// \c Value must be comparable to \c 0 and the unary \c -
1349  /// operator must be defined for it, of course.
1350  ///
1351  /// The simplest way of using this map is through the absMap()
1352  /// function.
1353  template<typename M>
1354  class AbsMap : public MapBase<typename M::Key, typename M::Value> {
1355    const M &_m;
1356  public:
1357    typedef MapBase<typename M::Key, typename M::Value> Parent;
1358    typedef typename Parent::Key Key;
1359    typedef typename Parent::Value Value;
1360
1361    /// Constructor
1362    AbsMap(const M &m) : _m(m) {}
1363    /// \e
1364    Value operator[](const Key &k) const {
1365      Value tmp = _m[k];
1366      return tmp >= 0 ? tmp : -tmp;
1367    }
1368
1369  };
1370
1371  /// Returns an \ref AbsMap class
1372
1373  /// This function just returns an \ref AbsMap class.
1374  ///
1375  /// For example, if \c m is a map with \c double values, then
1376  /// <tt>absMap(m)[x]</tt> will be equal to <tt>m[x]</tt> if
1377  /// it is positive or zero and <tt>-m[x]</tt> if <tt>m[x]</tt> is
1378  /// negative.
1379  ///
1380  /// \relates AbsMap
1381  template<typename M>
1382  inline AbsMap<M> absMap(const M &m) {
1383    return AbsMap<M>(m);
1384  }
1385
1386
1387  /// Logical 'not' of a map
1388
1389  /// This \ref concepts::ReadMap "read only map" returns the logical
1390  /// negation of the values of the given map.
1391  /// Its \c Key is inherited from \c M and its \c Value is \c bool.
1392  ///
1393  /// The simplest way of using this map is through the notMap()
1394  /// function.
1395  ///
1396  /// \sa NotWriteMap
1397  template <typename M>
1398  class NotMap : public MapBase<typename M::Key, bool> {
1399    const M &_m;
1400  public:
1401    typedef MapBase<typename M::Key, bool> Parent;
1402    typedef typename Parent::Key Key;
1403    typedef typename Parent::Value Value;
1404
1405    /// Constructor
1406    NotMap(const M &m) : _m(m) {}
1407    /// \e
1408    Value operator[](const Key &k) const { return !_m[k]; }
1409  };
1410
1411  /// Logical 'not' of a map (read-write version)
1412
1413  /// This \ref concepts::ReadWriteMap "read-write map" returns the
1414  /// logical negation of the values of the given map.
1415  /// Its \c Key is inherited from \c M and its \c Value is \c bool.
1416  /// It makes also possible to write the map. When a value is set,
1417  /// the opposite value is set to the original map.
1418  ///
1419  /// The simplest way of using this map is through the notWriteMap()
1420  /// function.
1421  ///
1422  /// \sa NotMap
1423  template <typename M>
1424  class NotWriteMap : public MapBase<typename M::Key, bool> {
1425    M &_m;
1426  public:
1427    typedef MapBase<typename M::Key, bool> Parent;
1428    typedef typename Parent::Key Key;
1429    typedef typename Parent::Value Value;
1430
1431    /// Constructor
1432    NotWriteMap(M &m) : _m(m) {}
1433    /// \e
1434    Value operator[](const Key &k) const { return !_m[k]; }
1435    /// \e
1436    void set(const Key &k, bool v) { _m.set(k, !v); }
1437  };
1438
1439  /// Returns a \ref NotMap class
1440
1441  /// This function just returns a \ref NotMap class.
1442  ///
1443  /// For example, if \c m is a map with \c bool values, then
1444  /// <tt>notMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>.
1445  ///
1446  /// \relates NotMap
1447  template <typename M>
1448  inline NotMap<M> notMap(const M &m) {
1449    return NotMap<M>(m);
1450  }
1451
1452  /// Returns a \ref NotWriteMap class
1453
1454  /// This function just returns a \ref NotWriteMap class.
1455  ///
1456  /// For example, if \c m is a map with \c bool values, then
1457  /// <tt>notWriteMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>.
1458  /// Moreover it makes also possible to write the map.
1459  ///
1460  /// \relates NotWriteMap
1461  template <typename M>
1462  inline NotWriteMap<M> notWriteMap(M &m) {
1463    return NotWriteMap<M>(m);
1464  }
1465
1466
1467  namespace _maps_bits {
1468
1469    template <typename Value>
1470    struct Identity {
1471      typedef Value argument_type;
1472      typedef Value result_type;
1473      Value operator()(const Value& val) const {
1474        return val;
1475      }
1476    };
1477
1478    template <typename _Iterator, typename Enable = void>
1479    struct IteratorTraits {
1480      typedef typename std::iterator_traits<_Iterator>::value_type Value;
1481    };
1482
1483    template <typename _Iterator>
1484    struct IteratorTraits<_Iterator,
1485      typename exists<typename _Iterator::container_type>::type>
1486    {
1487      typedef typename _Iterator::container_type::value_type Value;
1488    };
1489
1490  }
1491
1492
1493  /// \brief Writable bool map for logging each \c true assigned element
1494  ///
1495  /// A \ref concepts::ReadWriteMap "read-write" bool map for logging
1496  /// each \c true assigned element, i.e it copies all the keys set
1497  /// to \c true to the given iterator.
1498  ///
1499  /// \note The container of the iterator should contain space
1500  /// for each element.
1501  ///
1502  /// The following example shows how you can write the edges found by
1503  /// the \ref Prim algorithm directly to the standard output.
1504  /// \code
1505  ///   typedef IdMap<Graph, Edge> EdgeIdMap;
1506  ///   EdgeIdMap edgeId(graph);
1507  ///
1508  ///   typedef MapToFunctor<EdgeIdMap> EdgeIdFunctor;
1509  ///   EdgeIdFunctor edgeIdFunctor(edgeId);
1510  ///
1511  ///   StoreBoolMap<ostream_iterator<int>, EdgeIdFunctor>
1512  ///     writerMap(ostream_iterator<int>(cout, " "), edgeIdFunctor);
1513  ///
1514  ///   prim(graph, cost, writerMap);
1515  /// \endcode
1516  ///
1517  /// \sa BackInserterBoolMap
1518  /// \sa FrontInserterBoolMap
1519  /// \sa InserterBoolMap
1520  ///
1521  /// \todo Revise the name of this class and the related ones.
1522  template <typename _Iterator,
1523            typename _Functor =
1524            _maps_bits::Identity<typename _maps_bits::
1525                                 IteratorTraits<_Iterator>::Value> >
1526  class StoreBoolMap {
1527  public:
1528    typedef _Iterator Iterator;
1529
1530    typedef typename _Functor::argument_type Key;
1531    typedef bool Value;
1532
1533    typedef _Functor Functor;
1534
1535    /// Constructor
1536    StoreBoolMap(Iterator it, const Functor& functor = Functor())
1537      : _begin(it), _end(it), _functor(functor) {}
1538
1539    /// Gives back the given iterator set for the first key
1540    Iterator begin() const {
1541      return _begin;
1542    }
1543
1544    /// Gives back the the 'after the last' iterator
1545    Iterator end() const {
1546      return _end;
1547    }
1548
1549    /// The set function of the map
1550    void set(const Key& key, Value value) const {
1551      if (value) {
1552        *_end++ = _functor(key);
1553      }
1554    }
1555
1556  private:
1557    Iterator _begin;
1558    mutable Iterator _end;
1559    Functor _functor;
1560  };
1561
1562  /// \brief Writable bool map for logging each \c true assigned element in
1563  /// a back insertable container.
1564  ///
1565  /// Writable bool map for logging each \c true assigned element by pushing
1566  /// them into a back insertable container.
1567  /// It can be used to retrieve the items into a standard
1568  /// container. The next example shows how you can store the
1569  /// edges found by the Prim algorithm in a vector.
1570  ///
1571  /// \code
1572  ///   vector<Edge> span_tree_edges;
1573  ///   BackInserterBoolMap<vector<Edge> > inserter_map(span_tree_edges);
1574  ///   prim(graph, cost, inserter_map);
1575  /// \endcode
1576  ///
1577  /// \sa StoreBoolMap
1578  /// \sa FrontInserterBoolMap
1579  /// \sa InserterBoolMap
1580  template <typename Container,
1581            typename Functor =
1582            _maps_bits::Identity<typename Container::value_type> >
1583  class BackInserterBoolMap {
1584  public:
1585    typedef typename Functor::argument_type Key;
1586    typedef bool Value;
1587
1588    /// Constructor
1589    BackInserterBoolMap(Container& _container,
1590                        const Functor& _functor = Functor())
1591      : container(_container), functor(_functor) {}
1592
1593    /// The set function of the map
1594    void set(const Key& key, Value value) {
1595      if (value) {
1596        container.push_back(functor(key));
1597      }
1598    }
1599
1600  private:
1601    Container& container;
1602    Functor functor;
1603  };
1604
1605  /// \brief Writable bool map for logging each \c true assigned element in
1606  /// a front insertable container.
1607  ///
1608  /// Writable bool map for logging each \c true assigned element by pushing
1609  /// them into a front insertable container.
1610  /// It can be used to retrieve the items into a standard
1611  /// container. For example see \ref BackInserterBoolMap.
1612  ///
1613  /// \sa BackInserterBoolMap
1614  /// \sa InserterBoolMap
1615  template <typename Container,
1616            typename Functor =
1617            _maps_bits::Identity<typename Container::value_type> >
1618  class FrontInserterBoolMap {
1619  public:
1620    typedef typename Functor::argument_type Key;
1621    typedef bool Value;
1622
1623    /// Constructor
1624    FrontInserterBoolMap(Container& _container,
1625                         const Functor& _functor = Functor())
1626      : container(_container), functor(_functor) {}
1627
1628    /// The set function of the map
1629    void set(const Key& key, Value value) {
1630      if (value) {
1631        container.push_front(functor(key));
1632      }
1633    }
1634
1635  private:
1636    Container& container;
1637    Functor functor;
1638  };
1639
1640  /// \brief Writable bool map for storing each \c true assigned element in
1641  /// an insertable container.
1642  ///
1643  /// Writable bool map for storing each \c true assigned element in an
1644  /// insertable container. It will insert all the keys set to \c true into
1645  /// the container.
1646  ///
1647  /// For example, if you want to store the cut arcs of the strongly
1648  /// connected components in a set you can use the next code:
1649  ///
1650  /// \code
1651  ///   set<Arc> cut_arcs;
1652  ///   InserterBoolMap<set<Arc> > inserter_map(cut_arcs);
1653  ///   stronglyConnectedCutArcs(digraph, cost, inserter_map);
1654  /// \endcode
1655  ///
1656  /// \sa BackInserterBoolMap
1657  /// \sa FrontInserterBoolMap
1658  template <typename Container,
1659            typename Functor =
1660            _maps_bits::Identity<typename Container::value_type> >
1661  class InserterBoolMap {
1662  public:
1663    typedef typename Container::value_type Key;
1664    typedef bool Value;
1665
1666    /// Constructor with specified iterator
1667
1668    /// Constructor with specified iterator.
1669    /// \param _container The container for storing the elements.
1670    /// \param _it The elements will be inserted before this iterator.
1671    /// \param _functor The functor that is used when an element is stored.
1672    InserterBoolMap(Container& _container, typename Container::iterator _it,
1673                    const Functor& _functor = Functor())
1674      : container(_container), it(_it), functor(_functor) {}
1675
1676    /// Constructor
1677
1678    /// Constructor without specified iterator.
1679    /// The elements will be inserted before <tt>_container.end()</tt>.
1680    /// \param _container The container for storing the elements.
1681    /// \param _functor The functor that is used when an element is stored.
1682    InserterBoolMap(Container& _container, const Functor& _functor = Functor())
1683      : container(_container), it(_container.end()), functor(_functor) {}
1684
1685    /// The set function of the map
1686    void set(const Key& key, Value value) {
1687      if (value) {
1688        it = container.insert(it, functor(key));
1689        ++it;
1690      }
1691    }
1692
1693  private:
1694    Container& container;
1695    typename Container::iterator it;
1696    Functor functor;
1697  };
1698
1699  /// \brief Writable bool map for filling each \c true assigned element with a
1700  /// given value.
1701  ///
1702  /// Writable bool map for filling each \c true assigned element with a
1703  /// given value. The value can set the container.
1704  ///
1705  /// The following code finds the connected components of a graph
1706  /// and stores it in the \c comp map:
1707  /// \code
1708  ///   typedef Graph::NodeMap<int> ComponentMap;
1709  ///   ComponentMap comp(graph);
1710  ///   typedef FillBoolMap<Graph::NodeMap<int> > ComponentFillerMap;
1711  ///   ComponentFillerMap filler(comp, 0);
1712  ///
1713  ///   Dfs<Graph>::DefProcessedMap<ComponentFillerMap>::Create dfs(graph);
1714  ///   dfs.processedMap(filler);
1715  ///   dfs.init();
1716  ///   for (NodeIt it(graph); it != INVALID; ++it) {
1717  ///     if (!dfs.reached(it)) {
1718  ///       dfs.addSource(it);
1719  ///       dfs.start();
1720  ///       ++filler.fillValue();
1721  ///     }
1722  ///   }
1723  /// \endcode
1724  template <typename Map>
1725  class FillBoolMap {
1726  public:
1727    typedef typename Map::Key Key;
1728    typedef bool Value;
1729
1730    /// Constructor
1731    FillBoolMap(Map& _map, const typename Map::Value& _fill)
1732      : map(_map), fill(_fill) {}
1733
1734    /// Constructor
1735    FillBoolMap(Map& _map)
1736      : map(_map), fill() {}
1737
1738    /// Gives back the current fill value
1739    const typename Map::Value& fillValue() const {
1740      return fill;
1741    }
1742
1743    /// Gives back the current fill value
1744    typename Map::Value& fillValue() {
1745      return fill;
1746    }
1747
1748    /// Sets the current fill value
1749    void fillValue(const typename Map::Value& _fill) {
1750      fill = _fill;
1751    }
1752
1753    /// The set function of the map
1754    void set(const Key& key, Value value) {
1755      if (value) {
1756        map.set(key, fill);
1757      }
1758    }
1759
1760  private:
1761    Map& map;
1762    typename Map::Value fill;
1763  };
1764
1765
1766  /// \brief Writable bool map for storing the sequence number of
1767  /// \c true assignments.
1768  ///
1769  /// Writable bool map that stores for each \c true assigned elements
1770  /// the sequence number of this setting.
1771  /// It makes it easy to calculate the leaving
1772  /// order of the nodes in the \ref Dfs algorithm.
1773  ///
1774  /// \code
1775  ///   typedef Digraph::NodeMap<int> OrderMap;
1776  ///   OrderMap order(digraph);
1777  ///   typedef SettingOrderBoolMap<OrderMap> OrderSetterMap;
1778  ///   OrderSetterMap setter(order);
1779  ///   Dfs<Digraph>::DefProcessedMap<OrderSetterMap>::Create dfs(digraph);
1780  ///   dfs.processedMap(setter);
1781  ///   dfs.init();
1782  ///   for (NodeIt it(digraph); it != INVALID; ++it) {
1783  ///     if (!dfs.reached(it)) {
1784  ///       dfs.addSource(it);
1785  ///       dfs.start();
1786  ///     }
1787  ///   }
1788  /// \endcode
1789  ///
1790  /// The storing of the discovering order is more difficult because the
1791  /// ReachedMap should be readable in the dfs algorithm but the setting
1792  /// order map is not readable. Thus we must use the fork map:
1793  ///
1794  /// \code
1795  ///   typedef Digraph::NodeMap<int> OrderMap;
1796  ///   OrderMap order(digraph);
1797  ///   typedef SettingOrderBoolMap<OrderMap> OrderSetterMap;
1798  ///   OrderSetterMap setter(order);
1799  ///   typedef Digraph::NodeMap<bool> StoreMap;
1800  ///   StoreMap store(digraph);
1801  ///
1802  ///   typedef ForkMap<StoreMap, OrderSetterMap> ReachedMap;
1803  ///   ReachedMap reached(store, setter);
1804  ///
1805  ///   Dfs<Digraph>::DefReachedMap<ReachedMap>::Create dfs(digraph);
1806  ///   dfs.reachedMap(reached);
1807  ///   dfs.init();
1808  ///   for (NodeIt it(digraph); it != INVALID; ++it) {
1809  ///     if (!dfs.reached(it)) {
1810  ///       dfs.addSource(it);
1811  ///       dfs.start();
1812  ///     }
1813  ///   }
1814  /// \endcode
1815  template <typename Map>
1816  class SettingOrderBoolMap {
1817  public:
1818    typedef typename Map::Key Key;
1819    typedef bool Value;
1820
1821    /// Constructor
1822    SettingOrderBoolMap(Map& _map)
1823      : map(_map), counter(0) {}
1824
1825    /// Number of set operations.
1826    int num() const {
1827      return counter;
1828    }
1829
1830    /// The set function of the map
1831    void set(const Key& key, Value value) {
1832      if (value) {
1833        map.set(key, counter++);
1834      }
1835    }
1836
1837  private:
1838    Map& map;
1839    int counter;
1840  };
1841
1842  /// @}
1843}
1844
1845#endif // LEMON_MAPS_H
Note: See TracBrowser for help on using the repository browser.