[601] | 1 | /* -*- mode: C++; indent-tabs-mode: nil; -*- |
---|
| 2 | * |
---|
| 3 | * This file is a part of LEMON, a generic C++ optimization library. |
---|
| 4 | * |
---|
[877] | 5 | * Copyright (C) 2003-2010 |
---|
[601] | 6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
| 7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
---|
| 8 | * |
---|
| 9 | * Permission to use, modify and distribute this software is granted |
---|
| 10 | * provided that this copyright notice appears in all copies. For |
---|
| 11 | * precise terms see the accompanying LICENSE file. |
---|
| 12 | * |
---|
| 13 | * This software is provided "AS IS" with no warranty of any kind, |
---|
| 14 | * express or implied, and with no claim as to its suitability for any |
---|
| 15 | * purpose. |
---|
| 16 | * |
---|
| 17 | */ |
---|
| 18 | |
---|
| 19 | #ifndef LEMON_NETWORK_SIMPLEX_H |
---|
| 20 | #define LEMON_NETWORK_SIMPLEX_H |
---|
| 21 | |
---|
[663] | 22 | /// \ingroup min_cost_flow_algs |
---|
[601] | 23 | /// |
---|
| 24 | /// \file |
---|
[605] | 25 | /// \brief Network Simplex algorithm for finding a minimum cost flow. |
---|
[601] | 26 | |
---|
| 27 | #include <vector> |
---|
| 28 | #include <limits> |
---|
| 29 | #include <algorithm> |
---|
| 30 | |
---|
[603] | 31 | #include <lemon/core.h> |
---|
[601] | 32 | #include <lemon/math.h> |
---|
| 33 | |
---|
| 34 | namespace lemon { |
---|
| 35 | |
---|
[663] | 36 | /// \addtogroup min_cost_flow_algs |
---|
[601] | 37 | /// @{ |
---|
| 38 | |
---|
[605] | 39 | /// \brief Implementation of the primal Network Simplex algorithm |
---|
[601] | 40 | /// for finding a \ref min_cost_flow "minimum cost flow". |
---|
| 41 | /// |
---|
[605] | 42 | /// \ref NetworkSimplex implements the primal Network Simplex algorithm |
---|
[755] | 43 | /// for finding a \ref min_cost_flow "minimum cost flow" |
---|
| 44 | /// \ref amo93networkflows, \ref dantzig63linearprog, |
---|
| 45 | /// \ref kellyoneill91netsimplex. |
---|
[812] | 46 | /// This algorithm is a highly efficient specialized version of the |
---|
| 47 | /// linear programming simplex method directly for the minimum cost |
---|
| 48 | /// flow problem. |
---|
[606] | 49 | /// |
---|
[812] | 50 | /// In general, %NetworkSimplex is the fastest implementation available |
---|
| 51 | /// in LEMON for this problem. |
---|
| 52 | /// Moreover, it supports both directions of the supply/demand inequality |
---|
[786] | 53 | /// constraints. For more information, see \ref SupplyType. |
---|
[640] | 54 | /// |
---|
| 55 | /// Most of the parameters of the problem (except for the digraph) |
---|
| 56 | /// can be given using separate functions, and the algorithm can be |
---|
| 57 | /// executed using the \ref run() function. If some parameters are not |
---|
| 58 | /// specified, then default values will be used. |
---|
[601] | 59 | /// |
---|
[605] | 60 | /// \tparam GR The digraph type the algorithm runs on. |
---|
[812] | 61 | /// \tparam V The number type used for flow amounts, capacity bounds |
---|
[786] | 62 | /// and supply values in the algorithm. By default, it is \c int. |
---|
[812] | 63 | /// \tparam C The number type used for costs and potentials in the |
---|
[786] | 64 | /// algorithm. By default, it is the same as \c V. |
---|
[601] | 65 | /// |
---|
[812] | 66 | /// \warning Both number types must be signed and all input data must |
---|
[608] | 67 | /// be integer. |
---|
[601] | 68 | /// |
---|
[605] | 69 | /// \note %NetworkSimplex provides five different pivot rule |
---|
[609] | 70 | /// implementations, from which the most efficient one is used |
---|
[786] | 71 | /// by default. For more information, see \ref PivotRule. |
---|
[641] | 72 | template <typename GR, typename V = int, typename C = V> |
---|
[601] | 73 | class NetworkSimplex |
---|
| 74 | { |
---|
[605] | 75 | public: |
---|
[601] | 76 | |
---|
[642] | 77 | /// The type of the flow amounts, capacity bounds and supply values |
---|
[641] | 78 | typedef V Value; |
---|
[642] | 79 | /// The type of the arc costs |
---|
[607] | 80 | typedef C Cost; |
---|
[605] | 81 | |
---|
| 82 | public: |
---|
| 83 | |
---|
[640] | 84 | /// \brief Problem type constants for the \c run() function. |
---|
[605] | 85 | /// |
---|
[640] | 86 | /// Enum type containing the problem type constants that can be |
---|
| 87 | /// returned by the \ref run() function of the algorithm. |
---|
| 88 | enum ProblemType { |
---|
| 89 | /// The problem has no feasible solution (flow). |
---|
| 90 | INFEASIBLE, |
---|
| 91 | /// The problem has optimal solution (i.e. it is feasible and |
---|
| 92 | /// bounded), and the algorithm has found optimal flow and node |
---|
| 93 | /// potentials (primal and dual solutions). |
---|
| 94 | OPTIMAL, |
---|
| 95 | /// The objective function of the problem is unbounded, i.e. |
---|
| 96 | /// there is a directed cycle having negative total cost and |
---|
| 97 | /// infinite upper bound. |
---|
| 98 | UNBOUNDED |
---|
| 99 | }; |
---|
[877] | 100 | |
---|
[640] | 101 | /// \brief Constants for selecting the type of the supply constraints. |
---|
| 102 | /// |
---|
| 103 | /// Enum type containing constants for selecting the supply type, |
---|
| 104 | /// i.e. the direction of the inequalities in the supply/demand |
---|
| 105 | /// constraints of the \ref min_cost_flow "minimum cost flow problem". |
---|
| 106 | /// |
---|
[663] | 107 | /// The default supply type is \c GEQ, the \c LEQ type can be |
---|
| 108 | /// selected using \ref supplyType(). |
---|
| 109 | /// The equality form is a special case of both supply types. |
---|
[640] | 110 | enum SupplyType { |
---|
| 111 | /// This option means that there are <em>"greater or equal"</em> |
---|
[663] | 112 | /// supply/demand constraints in the definition of the problem. |
---|
[640] | 113 | GEQ, |
---|
| 114 | /// This option means that there are <em>"less or equal"</em> |
---|
[663] | 115 | /// supply/demand constraints in the definition of the problem. |
---|
| 116 | LEQ |
---|
[640] | 117 | }; |
---|
[877] | 118 | |
---|
[640] | 119 | /// \brief Constants for selecting the pivot rule. |
---|
| 120 | /// |
---|
| 121 | /// Enum type containing constants for selecting the pivot rule for |
---|
| 122 | /// the \ref run() function. |
---|
| 123 | /// |
---|
[605] | 124 | /// \ref NetworkSimplex provides five different pivot rule |
---|
| 125 | /// implementations that significantly affect the running time |
---|
| 126 | /// of the algorithm. |
---|
[786] | 127 | /// By default, \ref BLOCK_SEARCH "Block Search" is used, which |
---|
[605] | 128 | /// proved to be the most efficient and the most robust on various |
---|
[812] | 129 | /// test inputs. |
---|
[786] | 130 | /// However, another pivot rule can be selected using the \ref run() |
---|
[605] | 131 | /// function with the proper parameter. |
---|
| 132 | enum PivotRule { |
---|
| 133 | |
---|
[786] | 134 | /// The \e First \e Eligible pivot rule. |
---|
[605] | 135 | /// The next eligible arc is selected in a wraparound fashion |
---|
| 136 | /// in every iteration. |
---|
| 137 | FIRST_ELIGIBLE, |
---|
| 138 | |
---|
[786] | 139 | /// The \e Best \e Eligible pivot rule. |
---|
[605] | 140 | /// The best eligible arc is selected in every iteration. |
---|
| 141 | BEST_ELIGIBLE, |
---|
| 142 | |
---|
[786] | 143 | /// The \e Block \e Search pivot rule. |
---|
[605] | 144 | /// A specified number of arcs are examined in every iteration |
---|
| 145 | /// in a wraparound fashion and the best eligible arc is selected |
---|
| 146 | /// from this block. |
---|
| 147 | BLOCK_SEARCH, |
---|
| 148 | |
---|
[786] | 149 | /// The \e Candidate \e List pivot rule. |
---|
[605] | 150 | /// In a major iteration a candidate list is built from eligible arcs |
---|
| 151 | /// in a wraparound fashion and in the following minor iterations |
---|
| 152 | /// the best eligible arc is selected from this list. |
---|
| 153 | CANDIDATE_LIST, |
---|
| 154 | |
---|
[786] | 155 | /// The \e Altering \e Candidate \e List pivot rule. |
---|
[605] | 156 | /// It is a modified version of the Candidate List method. |
---|
| 157 | /// It keeps only the several best eligible arcs from the former |
---|
| 158 | /// candidate list and extends this list in every iteration. |
---|
| 159 | ALTERING_LIST |
---|
| 160 | }; |
---|
[877] | 161 | |
---|
[605] | 162 | private: |
---|
| 163 | |
---|
| 164 | TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
---|
| 165 | |
---|
[601] | 166 | typedef std::vector<int> IntVector; |
---|
[642] | 167 | typedef std::vector<Value> ValueVector; |
---|
[607] | 168 | typedef std::vector<Cost> CostVector; |
---|
[839] | 169 | typedef std::vector<char> BoolVector; |
---|
| 170 | // Note: vector<char> is used instead of vector<bool> for efficiency reasons |
---|
[601] | 171 | |
---|
| 172 | // State constants for arcs |
---|
[862] | 173 | enum ArcState { |
---|
[601] | 174 | STATE_UPPER = -1, |
---|
| 175 | STATE_TREE = 0, |
---|
| 176 | STATE_LOWER = 1 |
---|
| 177 | }; |
---|
| 178 | |
---|
[862] | 179 | typedef std::vector<signed char> StateVector; |
---|
| 180 | // Note: vector<signed char> is used instead of vector<ArcState> for |
---|
| 181 | // efficiency reasons |
---|
| 182 | |
---|
[601] | 183 | private: |
---|
| 184 | |
---|
[605] | 185 | // Data related to the underlying digraph |
---|
| 186 | const GR &_graph; |
---|
| 187 | int _node_num; |
---|
| 188 | int _arc_num; |
---|
[663] | 189 | int _all_arc_num; |
---|
| 190 | int _search_arc_num; |
---|
[605] | 191 | |
---|
| 192 | // Parameters of the problem |
---|
[642] | 193 | bool _have_lower; |
---|
[640] | 194 | SupplyType _stype; |
---|
[641] | 195 | Value _sum_supply; |
---|
[601] | 196 | |
---|
[605] | 197 | // Data structures for storing the digraph |
---|
[603] | 198 | IntNodeMap _node_id; |
---|
[642] | 199 | IntArcMap _arc_id; |
---|
[603] | 200 | IntVector _source; |
---|
| 201 | IntVector _target; |
---|
[830] | 202 | bool _arc_mixing; |
---|
[603] | 203 | |
---|
[605] | 204 | // Node and arc data |
---|
[642] | 205 | ValueVector _lower; |
---|
| 206 | ValueVector _upper; |
---|
| 207 | ValueVector _cap; |
---|
[607] | 208 | CostVector _cost; |
---|
[642] | 209 | ValueVector _supply; |
---|
| 210 | ValueVector _flow; |
---|
[607] | 211 | CostVector _pi; |
---|
[601] | 212 | |
---|
[603] | 213 | // Data for storing the spanning tree structure |
---|
[601] | 214 | IntVector _parent; |
---|
| 215 | IntVector _pred; |
---|
| 216 | IntVector _thread; |
---|
[604] | 217 | IntVector _rev_thread; |
---|
| 218 | IntVector _succ_num; |
---|
| 219 | IntVector _last_succ; |
---|
| 220 | IntVector _dirty_revs; |
---|
[839] | 221 | BoolVector _forward; |
---|
[862] | 222 | StateVector _state; |
---|
[601] | 223 | int _root; |
---|
| 224 | |
---|
| 225 | // Temporary data used in the current pivot iteration |
---|
[603] | 226 | int in_arc, join, u_in, v_in, u_out, v_out; |
---|
| 227 | int first, second, right, last; |
---|
[601] | 228 | int stem, par_stem, new_stem; |
---|
[641] | 229 | Value delta; |
---|
[877] | 230 | |
---|
[811] | 231 | const Value MAX; |
---|
[601] | 232 | |
---|
[640] | 233 | public: |
---|
[877] | 234 | |
---|
[640] | 235 | /// \brief Constant for infinite upper bounds (capacities). |
---|
| 236 | /// |
---|
| 237 | /// Constant for infinite upper bounds (capacities). |
---|
[641] | 238 | /// It is \c std::numeric_limits<Value>::infinity() if available, |
---|
| 239 | /// \c std::numeric_limits<Value>::max() otherwise. |
---|
| 240 | const Value INF; |
---|
[640] | 241 | |
---|
[601] | 242 | private: |
---|
| 243 | |
---|
[605] | 244 | // Implementation of the First Eligible pivot rule |
---|
[601] | 245 | class FirstEligiblePivotRule |
---|
| 246 | { |
---|
| 247 | private: |
---|
| 248 | |
---|
| 249 | // References to the NetworkSimplex class |
---|
| 250 | const IntVector &_source; |
---|
| 251 | const IntVector &_target; |
---|
[607] | 252 | const CostVector &_cost; |
---|
[862] | 253 | const StateVector &_state; |
---|
[607] | 254 | const CostVector &_pi; |
---|
[601] | 255 | int &_in_arc; |
---|
[663] | 256 | int _search_arc_num; |
---|
[601] | 257 | |
---|
| 258 | // Pivot rule data |
---|
| 259 | int _next_arc; |
---|
| 260 | |
---|
| 261 | public: |
---|
| 262 | |
---|
[605] | 263 | // Constructor |
---|
[601] | 264 | FirstEligiblePivotRule(NetworkSimplex &ns) : |
---|
[603] | 265 | _source(ns._source), _target(ns._target), |
---|
[601] | 266 | _cost(ns._cost), _state(ns._state), _pi(ns._pi), |
---|
[663] | 267 | _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
---|
| 268 | _next_arc(0) |
---|
[601] | 269 | {} |
---|
| 270 | |
---|
[605] | 271 | // Find next entering arc |
---|
[601] | 272 | bool findEnteringArc() { |
---|
[607] | 273 | Cost c; |
---|
[839] | 274 | for (int e = _next_arc; e != _search_arc_num; ++e) { |
---|
[601] | 275 | c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
---|
| 276 | if (c < 0) { |
---|
| 277 | _in_arc = e; |
---|
| 278 | _next_arc = e + 1; |
---|
| 279 | return true; |
---|
| 280 | } |
---|
| 281 | } |
---|
[839] | 282 | for (int e = 0; e != _next_arc; ++e) { |
---|
[601] | 283 | c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
---|
| 284 | if (c < 0) { |
---|
| 285 | _in_arc = e; |
---|
| 286 | _next_arc = e + 1; |
---|
| 287 | return true; |
---|
| 288 | } |
---|
| 289 | } |
---|
| 290 | return false; |
---|
| 291 | } |
---|
| 292 | |
---|
| 293 | }; //class FirstEligiblePivotRule |
---|
| 294 | |
---|
| 295 | |
---|
[605] | 296 | // Implementation of the Best Eligible pivot rule |
---|
[601] | 297 | class BestEligiblePivotRule |
---|
| 298 | { |
---|
| 299 | private: |
---|
| 300 | |
---|
| 301 | // References to the NetworkSimplex class |
---|
| 302 | const IntVector &_source; |
---|
| 303 | const IntVector &_target; |
---|
[607] | 304 | const CostVector &_cost; |
---|
[862] | 305 | const StateVector &_state; |
---|
[607] | 306 | const CostVector &_pi; |
---|
[601] | 307 | int &_in_arc; |
---|
[663] | 308 | int _search_arc_num; |
---|
[601] | 309 | |
---|
| 310 | public: |
---|
| 311 | |
---|
[605] | 312 | // Constructor |
---|
[601] | 313 | BestEligiblePivotRule(NetworkSimplex &ns) : |
---|
[603] | 314 | _source(ns._source), _target(ns._target), |
---|
[601] | 315 | _cost(ns._cost), _state(ns._state), _pi(ns._pi), |
---|
[663] | 316 | _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num) |
---|
[601] | 317 | {} |
---|
| 318 | |
---|
[605] | 319 | // Find next entering arc |
---|
[601] | 320 | bool findEnteringArc() { |
---|
[607] | 321 | Cost c, min = 0; |
---|
[839] | 322 | for (int e = 0; e != _search_arc_num; ++e) { |
---|
[601] | 323 | c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
---|
| 324 | if (c < min) { |
---|
| 325 | min = c; |
---|
| 326 | _in_arc = e; |
---|
| 327 | } |
---|
| 328 | } |
---|
| 329 | return min < 0; |
---|
| 330 | } |
---|
| 331 | |
---|
| 332 | }; //class BestEligiblePivotRule |
---|
| 333 | |
---|
| 334 | |
---|
[605] | 335 | // Implementation of the Block Search pivot rule |
---|
[601] | 336 | class BlockSearchPivotRule |
---|
| 337 | { |
---|
| 338 | private: |
---|
| 339 | |
---|
| 340 | // References to the NetworkSimplex class |
---|
| 341 | const IntVector &_source; |
---|
| 342 | const IntVector &_target; |
---|
[607] | 343 | const CostVector &_cost; |
---|
[862] | 344 | const StateVector &_state; |
---|
[607] | 345 | const CostVector &_pi; |
---|
[601] | 346 | int &_in_arc; |
---|
[663] | 347 | int _search_arc_num; |
---|
[601] | 348 | |
---|
| 349 | // Pivot rule data |
---|
| 350 | int _block_size; |
---|
| 351 | int _next_arc; |
---|
| 352 | |
---|
| 353 | public: |
---|
| 354 | |
---|
[605] | 355 | // Constructor |
---|
[601] | 356 | BlockSearchPivotRule(NetworkSimplex &ns) : |
---|
[603] | 357 | _source(ns._source), _target(ns._target), |
---|
[601] | 358 | _cost(ns._cost), _state(ns._state), _pi(ns._pi), |
---|
[663] | 359 | _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
---|
| 360 | _next_arc(0) |
---|
[601] | 361 | { |
---|
| 362 | // The main parameters of the pivot rule |
---|
[839] | 363 | const double BLOCK_SIZE_FACTOR = 1.0; |
---|
[601] | 364 | const int MIN_BLOCK_SIZE = 10; |
---|
| 365 | |
---|
[612] | 366 | _block_size = std::max( int(BLOCK_SIZE_FACTOR * |
---|
[663] | 367 | std::sqrt(double(_search_arc_num))), |
---|
[601] | 368 | MIN_BLOCK_SIZE ); |
---|
| 369 | } |
---|
| 370 | |
---|
[605] | 371 | // Find next entering arc |
---|
[601] | 372 | bool findEnteringArc() { |
---|
[607] | 373 | Cost c, min = 0; |
---|
[601] | 374 | int cnt = _block_size; |
---|
[727] | 375 | int e; |
---|
[839] | 376 | for (e = _next_arc; e != _search_arc_num; ++e) { |
---|
[601] | 377 | c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
---|
| 378 | if (c < min) { |
---|
| 379 | min = c; |
---|
[727] | 380 | _in_arc = e; |
---|
[601] | 381 | } |
---|
| 382 | if (--cnt == 0) { |
---|
[727] | 383 | if (min < 0) goto search_end; |
---|
[601] | 384 | cnt = _block_size; |
---|
| 385 | } |
---|
| 386 | } |
---|
[839] | 387 | for (e = 0; e != _next_arc; ++e) { |
---|
[727] | 388 | c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
---|
| 389 | if (c < min) { |
---|
| 390 | min = c; |
---|
| 391 | _in_arc = e; |
---|
| 392 | } |
---|
| 393 | if (--cnt == 0) { |
---|
| 394 | if (min < 0) goto search_end; |
---|
| 395 | cnt = _block_size; |
---|
[601] | 396 | } |
---|
| 397 | } |
---|
| 398 | if (min >= 0) return false; |
---|
[727] | 399 | |
---|
| 400 | search_end: |
---|
[601] | 401 | _next_arc = e; |
---|
| 402 | return true; |
---|
| 403 | } |
---|
| 404 | |
---|
| 405 | }; //class BlockSearchPivotRule |
---|
| 406 | |
---|
| 407 | |
---|
[605] | 408 | // Implementation of the Candidate List pivot rule |
---|
[601] | 409 | class CandidateListPivotRule |
---|
| 410 | { |
---|
| 411 | private: |
---|
| 412 | |
---|
| 413 | // References to the NetworkSimplex class |
---|
| 414 | const IntVector &_source; |
---|
| 415 | const IntVector &_target; |
---|
[607] | 416 | const CostVector &_cost; |
---|
[862] | 417 | const StateVector &_state; |
---|
[607] | 418 | const CostVector &_pi; |
---|
[601] | 419 | int &_in_arc; |
---|
[663] | 420 | int _search_arc_num; |
---|
[601] | 421 | |
---|
| 422 | // Pivot rule data |
---|
| 423 | IntVector _candidates; |
---|
| 424 | int _list_length, _minor_limit; |
---|
| 425 | int _curr_length, _minor_count; |
---|
| 426 | int _next_arc; |
---|
| 427 | |
---|
| 428 | public: |
---|
| 429 | |
---|
| 430 | /// Constructor |
---|
| 431 | CandidateListPivotRule(NetworkSimplex &ns) : |
---|
[603] | 432 | _source(ns._source), _target(ns._target), |
---|
[601] | 433 | _cost(ns._cost), _state(ns._state), _pi(ns._pi), |
---|
[663] | 434 | _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
---|
| 435 | _next_arc(0) |
---|
[601] | 436 | { |
---|
| 437 | // The main parameters of the pivot rule |
---|
[727] | 438 | const double LIST_LENGTH_FACTOR = 0.25; |
---|
[601] | 439 | const int MIN_LIST_LENGTH = 10; |
---|
| 440 | const double MINOR_LIMIT_FACTOR = 0.1; |
---|
| 441 | const int MIN_MINOR_LIMIT = 3; |
---|
| 442 | |
---|
[612] | 443 | _list_length = std::max( int(LIST_LENGTH_FACTOR * |
---|
[663] | 444 | std::sqrt(double(_search_arc_num))), |
---|
[601] | 445 | MIN_LIST_LENGTH ); |
---|
| 446 | _minor_limit = std::max( int(MINOR_LIMIT_FACTOR * _list_length), |
---|
| 447 | MIN_MINOR_LIMIT ); |
---|
| 448 | _curr_length = _minor_count = 0; |
---|
| 449 | _candidates.resize(_list_length); |
---|
| 450 | } |
---|
| 451 | |
---|
| 452 | /// Find next entering arc |
---|
| 453 | bool findEnteringArc() { |
---|
[607] | 454 | Cost min, c; |
---|
[727] | 455 | int e; |
---|
[601] | 456 | if (_curr_length > 0 && _minor_count < _minor_limit) { |
---|
| 457 | // Minor iteration: select the best eligible arc from the |
---|
| 458 | // current candidate list |
---|
| 459 | ++_minor_count; |
---|
| 460 | min = 0; |
---|
| 461 | for (int i = 0; i < _curr_length; ++i) { |
---|
| 462 | e = _candidates[i]; |
---|
| 463 | c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
---|
| 464 | if (c < min) { |
---|
| 465 | min = c; |
---|
[727] | 466 | _in_arc = e; |
---|
[601] | 467 | } |
---|
[727] | 468 | else if (c >= 0) { |
---|
[601] | 469 | _candidates[i--] = _candidates[--_curr_length]; |
---|
| 470 | } |
---|
| 471 | } |
---|
[727] | 472 | if (min < 0) return true; |
---|
[601] | 473 | } |
---|
| 474 | |
---|
| 475 | // Major iteration: build a new candidate list |
---|
| 476 | min = 0; |
---|
| 477 | _curr_length = 0; |
---|
[839] | 478 | for (e = _next_arc; e != _search_arc_num; ++e) { |
---|
[601] | 479 | c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
---|
| 480 | if (c < 0) { |
---|
| 481 | _candidates[_curr_length++] = e; |
---|
| 482 | if (c < min) { |
---|
| 483 | min = c; |
---|
[727] | 484 | _in_arc = e; |
---|
[601] | 485 | } |
---|
[727] | 486 | if (_curr_length == _list_length) goto search_end; |
---|
[601] | 487 | } |
---|
| 488 | } |
---|
[839] | 489 | for (e = 0; e != _next_arc; ++e) { |
---|
[727] | 490 | c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
---|
| 491 | if (c < 0) { |
---|
| 492 | _candidates[_curr_length++] = e; |
---|
| 493 | if (c < min) { |
---|
| 494 | min = c; |
---|
| 495 | _in_arc = e; |
---|
[601] | 496 | } |
---|
[727] | 497 | if (_curr_length == _list_length) goto search_end; |
---|
[601] | 498 | } |
---|
| 499 | } |
---|
| 500 | if (_curr_length == 0) return false; |
---|
[877] | 501 | |
---|
| 502 | search_end: |
---|
[601] | 503 | _minor_count = 1; |
---|
| 504 | _next_arc = e; |
---|
| 505 | return true; |
---|
| 506 | } |
---|
| 507 | |
---|
| 508 | }; //class CandidateListPivotRule |
---|
| 509 | |
---|
| 510 | |
---|
[605] | 511 | // Implementation of the Altering Candidate List pivot rule |
---|
[601] | 512 | class AlteringListPivotRule |
---|
| 513 | { |
---|
| 514 | private: |
---|
| 515 | |
---|
| 516 | // References to the NetworkSimplex class |
---|
| 517 | const IntVector &_source; |
---|
| 518 | const IntVector &_target; |
---|
[607] | 519 | const CostVector &_cost; |
---|
[862] | 520 | const StateVector &_state; |
---|
[607] | 521 | const CostVector &_pi; |
---|
[601] | 522 | int &_in_arc; |
---|
[663] | 523 | int _search_arc_num; |
---|
[601] | 524 | |
---|
| 525 | // Pivot rule data |
---|
| 526 | int _block_size, _head_length, _curr_length; |
---|
| 527 | int _next_arc; |
---|
| 528 | IntVector _candidates; |
---|
[607] | 529 | CostVector _cand_cost; |
---|
[601] | 530 | |
---|
| 531 | // Functor class to compare arcs during sort of the candidate list |
---|
| 532 | class SortFunc |
---|
| 533 | { |
---|
| 534 | private: |
---|
[607] | 535 | const CostVector &_map; |
---|
[601] | 536 | public: |
---|
[607] | 537 | SortFunc(const CostVector &map) : _map(map) {} |
---|
[601] | 538 | bool operator()(int left, int right) { |
---|
| 539 | return _map[left] > _map[right]; |
---|
| 540 | } |
---|
| 541 | }; |
---|
| 542 | |
---|
| 543 | SortFunc _sort_func; |
---|
| 544 | |
---|
| 545 | public: |
---|
| 546 | |
---|
[605] | 547 | // Constructor |
---|
[601] | 548 | AlteringListPivotRule(NetworkSimplex &ns) : |
---|
[603] | 549 | _source(ns._source), _target(ns._target), |
---|
[601] | 550 | _cost(ns._cost), _state(ns._state), _pi(ns._pi), |
---|
[663] | 551 | _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
---|
| 552 | _next_arc(0), _cand_cost(ns._search_arc_num), _sort_func(_cand_cost) |
---|
[601] | 553 | { |
---|
| 554 | // The main parameters of the pivot rule |
---|
[727] | 555 | const double BLOCK_SIZE_FACTOR = 1.0; |
---|
[601] | 556 | const int MIN_BLOCK_SIZE = 10; |
---|
| 557 | const double HEAD_LENGTH_FACTOR = 0.1; |
---|
| 558 | const int MIN_HEAD_LENGTH = 3; |
---|
| 559 | |
---|
[612] | 560 | _block_size = std::max( int(BLOCK_SIZE_FACTOR * |
---|
[663] | 561 | std::sqrt(double(_search_arc_num))), |
---|
[601] | 562 | MIN_BLOCK_SIZE ); |
---|
| 563 | _head_length = std::max( int(HEAD_LENGTH_FACTOR * _block_size), |
---|
| 564 | MIN_HEAD_LENGTH ); |
---|
| 565 | _candidates.resize(_head_length + _block_size); |
---|
| 566 | _curr_length = 0; |
---|
| 567 | } |
---|
| 568 | |
---|
[605] | 569 | // Find next entering arc |
---|
[601] | 570 | bool findEnteringArc() { |
---|
| 571 | // Check the current candidate list |
---|
| 572 | int e; |
---|
[839] | 573 | for (int i = 0; i != _curr_length; ++i) { |
---|
[601] | 574 | e = _candidates[i]; |
---|
| 575 | _cand_cost[e] = _state[e] * |
---|
| 576 | (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
---|
| 577 | if (_cand_cost[e] >= 0) { |
---|
| 578 | _candidates[i--] = _candidates[--_curr_length]; |
---|
| 579 | } |
---|
| 580 | } |
---|
| 581 | |
---|
| 582 | // Extend the list |
---|
| 583 | int cnt = _block_size; |
---|
| 584 | int limit = _head_length; |
---|
| 585 | |
---|
[839] | 586 | for (e = _next_arc; e != _search_arc_num; ++e) { |
---|
[601] | 587 | _cand_cost[e] = _state[e] * |
---|
| 588 | (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
---|
| 589 | if (_cand_cost[e] < 0) { |
---|
| 590 | _candidates[_curr_length++] = e; |
---|
| 591 | } |
---|
| 592 | if (--cnt == 0) { |
---|
[727] | 593 | if (_curr_length > limit) goto search_end; |
---|
[601] | 594 | limit = 0; |
---|
| 595 | cnt = _block_size; |
---|
| 596 | } |
---|
| 597 | } |
---|
[839] | 598 | for (e = 0; e != _next_arc; ++e) { |
---|
[727] | 599 | _cand_cost[e] = _state[e] * |
---|
| 600 | (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
---|
| 601 | if (_cand_cost[e] < 0) { |
---|
| 602 | _candidates[_curr_length++] = e; |
---|
| 603 | } |
---|
| 604 | if (--cnt == 0) { |
---|
| 605 | if (_curr_length > limit) goto search_end; |
---|
| 606 | limit = 0; |
---|
| 607 | cnt = _block_size; |
---|
[601] | 608 | } |
---|
| 609 | } |
---|
| 610 | if (_curr_length == 0) return false; |
---|
[877] | 611 | |
---|
[727] | 612 | search_end: |
---|
[601] | 613 | |
---|
| 614 | // Make heap of the candidate list (approximating a partial sort) |
---|
| 615 | make_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
---|
| 616 | _sort_func ); |
---|
| 617 | |
---|
| 618 | // Pop the first element of the heap |
---|
| 619 | _in_arc = _candidates[0]; |
---|
[727] | 620 | _next_arc = e; |
---|
[601] | 621 | pop_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
---|
| 622 | _sort_func ); |
---|
| 623 | _curr_length = std::min(_head_length, _curr_length - 1); |
---|
| 624 | return true; |
---|
| 625 | } |
---|
| 626 | |
---|
| 627 | }; //class AlteringListPivotRule |
---|
| 628 | |
---|
| 629 | public: |
---|
| 630 | |
---|
[605] | 631 | /// \brief Constructor. |
---|
[601] | 632 | /// |
---|
[609] | 633 | /// The constructor of the class. |
---|
[601] | 634 | /// |
---|
[603] | 635 | /// \param graph The digraph the algorithm runs on. |
---|
[728] | 636 | /// \param arc_mixing Indicate if the arcs have to be stored in a |
---|
[877] | 637 | /// mixed order in the internal data structure. |
---|
[728] | 638 | /// In special cases, it could lead to better overall performance, |
---|
| 639 | /// but it is usually slower. Therefore it is disabled by default. |
---|
| 640 | NetworkSimplex(const GR& graph, bool arc_mixing = false) : |
---|
[642] | 641 | _graph(graph), _node_id(graph), _arc_id(graph), |
---|
[830] | 642 | _arc_mixing(arc_mixing), |
---|
[811] | 643 | MAX(std::numeric_limits<Value>::max()), |
---|
[641] | 644 | INF(std::numeric_limits<Value>::has_infinity ? |
---|
[811] | 645 | std::numeric_limits<Value>::infinity() : MAX) |
---|
[605] | 646 | { |
---|
[812] | 647 | // Check the number types |
---|
[641] | 648 | LEMON_ASSERT(std::numeric_limits<Value>::is_signed, |
---|
[640] | 649 | "The flow type of NetworkSimplex must be signed"); |
---|
| 650 | LEMON_ASSERT(std::numeric_limits<Cost>::is_signed, |
---|
| 651 | "The cost type of NetworkSimplex must be signed"); |
---|
[877] | 652 | |
---|
[830] | 653 | // Reset data structures |
---|
[729] | 654 | reset(); |
---|
[601] | 655 | } |
---|
| 656 | |
---|
[609] | 657 | /// \name Parameters |
---|
| 658 | /// The parameters of the algorithm can be specified using these |
---|
| 659 | /// functions. |
---|
| 660 | |
---|
| 661 | /// @{ |
---|
| 662 | |
---|
[605] | 663 | /// \brief Set the lower bounds on the arcs. |
---|
| 664 | /// |
---|
| 665 | /// This function sets the lower bounds on the arcs. |
---|
[640] | 666 | /// If it is not used before calling \ref run(), the lower bounds |
---|
| 667 | /// will be set to zero on all arcs. |
---|
[605] | 668 | /// |
---|
| 669 | /// \param map An arc map storing the lower bounds. |
---|
[641] | 670 | /// Its \c Value type must be convertible to the \c Value type |
---|
[605] | 671 | /// of the algorithm. |
---|
| 672 | /// |
---|
| 673 | /// \return <tt>(*this)</tt> |
---|
[640] | 674 | template <typename LowerMap> |
---|
| 675 | NetworkSimplex& lowerMap(const LowerMap& map) { |
---|
[642] | 676 | _have_lower = true; |
---|
[605] | 677 | for (ArcIt a(_graph); a != INVALID; ++a) { |
---|
[642] | 678 | _lower[_arc_id[a]] = map[a]; |
---|
[605] | 679 | } |
---|
| 680 | return *this; |
---|
| 681 | } |
---|
| 682 | |
---|
| 683 | /// \brief Set the upper bounds (capacities) on the arcs. |
---|
| 684 | /// |
---|
| 685 | /// This function sets the upper bounds (capacities) on the arcs. |
---|
[640] | 686 | /// If it is not used before calling \ref run(), the upper bounds |
---|
| 687 | /// will be set to \ref INF on all arcs (i.e. the flow value will be |
---|
[812] | 688 | /// unbounded from above). |
---|
[605] | 689 | /// |
---|
| 690 | /// \param map An arc map storing the upper bounds. |
---|
[641] | 691 | /// Its \c Value type must be convertible to the \c Value type |
---|
[605] | 692 | /// of the algorithm. |
---|
| 693 | /// |
---|
| 694 | /// \return <tt>(*this)</tt> |
---|
[640] | 695 | template<typename UpperMap> |
---|
| 696 | NetworkSimplex& upperMap(const UpperMap& map) { |
---|
[605] | 697 | for (ArcIt a(_graph); a != INVALID; ++a) { |
---|
[642] | 698 | _upper[_arc_id[a]] = map[a]; |
---|
[605] | 699 | } |
---|
| 700 | return *this; |
---|
| 701 | } |
---|
| 702 | |
---|
| 703 | /// \brief Set the costs of the arcs. |
---|
| 704 | /// |
---|
| 705 | /// This function sets the costs of the arcs. |
---|
| 706 | /// If it is not used before calling \ref run(), the costs |
---|
| 707 | /// will be set to \c 1 on all arcs. |
---|
| 708 | /// |
---|
| 709 | /// \param map An arc map storing the costs. |
---|
[607] | 710 | /// Its \c Value type must be convertible to the \c Cost type |
---|
[605] | 711 | /// of the algorithm. |
---|
| 712 | /// |
---|
| 713 | /// \return <tt>(*this)</tt> |
---|
[640] | 714 | template<typename CostMap> |
---|
| 715 | NetworkSimplex& costMap(const CostMap& map) { |
---|
[605] | 716 | for (ArcIt a(_graph); a != INVALID; ++a) { |
---|
[642] | 717 | _cost[_arc_id[a]] = map[a]; |
---|
[605] | 718 | } |
---|
| 719 | return *this; |
---|
| 720 | } |
---|
| 721 | |
---|
| 722 | /// \brief Set the supply values of the nodes. |
---|
| 723 | /// |
---|
| 724 | /// This function sets the supply values of the nodes. |
---|
| 725 | /// If neither this function nor \ref stSupply() is used before |
---|
| 726 | /// calling \ref run(), the supply of each node will be set to zero. |
---|
| 727 | /// |
---|
| 728 | /// \param map A node map storing the supply values. |
---|
[641] | 729 | /// Its \c Value type must be convertible to the \c Value type |
---|
[605] | 730 | /// of the algorithm. |
---|
| 731 | /// |
---|
| 732 | /// \return <tt>(*this)</tt> |
---|
[640] | 733 | template<typename SupplyMap> |
---|
| 734 | NetworkSimplex& supplyMap(const SupplyMap& map) { |
---|
[605] | 735 | for (NodeIt n(_graph); n != INVALID; ++n) { |
---|
[642] | 736 | _supply[_node_id[n]] = map[n]; |
---|
[605] | 737 | } |
---|
| 738 | return *this; |
---|
| 739 | } |
---|
| 740 | |
---|
| 741 | /// \brief Set single source and target nodes and a supply value. |
---|
| 742 | /// |
---|
| 743 | /// This function sets a single source node and a single target node |
---|
| 744 | /// and the required flow value. |
---|
| 745 | /// If neither this function nor \ref supplyMap() is used before |
---|
| 746 | /// calling \ref run(), the supply of each node will be set to zero. |
---|
| 747 | /// |
---|
[640] | 748 | /// Using this function has the same effect as using \ref supplyMap() |
---|
| 749 | /// with such a map in which \c k is assigned to \c s, \c -k is |
---|
| 750 | /// assigned to \c t and all other nodes have zero supply value. |
---|
| 751 | /// |
---|
[605] | 752 | /// \param s The source node. |
---|
| 753 | /// \param t The target node. |
---|
| 754 | /// \param k The required amount of flow from node \c s to node \c t |
---|
| 755 | /// (i.e. the supply of \c s and the demand of \c t). |
---|
| 756 | /// |
---|
| 757 | /// \return <tt>(*this)</tt> |
---|
[641] | 758 | NetworkSimplex& stSupply(const Node& s, const Node& t, Value k) { |
---|
[642] | 759 | for (int i = 0; i != _node_num; ++i) { |
---|
| 760 | _supply[i] = 0; |
---|
| 761 | } |
---|
| 762 | _supply[_node_id[s]] = k; |
---|
| 763 | _supply[_node_id[t]] = -k; |
---|
[605] | 764 | return *this; |
---|
| 765 | } |
---|
[877] | 766 | |
---|
[640] | 767 | /// \brief Set the type of the supply constraints. |
---|
[609] | 768 | /// |
---|
[640] | 769 | /// This function sets the type of the supply/demand constraints. |
---|
| 770 | /// If it is not used before calling \ref run(), the \ref GEQ supply |
---|
[609] | 771 | /// type will be used. |
---|
| 772 | /// |
---|
[786] | 773 | /// For more information, see \ref SupplyType. |
---|
[609] | 774 | /// |
---|
| 775 | /// \return <tt>(*this)</tt> |
---|
[640] | 776 | NetworkSimplex& supplyType(SupplyType supply_type) { |
---|
| 777 | _stype = supply_type; |
---|
[609] | 778 | return *this; |
---|
| 779 | } |
---|
[605] | 780 | |
---|
[609] | 781 | /// @} |
---|
[601] | 782 | |
---|
[605] | 783 | /// \name Execution Control |
---|
| 784 | /// The algorithm can be executed using \ref run(). |
---|
| 785 | |
---|
[601] | 786 | /// @{ |
---|
| 787 | |
---|
| 788 | /// \brief Run the algorithm. |
---|
| 789 | /// |
---|
| 790 | /// This function runs the algorithm. |
---|
[609] | 791 | /// The paramters can be specified using functions \ref lowerMap(), |
---|
[877] | 792 | /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(), |
---|
[642] | 793 | /// \ref supplyType(). |
---|
[609] | 794 | /// For example, |
---|
[605] | 795 | /// \code |
---|
| 796 | /// NetworkSimplex<ListDigraph> ns(graph); |
---|
[640] | 797 | /// ns.lowerMap(lower).upperMap(upper).costMap(cost) |
---|
[605] | 798 | /// .supplyMap(sup).run(); |
---|
| 799 | /// \endcode |
---|
[601] | 800 | /// |
---|
[830] | 801 | /// This function can be called more than once. All the given parameters |
---|
| 802 | /// are kept for the next call, unless \ref resetParams() or \ref reset() |
---|
| 803 | /// is used, thus only the modified parameters have to be set again. |
---|
| 804 | /// If the underlying digraph was also modified after the construction |
---|
| 805 | /// of the class (or the last \ref reset() call), then the \ref reset() |
---|
| 806 | /// function must be called. |
---|
[606] | 807 | /// |
---|
[605] | 808 | /// \param pivot_rule The pivot rule that will be used during the |
---|
[786] | 809 | /// algorithm. For more information, see \ref PivotRule. |
---|
[601] | 810 | /// |
---|
[640] | 811 | /// \return \c INFEASIBLE if no feasible flow exists, |
---|
| 812 | /// \n \c OPTIMAL if the problem has optimal solution |
---|
| 813 | /// (i.e. it is feasible and bounded), and the algorithm has found |
---|
| 814 | /// optimal flow and node potentials (primal and dual solutions), |
---|
| 815 | /// \n \c UNBOUNDED if the objective function of the problem is |
---|
| 816 | /// unbounded, i.e. there is a directed cycle having negative total |
---|
| 817 | /// cost and infinite upper bound. |
---|
| 818 | /// |
---|
| 819 | /// \see ProblemType, PivotRule |
---|
[830] | 820 | /// \see resetParams(), reset() |
---|
[640] | 821 | ProblemType run(PivotRule pivot_rule = BLOCK_SEARCH) { |
---|
| 822 | if (!init()) return INFEASIBLE; |
---|
| 823 | return start(pivot_rule); |
---|
[601] | 824 | } |
---|
| 825 | |
---|
[606] | 826 | /// \brief Reset all the parameters that have been given before. |
---|
| 827 | /// |
---|
| 828 | /// This function resets all the paramaters that have been given |
---|
[609] | 829 | /// before using functions \ref lowerMap(), \ref upperMap(), |
---|
[642] | 830 | /// \ref costMap(), \ref supplyMap(), \ref stSupply(), \ref supplyType(). |
---|
[606] | 831 | /// |
---|
[830] | 832 | /// It is useful for multiple \ref run() calls. Basically, all the given |
---|
| 833 | /// parameters are kept for the next \ref run() call, unless |
---|
| 834 | /// \ref resetParams() or \ref reset() is used. |
---|
| 835 | /// If the underlying digraph was also modified after the construction |
---|
| 836 | /// of the class or the last \ref reset() call, then the \ref reset() |
---|
| 837 | /// function must be used, otherwise \ref resetParams() is sufficient. |
---|
[606] | 838 | /// |
---|
| 839 | /// For example, |
---|
| 840 | /// \code |
---|
| 841 | /// NetworkSimplex<ListDigraph> ns(graph); |
---|
| 842 | /// |
---|
| 843 | /// // First run |
---|
[640] | 844 | /// ns.lowerMap(lower).upperMap(upper).costMap(cost) |
---|
[606] | 845 | /// .supplyMap(sup).run(); |
---|
| 846 | /// |
---|
[830] | 847 | /// // Run again with modified cost map (resetParams() is not called, |
---|
[606] | 848 | /// // so only the cost map have to be set again) |
---|
| 849 | /// cost[e] += 100; |
---|
| 850 | /// ns.costMap(cost).run(); |
---|
| 851 | /// |
---|
[830] | 852 | /// // Run again from scratch using resetParams() |
---|
[606] | 853 | /// // (the lower bounds will be set to zero on all arcs) |
---|
[830] | 854 | /// ns.resetParams(); |
---|
[640] | 855 | /// ns.upperMap(capacity).costMap(cost) |
---|
[606] | 856 | /// .supplyMap(sup).run(); |
---|
| 857 | /// \endcode |
---|
| 858 | /// |
---|
| 859 | /// \return <tt>(*this)</tt> |
---|
[830] | 860 | /// |
---|
| 861 | /// \see reset(), run() |
---|
| 862 | NetworkSimplex& resetParams() { |
---|
[642] | 863 | for (int i = 0; i != _node_num; ++i) { |
---|
| 864 | _supply[i] = 0; |
---|
| 865 | } |
---|
| 866 | for (int i = 0; i != _arc_num; ++i) { |
---|
| 867 | _lower[i] = 0; |
---|
| 868 | _upper[i] = INF; |
---|
| 869 | _cost[i] = 1; |
---|
| 870 | } |
---|
| 871 | _have_lower = false; |
---|
[640] | 872 | _stype = GEQ; |
---|
[606] | 873 | return *this; |
---|
| 874 | } |
---|
| 875 | |
---|
[830] | 876 | /// \brief Reset the internal data structures and all the parameters |
---|
| 877 | /// that have been given before. |
---|
| 878 | /// |
---|
| 879 | /// This function resets the internal data structures and all the |
---|
| 880 | /// paramaters that have been given before using functions \ref lowerMap(), |
---|
| 881 | /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(), |
---|
| 882 | /// \ref supplyType(). |
---|
| 883 | /// |
---|
| 884 | /// It is useful for multiple \ref run() calls. Basically, all the given |
---|
| 885 | /// parameters are kept for the next \ref run() call, unless |
---|
| 886 | /// \ref resetParams() or \ref reset() is used. |
---|
| 887 | /// If the underlying digraph was also modified after the construction |
---|
| 888 | /// of the class or the last \ref reset() call, then the \ref reset() |
---|
| 889 | /// function must be used, otherwise \ref resetParams() is sufficient. |
---|
| 890 | /// |
---|
| 891 | /// See \ref resetParams() for examples. |
---|
| 892 | /// |
---|
| 893 | /// \return <tt>(*this)</tt> |
---|
| 894 | /// |
---|
| 895 | /// \see resetParams(), run() |
---|
| 896 | NetworkSimplex& reset() { |
---|
| 897 | // Resize vectors |
---|
| 898 | _node_num = countNodes(_graph); |
---|
| 899 | _arc_num = countArcs(_graph); |
---|
| 900 | int all_node_num = _node_num + 1; |
---|
| 901 | int max_arc_num = _arc_num + 2 * _node_num; |
---|
| 902 | |
---|
| 903 | _source.resize(max_arc_num); |
---|
| 904 | _target.resize(max_arc_num); |
---|
| 905 | |
---|
| 906 | _lower.resize(_arc_num); |
---|
| 907 | _upper.resize(_arc_num); |
---|
| 908 | _cap.resize(max_arc_num); |
---|
| 909 | _cost.resize(max_arc_num); |
---|
| 910 | _supply.resize(all_node_num); |
---|
| 911 | _flow.resize(max_arc_num); |
---|
| 912 | _pi.resize(all_node_num); |
---|
| 913 | |
---|
| 914 | _parent.resize(all_node_num); |
---|
| 915 | _pred.resize(all_node_num); |
---|
| 916 | _forward.resize(all_node_num); |
---|
| 917 | _thread.resize(all_node_num); |
---|
| 918 | _rev_thread.resize(all_node_num); |
---|
| 919 | _succ_num.resize(all_node_num); |
---|
| 920 | _last_succ.resize(all_node_num); |
---|
| 921 | _state.resize(max_arc_num); |
---|
| 922 | |
---|
| 923 | // Copy the graph |
---|
| 924 | int i = 0; |
---|
| 925 | for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
---|
| 926 | _node_id[n] = i; |
---|
| 927 | } |
---|
| 928 | if (_arc_mixing) { |
---|
| 929 | // Store the arcs in a mixed order |
---|
| 930 | int k = std::max(int(std::sqrt(double(_arc_num))), 10); |
---|
| 931 | int i = 0, j = 0; |
---|
| 932 | for (ArcIt a(_graph); a != INVALID; ++a) { |
---|
| 933 | _arc_id[a] = i; |
---|
| 934 | _source[i] = _node_id[_graph.source(a)]; |
---|
| 935 | _target[i] = _node_id[_graph.target(a)]; |
---|
| 936 | if ((i += k) >= _arc_num) i = ++j; |
---|
| 937 | } |
---|
| 938 | } else { |
---|
| 939 | // Store the arcs in the original order |
---|
| 940 | int i = 0; |
---|
| 941 | for (ArcIt a(_graph); a != INVALID; ++a, ++i) { |
---|
| 942 | _arc_id[a] = i; |
---|
| 943 | _source[i] = _node_id[_graph.source(a)]; |
---|
| 944 | _target[i] = _node_id[_graph.target(a)]; |
---|
| 945 | } |
---|
| 946 | } |
---|
[877] | 947 | |
---|
[830] | 948 | // Reset parameters |
---|
| 949 | resetParams(); |
---|
| 950 | return *this; |
---|
| 951 | } |
---|
[877] | 952 | |
---|
[601] | 953 | /// @} |
---|
| 954 | |
---|
| 955 | /// \name Query Functions |
---|
| 956 | /// The results of the algorithm can be obtained using these |
---|
| 957 | /// functions.\n |
---|
[605] | 958 | /// The \ref run() function must be called before using them. |
---|
| 959 | |
---|
[601] | 960 | /// @{ |
---|
| 961 | |
---|
[605] | 962 | /// \brief Return the total cost of the found flow. |
---|
| 963 | /// |
---|
| 964 | /// This function returns the total cost of the found flow. |
---|
[640] | 965 | /// Its complexity is O(e). |
---|
[605] | 966 | /// |
---|
| 967 | /// \note The return type of the function can be specified as a |
---|
| 968 | /// template parameter. For example, |
---|
| 969 | /// \code |
---|
| 970 | /// ns.totalCost<double>(); |
---|
| 971 | /// \endcode |
---|
[607] | 972 | /// It is useful if the total cost cannot be stored in the \c Cost |
---|
[605] | 973 | /// type of the algorithm, which is the default return type of the |
---|
| 974 | /// function. |
---|
| 975 | /// |
---|
| 976 | /// \pre \ref run() must be called before using this function. |
---|
[642] | 977 | template <typename Number> |
---|
| 978 | Number totalCost() const { |
---|
| 979 | Number c = 0; |
---|
| 980 | for (ArcIt a(_graph); a != INVALID; ++a) { |
---|
| 981 | int i = _arc_id[a]; |
---|
| 982 | c += Number(_flow[i]) * Number(_cost[i]); |
---|
[605] | 983 | } |
---|
| 984 | return c; |
---|
| 985 | } |
---|
| 986 | |
---|
| 987 | #ifndef DOXYGEN |
---|
[607] | 988 | Cost totalCost() const { |
---|
| 989 | return totalCost<Cost>(); |
---|
[605] | 990 | } |
---|
| 991 | #endif |
---|
| 992 | |
---|
| 993 | /// \brief Return the flow on the given arc. |
---|
| 994 | /// |
---|
| 995 | /// This function returns the flow on the given arc. |
---|
| 996 | /// |
---|
| 997 | /// \pre \ref run() must be called before using this function. |
---|
[641] | 998 | Value flow(const Arc& a) const { |
---|
[642] | 999 | return _flow[_arc_id[a]]; |
---|
[605] | 1000 | } |
---|
| 1001 | |
---|
[642] | 1002 | /// \brief Return the flow map (the primal solution). |
---|
[601] | 1003 | /// |
---|
[642] | 1004 | /// This function copies the flow value on each arc into the given |
---|
| 1005 | /// map. The \c Value type of the algorithm must be convertible to |
---|
| 1006 | /// the \c Value type of the map. |
---|
[601] | 1007 | /// |
---|
| 1008 | /// \pre \ref run() must be called before using this function. |
---|
[642] | 1009 | template <typename FlowMap> |
---|
| 1010 | void flowMap(FlowMap &map) const { |
---|
| 1011 | for (ArcIt a(_graph); a != INVALID; ++a) { |
---|
| 1012 | map.set(a, _flow[_arc_id[a]]); |
---|
| 1013 | } |
---|
[601] | 1014 | } |
---|
| 1015 | |
---|
[605] | 1016 | /// \brief Return the potential (dual value) of the given node. |
---|
| 1017 | /// |
---|
| 1018 | /// This function returns the potential (dual value) of the |
---|
| 1019 | /// given node. |
---|
| 1020 | /// |
---|
| 1021 | /// \pre \ref run() must be called before using this function. |
---|
[607] | 1022 | Cost potential(const Node& n) const { |
---|
[642] | 1023 | return _pi[_node_id[n]]; |
---|
[605] | 1024 | } |
---|
| 1025 | |
---|
[642] | 1026 | /// \brief Return the potential map (the dual solution). |
---|
[601] | 1027 | /// |
---|
[642] | 1028 | /// This function copies the potential (dual value) of each node |
---|
| 1029 | /// into the given map. |
---|
| 1030 | /// The \c Cost type of the algorithm must be convertible to the |
---|
| 1031 | /// \c Value type of the map. |
---|
[601] | 1032 | /// |
---|
| 1033 | /// \pre \ref run() must be called before using this function. |
---|
[642] | 1034 | template <typename PotentialMap> |
---|
| 1035 | void potentialMap(PotentialMap &map) const { |
---|
| 1036 | for (NodeIt n(_graph); n != INVALID; ++n) { |
---|
| 1037 | map.set(n, _pi[_node_id[n]]); |
---|
| 1038 | } |
---|
[601] | 1039 | } |
---|
| 1040 | |
---|
| 1041 | /// @} |
---|
| 1042 | |
---|
| 1043 | private: |
---|
| 1044 | |
---|
| 1045 | // Initialize internal data structures |
---|
| 1046 | bool init() { |
---|
[605] | 1047 | if (_node_num == 0) return false; |
---|
[601] | 1048 | |
---|
[642] | 1049 | // Check the sum of supply values |
---|
| 1050 | _sum_supply = 0; |
---|
| 1051 | for (int i = 0; i != _node_num; ++i) { |
---|
| 1052 | _sum_supply += _supply[i]; |
---|
| 1053 | } |
---|
[643] | 1054 | if ( !((_stype == GEQ && _sum_supply <= 0) || |
---|
| 1055 | (_stype == LEQ && _sum_supply >= 0)) ) return false; |
---|
[601] | 1056 | |
---|
[642] | 1057 | // Remove non-zero lower bounds |
---|
| 1058 | if (_have_lower) { |
---|
| 1059 | for (int i = 0; i != _arc_num; ++i) { |
---|
| 1060 | Value c = _lower[i]; |
---|
| 1061 | if (c >= 0) { |
---|
[811] | 1062 | _cap[i] = _upper[i] < MAX ? _upper[i] - c : INF; |
---|
[642] | 1063 | } else { |
---|
[811] | 1064 | _cap[i] = _upper[i] < MAX + c ? _upper[i] - c : INF; |
---|
[642] | 1065 | } |
---|
| 1066 | _supply[_source[i]] -= c; |
---|
| 1067 | _supply[_target[i]] += c; |
---|
| 1068 | } |
---|
| 1069 | } else { |
---|
| 1070 | for (int i = 0; i != _arc_num; ++i) { |
---|
| 1071 | _cap[i] = _upper[i]; |
---|
| 1072 | } |
---|
[605] | 1073 | } |
---|
[601] | 1074 | |
---|
[609] | 1075 | // Initialize artifical cost |
---|
[640] | 1076 | Cost ART_COST; |
---|
[609] | 1077 | if (std::numeric_limits<Cost>::is_exact) { |
---|
[663] | 1078 | ART_COST = std::numeric_limits<Cost>::max() / 2 + 1; |
---|
[609] | 1079 | } else { |
---|
[640] | 1080 | ART_COST = std::numeric_limits<Cost>::min(); |
---|
[609] | 1081 | for (int i = 0; i != _arc_num; ++i) { |
---|
[640] | 1082 | if (_cost[i] > ART_COST) ART_COST = _cost[i]; |
---|
[609] | 1083 | } |
---|
[640] | 1084 | ART_COST = (ART_COST + 1) * _node_num; |
---|
[609] | 1085 | } |
---|
| 1086 | |
---|
[642] | 1087 | // Initialize arc maps |
---|
| 1088 | for (int i = 0; i != _arc_num; ++i) { |
---|
| 1089 | _flow[i] = 0; |
---|
| 1090 | _state[i] = STATE_LOWER; |
---|
| 1091 | } |
---|
[877] | 1092 | |
---|
[601] | 1093 | // Set data for the artificial root node |
---|
| 1094 | _root = _node_num; |
---|
| 1095 | _parent[_root] = -1; |
---|
| 1096 | _pred[_root] = -1; |
---|
| 1097 | _thread[_root] = 0; |
---|
[604] | 1098 | _rev_thread[0] = _root; |
---|
[642] | 1099 | _succ_num[_root] = _node_num + 1; |
---|
[604] | 1100 | _last_succ[_root] = _root - 1; |
---|
[640] | 1101 | _supply[_root] = -_sum_supply; |
---|
[663] | 1102 | _pi[_root] = 0; |
---|
[601] | 1103 | |
---|
| 1104 | // Add artificial arcs and initialize the spanning tree data structure |
---|
[663] | 1105 | if (_sum_supply == 0) { |
---|
| 1106 | // EQ supply constraints |
---|
| 1107 | _search_arc_num = _arc_num; |
---|
| 1108 | _all_arc_num = _arc_num + _node_num; |
---|
| 1109 | for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
---|
| 1110 | _parent[u] = _root; |
---|
| 1111 | _pred[u] = e; |
---|
| 1112 | _thread[u] = u + 1; |
---|
| 1113 | _rev_thread[u + 1] = u; |
---|
| 1114 | _succ_num[u] = 1; |
---|
| 1115 | _last_succ[u] = u; |
---|
| 1116 | _cap[e] = INF; |
---|
| 1117 | _state[e] = STATE_TREE; |
---|
| 1118 | if (_supply[u] >= 0) { |
---|
| 1119 | _forward[u] = true; |
---|
| 1120 | _pi[u] = 0; |
---|
| 1121 | _source[e] = u; |
---|
| 1122 | _target[e] = _root; |
---|
| 1123 | _flow[e] = _supply[u]; |
---|
| 1124 | _cost[e] = 0; |
---|
| 1125 | } else { |
---|
| 1126 | _forward[u] = false; |
---|
| 1127 | _pi[u] = ART_COST; |
---|
| 1128 | _source[e] = _root; |
---|
| 1129 | _target[e] = u; |
---|
| 1130 | _flow[e] = -_supply[u]; |
---|
| 1131 | _cost[e] = ART_COST; |
---|
| 1132 | } |
---|
[601] | 1133 | } |
---|
| 1134 | } |
---|
[663] | 1135 | else if (_sum_supply > 0) { |
---|
| 1136 | // LEQ supply constraints |
---|
| 1137 | _search_arc_num = _arc_num + _node_num; |
---|
| 1138 | int f = _arc_num + _node_num; |
---|
| 1139 | for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
---|
| 1140 | _parent[u] = _root; |
---|
| 1141 | _thread[u] = u + 1; |
---|
| 1142 | _rev_thread[u + 1] = u; |
---|
| 1143 | _succ_num[u] = 1; |
---|
| 1144 | _last_succ[u] = u; |
---|
| 1145 | if (_supply[u] >= 0) { |
---|
| 1146 | _forward[u] = true; |
---|
| 1147 | _pi[u] = 0; |
---|
| 1148 | _pred[u] = e; |
---|
| 1149 | _source[e] = u; |
---|
| 1150 | _target[e] = _root; |
---|
| 1151 | _cap[e] = INF; |
---|
| 1152 | _flow[e] = _supply[u]; |
---|
| 1153 | _cost[e] = 0; |
---|
| 1154 | _state[e] = STATE_TREE; |
---|
| 1155 | } else { |
---|
| 1156 | _forward[u] = false; |
---|
| 1157 | _pi[u] = ART_COST; |
---|
| 1158 | _pred[u] = f; |
---|
| 1159 | _source[f] = _root; |
---|
| 1160 | _target[f] = u; |
---|
| 1161 | _cap[f] = INF; |
---|
| 1162 | _flow[f] = -_supply[u]; |
---|
| 1163 | _cost[f] = ART_COST; |
---|
| 1164 | _state[f] = STATE_TREE; |
---|
| 1165 | _source[e] = u; |
---|
| 1166 | _target[e] = _root; |
---|
| 1167 | _cap[e] = INF; |
---|
| 1168 | _flow[e] = 0; |
---|
| 1169 | _cost[e] = 0; |
---|
| 1170 | _state[e] = STATE_LOWER; |
---|
| 1171 | ++f; |
---|
| 1172 | } |
---|
| 1173 | } |
---|
| 1174 | _all_arc_num = f; |
---|
| 1175 | } |
---|
| 1176 | else { |
---|
| 1177 | // GEQ supply constraints |
---|
| 1178 | _search_arc_num = _arc_num + _node_num; |
---|
| 1179 | int f = _arc_num + _node_num; |
---|
| 1180 | for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
---|
| 1181 | _parent[u] = _root; |
---|
| 1182 | _thread[u] = u + 1; |
---|
| 1183 | _rev_thread[u + 1] = u; |
---|
| 1184 | _succ_num[u] = 1; |
---|
| 1185 | _last_succ[u] = u; |
---|
| 1186 | if (_supply[u] <= 0) { |
---|
| 1187 | _forward[u] = false; |
---|
| 1188 | _pi[u] = 0; |
---|
| 1189 | _pred[u] = e; |
---|
| 1190 | _source[e] = _root; |
---|
| 1191 | _target[e] = u; |
---|
| 1192 | _cap[e] = INF; |
---|
| 1193 | _flow[e] = -_supply[u]; |
---|
| 1194 | _cost[e] = 0; |
---|
| 1195 | _state[e] = STATE_TREE; |
---|
| 1196 | } else { |
---|
| 1197 | _forward[u] = true; |
---|
| 1198 | _pi[u] = -ART_COST; |
---|
| 1199 | _pred[u] = f; |
---|
| 1200 | _source[f] = u; |
---|
| 1201 | _target[f] = _root; |
---|
| 1202 | _cap[f] = INF; |
---|
| 1203 | _flow[f] = _supply[u]; |
---|
| 1204 | _state[f] = STATE_TREE; |
---|
| 1205 | _cost[f] = ART_COST; |
---|
| 1206 | _source[e] = _root; |
---|
| 1207 | _target[e] = u; |
---|
| 1208 | _cap[e] = INF; |
---|
| 1209 | _flow[e] = 0; |
---|
| 1210 | _cost[e] = 0; |
---|
| 1211 | _state[e] = STATE_LOWER; |
---|
| 1212 | ++f; |
---|
| 1213 | } |
---|
| 1214 | } |
---|
| 1215 | _all_arc_num = f; |
---|
| 1216 | } |
---|
[601] | 1217 | |
---|
| 1218 | return true; |
---|
| 1219 | } |
---|
| 1220 | |
---|
| 1221 | // Find the join node |
---|
| 1222 | void findJoinNode() { |
---|
[603] | 1223 | int u = _source[in_arc]; |
---|
| 1224 | int v = _target[in_arc]; |
---|
[601] | 1225 | while (u != v) { |
---|
[604] | 1226 | if (_succ_num[u] < _succ_num[v]) { |
---|
| 1227 | u = _parent[u]; |
---|
| 1228 | } else { |
---|
| 1229 | v = _parent[v]; |
---|
| 1230 | } |
---|
[601] | 1231 | } |
---|
| 1232 | join = u; |
---|
| 1233 | } |
---|
| 1234 | |
---|
| 1235 | // Find the leaving arc of the cycle and returns true if the |
---|
| 1236 | // leaving arc is not the same as the entering arc |
---|
| 1237 | bool findLeavingArc() { |
---|
| 1238 | // Initialize first and second nodes according to the direction |
---|
| 1239 | // of the cycle |
---|
[603] | 1240 | if (_state[in_arc] == STATE_LOWER) { |
---|
| 1241 | first = _source[in_arc]; |
---|
| 1242 | second = _target[in_arc]; |
---|
[601] | 1243 | } else { |
---|
[603] | 1244 | first = _target[in_arc]; |
---|
| 1245 | second = _source[in_arc]; |
---|
[601] | 1246 | } |
---|
[603] | 1247 | delta = _cap[in_arc]; |
---|
[601] | 1248 | int result = 0; |
---|
[641] | 1249 | Value d; |
---|
[601] | 1250 | int e; |
---|
| 1251 | |
---|
| 1252 | // Search the cycle along the path form the first node to the root |
---|
| 1253 | for (int u = first; u != join; u = _parent[u]) { |
---|
| 1254 | e = _pred[u]; |
---|
[640] | 1255 | d = _forward[u] ? |
---|
[811] | 1256 | _flow[e] : (_cap[e] >= MAX ? INF : _cap[e] - _flow[e]); |
---|
[601] | 1257 | if (d < delta) { |
---|
| 1258 | delta = d; |
---|
| 1259 | u_out = u; |
---|
| 1260 | result = 1; |
---|
| 1261 | } |
---|
| 1262 | } |
---|
| 1263 | // Search the cycle along the path form the second node to the root |
---|
| 1264 | for (int u = second; u != join; u = _parent[u]) { |
---|
| 1265 | e = _pred[u]; |
---|
[877] | 1266 | d = _forward[u] ? |
---|
[811] | 1267 | (_cap[e] >= MAX ? INF : _cap[e] - _flow[e]) : _flow[e]; |
---|
[601] | 1268 | if (d <= delta) { |
---|
| 1269 | delta = d; |
---|
| 1270 | u_out = u; |
---|
| 1271 | result = 2; |
---|
| 1272 | } |
---|
| 1273 | } |
---|
| 1274 | |
---|
| 1275 | if (result == 1) { |
---|
| 1276 | u_in = first; |
---|
| 1277 | v_in = second; |
---|
| 1278 | } else { |
---|
| 1279 | u_in = second; |
---|
| 1280 | v_in = first; |
---|
| 1281 | } |
---|
| 1282 | return result != 0; |
---|
| 1283 | } |
---|
| 1284 | |
---|
| 1285 | // Change _flow and _state vectors |
---|
| 1286 | void changeFlow(bool change) { |
---|
| 1287 | // Augment along the cycle |
---|
| 1288 | if (delta > 0) { |
---|
[641] | 1289 | Value val = _state[in_arc] * delta; |
---|
[603] | 1290 | _flow[in_arc] += val; |
---|
| 1291 | for (int u = _source[in_arc]; u != join; u = _parent[u]) { |
---|
[601] | 1292 | _flow[_pred[u]] += _forward[u] ? -val : val; |
---|
| 1293 | } |
---|
[603] | 1294 | for (int u = _target[in_arc]; u != join; u = _parent[u]) { |
---|
[601] | 1295 | _flow[_pred[u]] += _forward[u] ? val : -val; |
---|
| 1296 | } |
---|
| 1297 | } |
---|
| 1298 | // Update the state of the entering and leaving arcs |
---|
| 1299 | if (change) { |
---|
[603] | 1300 | _state[in_arc] = STATE_TREE; |
---|
[601] | 1301 | _state[_pred[u_out]] = |
---|
| 1302 | (_flow[_pred[u_out]] == 0) ? STATE_LOWER : STATE_UPPER; |
---|
| 1303 | } else { |
---|
[603] | 1304 | _state[in_arc] = -_state[in_arc]; |
---|
[601] | 1305 | } |
---|
| 1306 | } |
---|
| 1307 | |
---|
[604] | 1308 | // Update the tree structure |
---|
| 1309 | void updateTreeStructure() { |
---|
| 1310 | int u, w; |
---|
| 1311 | int old_rev_thread = _rev_thread[u_out]; |
---|
| 1312 | int old_succ_num = _succ_num[u_out]; |
---|
| 1313 | int old_last_succ = _last_succ[u_out]; |
---|
[601] | 1314 | v_out = _parent[u_out]; |
---|
| 1315 | |
---|
[604] | 1316 | u = _last_succ[u_in]; // the last successor of u_in |
---|
| 1317 | right = _thread[u]; // the node after it |
---|
| 1318 | |
---|
| 1319 | // Handle the case when old_rev_thread equals to v_in |
---|
| 1320 | // (it also means that join and v_out coincide) |
---|
| 1321 | if (old_rev_thread == v_in) { |
---|
| 1322 | last = _thread[_last_succ[u_out]]; |
---|
| 1323 | } else { |
---|
| 1324 | last = _thread[v_in]; |
---|
[601] | 1325 | } |
---|
| 1326 | |
---|
[604] | 1327 | // Update _thread and _parent along the stem nodes (i.e. the nodes |
---|
| 1328 | // between u_in and u_out, whose parent have to be changed) |
---|
[601] | 1329 | _thread[v_in] = stem = u_in; |
---|
[604] | 1330 | _dirty_revs.clear(); |
---|
| 1331 | _dirty_revs.push_back(v_in); |
---|
[601] | 1332 | par_stem = v_in; |
---|
| 1333 | while (stem != u_out) { |
---|
[604] | 1334 | // Insert the next stem node into the thread list |
---|
| 1335 | new_stem = _parent[stem]; |
---|
| 1336 | _thread[u] = new_stem; |
---|
| 1337 | _dirty_revs.push_back(u); |
---|
[601] | 1338 | |
---|
[604] | 1339 | // Remove the subtree of stem from the thread list |
---|
| 1340 | w = _rev_thread[stem]; |
---|
| 1341 | _thread[w] = right; |
---|
| 1342 | _rev_thread[right] = w; |
---|
[601] | 1343 | |
---|
[604] | 1344 | // Change the parent node and shift stem nodes |
---|
[601] | 1345 | _parent[stem] = par_stem; |
---|
| 1346 | par_stem = stem; |
---|
| 1347 | stem = new_stem; |
---|
| 1348 | |
---|
[604] | 1349 | // Update u and right |
---|
| 1350 | u = _last_succ[stem] == _last_succ[par_stem] ? |
---|
| 1351 | _rev_thread[par_stem] : _last_succ[stem]; |
---|
[601] | 1352 | right = _thread[u]; |
---|
| 1353 | } |
---|
| 1354 | _parent[u_out] = par_stem; |
---|
| 1355 | _thread[u] = last; |
---|
[604] | 1356 | _rev_thread[last] = u; |
---|
| 1357 | _last_succ[u_out] = u; |
---|
[601] | 1358 | |
---|
[604] | 1359 | // Remove the subtree of u_out from the thread list except for |
---|
| 1360 | // the case when old_rev_thread equals to v_in |
---|
| 1361 | // (it also means that join and v_out coincide) |
---|
| 1362 | if (old_rev_thread != v_in) { |
---|
| 1363 | _thread[old_rev_thread] = right; |
---|
| 1364 | _rev_thread[right] = old_rev_thread; |
---|
| 1365 | } |
---|
| 1366 | |
---|
| 1367 | // Update _rev_thread using the new _thread values |
---|
[839] | 1368 | for (int i = 0; i != int(_dirty_revs.size()); ++i) { |
---|
[604] | 1369 | u = _dirty_revs[i]; |
---|
| 1370 | _rev_thread[_thread[u]] = u; |
---|
| 1371 | } |
---|
| 1372 | |
---|
| 1373 | // Update _pred, _forward, _last_succ and _succ_num for the |
---|
| 1374 | // stem nodes from u_out to u_in |
---|
| 1375 | int tmp_sc = 0, tmp_ls = _last_succ[u_out]; |
---|
| 1376 | u = u_out; |
---|
| 1377 | while (u != u_in) { |
---|
| 1378 | w = _parent[u]; |
---|
| 1379 | _pred[u] = _pred[w]; |
---|
| 1380 | _forward[u] = !_forward[w]; |
---|
| 1381 | tmp_sc += _succ_num[u] - _succ_num[w]; |
---|
| 1382 | _succ_num[u] = tmp_sc; |
---|
| 1383 | _last_succ[w] = tmp_ls; |
---|
| 1384 | u = w; |
---|
| 1385 | } |
---|
| 1386 | _pred[u_in] = in_arc; |
---|
| 1387 | _forward[u_in] = (u_in == _source[in_arc]); |
---|
| 1388 | _succ_num[u_in] = old_succ_num; |
---|
| 1389 | |
---|
| 1390 | // Set limits for updating _last_succ form v_in and v_out |
---|
| 1391 | // towards the root |
---|
| 1392 | int up_limit_in = -1; |
---|
| 1393 | int up_limit_out = -1; |
---|
| 1394 | if (_last_succ[join] == v_in) { |
---|
| 1395 | up_limit_out = join; |
---|
[601] | 1396 | } else { |
---|
[604] | 1397 | up_limit_in = join; |
---|
| 1398 | } |
---|
| 1399 | |
---|
| 1400 | // Update _last_succ from v_in towards the root |
---|
| 1401 | for (u = v_in; u != up_limit_in && _last_succ[u] == v_in; |
---|
| 1402 | u = _parent[u]) { |
---|
| 1403 | _last_succ[u] = _last_succ[u_out]; |
---|
| 1404 | } |
---|
| 1405 | // Update _last_succ from v_out towards the root |
---|
| 1406 | if (join != old_rev_thread && v_in != old_rev_thread) { |
---|
| 1407 | for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ; |
---|
| 1408 | u = _parent[u]) { |
---|
| 1409 | _last_succ[u] = old_rev_thread; |
---|
| 1410 | } |
---|
| 1411 | } else { |
---|
| 1412 | for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ; |
---|
| 1413 | u = _parent[u]) { |
---|
| 1414 | _last_succ[u] = _last_succ[u_out]; |
---|
| 1415 | } |
---|
| 1416 | } |
---|
| 1417 | |
---|
| 1418 | // Update _succ_num from v_in to join |
---|
| 1419 | for (u = v_in; u != join; u = _parent[u]) { |
---|
| 1420 | _succ_num[u] += old_succ_num; |
---|
| 1421 | } |
---|
| 1422 | // Update _succ_num from v_out to join |
---|
| 1423 | for (u = v_out; u != join; u = _parent[u]) { |
---|
| 1424 | _succ_num[u] -= old_succ_num; |
---|
[601] | 1425 | } |
---|
| 1426 | } |
---|
| 1427 | |
---|
[604] | 1428 | // Update potentials |
---|
| 1429 | void updatePotential() { |
---|
[607] | 1430 | Cost sigma = _forward[u_in] ? |
---|
[601] | 1431 | _pi[v_in] - _pi[u_in] - _cost[_pred[u_in]] : |
---|
| 1432 | _pi[v_in] - _pi[u_in] + _cost[_pred[u_in]]; |
---|
[608] | 1433 | // Update potentials in the subtree, which has been moved |
---|
| 1434 | int end = _thread[_last_succ[u_in]]; |
---|
| 1435 | for (int u = u_in; u != end; u = _thread[u]) { |
---|
| 1436 | _pi[u] += sigma; |
---|
[601] | 1437 | } |
---|
| 1438 | } |
---|
| 1439 | |
---|
[839] | 1440 | // Heuristic initial pivots |
---|
| 1441 | bool initialPivots() { |
---|
| 1442 | Value curr, total = 0; |
---|
| 1443 | std::vector<Node> supply_nodes, demand_nodes; |
---|
| 1444 | for (NodeIt u(_graph); u != INVALID; ++u) { |
---|
| 1445 | curr = _supply[_node_id[u]]; |
---|
| 1446 | if (curr > 0) { |
---|
| 1447 | total += curr; |
---|
| 1448 | supply_nodes.push_back(u); |
---|
| 1449 | } |
---|
| 1450 | else if (curr < 0) { |
---|
| 1451 | demand_nodes.push_back(u); |
---|
| 1452 | } |
---|
| 1453 | } |
---|
| 1454 | if (_sum_supply > 0) total -= _sum_supply; |
---|
| 1455 | if (total <= 0) return true; |
---|
| 1456 | |
---|
| 1457 | IntVector arc_vector; |
---|
| 1458 | if (_sum_supply >= 0) { |
---|
| 1459 | if (supply_nodes.size() == 1 && demand_nodes.size() == 1) { |
---|
| 1460 | // Perform a reverse graph search from the sink to the source |
---|
| 1461 | typename GR::template NodeMap<bool> reached(_graph, false); |
---|
| 1462 | Node s = supply_nodes[0], t = demand_nodes[0]; |
---|
| 1463 | std::vector<Node> stack; |
---|
| 1464 | reached[t] = true; |
---|
| 1465 | stack.push_back(t); |
---|
| 1466 | while (!stack.empty()) { |
---|
| 1467 | Node u, v = stack.back(); |
---|
| 1468 | stack.pop_back(); |
---|
| 1469 | if (v == s) break; |
---|
| 1470 | for (InArcIt a(_graph, v); a != INVALID; ++a) { |
---|
| 1471 | if (reached[u = _graph.source(a)]) continue; |
---|
| 1472 | int j = _arc_id[a]; |
---|
| 1473 | if (_cap[j] >= total) { |
---|
| 1474 | arc_vector.push_back(j); |
---|
| 1475 | reached[u] = true; |
---|
| 1476 | stack.push_back(u); |
---|
| 1477 | } |
---|
| 1478 | } |
---|
| 1479 | } |
---|
| 1480 | } else { |
---|
| 1481 | // Find the min. cost incomming arc for each demand node |
---|
| 1482 | for (int i = 0; i != int(demand_nodes.size()); ++i) { |
---|
| 1483 | Node v = demand_nodes[i]; |
---|
| 1484 | Cost c, min_cost = std::numeric_limits<Cost>::max(); |
---|
| 1485 | Arc min_arc = INVALID; |
---|
| 1486 | for (InArcIt a(_graph, v); a != INVALID; ++a) { |
---|
| 1487 | c = _cost[_arc_id[a]]; |
---|
| 1488 | if (c < min_cost) { |
---|
| 1489 | min_cost = c; |
---|
| 1490 | min_arc = a; |
---|
| 1491 | } |
---|
| 1492 | } |
---|
| 1493 | if (min_arc != INVALID) { |
---|
| 1494 | arc_vector.push_back(_arc_id[min_arc]); |
---|
| 1495 | } |
---|
| 1496 | } |
---|
| 1497 | } |
---|
| 1498 | } else { |
---|
| 1499 | // Find the min. cost outgoing arc for each supply node |
---|
| 1500 | for (int i = 0; i != int(supply_nodes.size()); ++i) { |
---|
| 1501 | Node u = supply_nodes[i]; |
---|
| 1502 | Cost c, min_cost = std::numeric_limits<Cost>::max(); |
---|
| 1503 | Arc min_arc = INVALID; |
---|
| 1504 | for (OutArcIt a(_graph, u); a != INVALID; ++a) { |
---|
| 1505 | c = _cost[_arc_id[a]]; |
---|
| 1506 | if (c < min_cost) { |
---|
| 1507 | min_cost = c; |
---|
| 1508 | min_arc = a; |
---|
| 1509 | } |
---|
| 1510 | } |
---|
| 1511 | if (min_arc != INVALID) { |
---|
| 1512 | arc_vector.push_back(_arc_id[min_arc]); |
---|
| 1513 | } |
---|
| 1514 | } |
---|
| 1515 | } |
---|
| 1516 | |
---|
| 1517 | // Perform heuristic initial pivots |
---|
| 1518 | for (int i = 0; i != int(arc_vector.size()); ++i) { |
---|
| 1519 | in_arc = arc_vector[i]; |
---|
| 1520 | if (_state[in_arc] * (_cost[in_arc] + _pi[_source[in_arc]] - |
---|
| 1521 | _pi[_target[in_arc]]) >= 0) continue; |
---|
| 1522 | findJoinNode(); |
---|
| 1523 | bool change = findLeavingArc(); |
---|
| 1524 | if (delta >= MAX) return false; |
---|
| 1525 | changeFlow(change); |
---|
| 1526 | if (change) { |
---|
| 1527 | updateTreeStructure(); |
---|
| 1528 | updatePotential(); |
---|
| 1529 | } |
---|
| 1530 | } |
---|
| 1531 | return true; |
---|
| 1532 | } |
---|
| 1533 | |
---|
[601] | 1534 | // Execute the algorithm |
---|
[640] | 1535 | ProblemType start(PivotRule pivot_rule) { |
---|
[601] | 1536 | // Select the pivot rule implementation |
---|
| 1537 | switch (pivot_rule) { |
---|
[605] | 1538 | case FIRST_ELIGIBLE: |
---|
[601] | 1539 | return start<FirstEligiblePivotRule>(); |
---|
[605] | 1540 | case BEST_ELIGIBLE: |
---|
[601] | 1541 | return start<BestEligiblePivotRule>(); |
---|
[605] | 1542 | case BLOCK_SEARCH: |
---|
[601] | 1543 | return start<BlockSearchPivotRule>(); |
---|
[605] | 1544 | case CANDIDATE_LIST: |
---|
[601] | 1545 | return start<CandidateListPivotRule>(); |
---|
[605] | 1546 | case ALTERING_LIST: |
---|
[601] | 1547 | return start<AlteringListPivotRule>(); |
---|
| 1548 | } |
---|
[640] | 1549 | return INFEASIBLE; // avoid warning |
---|
[601] | 1550 | } |
---|
| 1551 | |
---|
[605] | 1552 | template <typename PivotRuleImpl> |
---|
[640] | 1553 | ProblemType start() { |
---|
[605] | 1554 | PivotRuleImpl pivot(*this); |
---|
[601] | 1555 | |
---|
[839] | 1556 | // Perform heuristic initial pivots |
---|
| 1557 | if (!initialPivots()) return UNBOUNDED; |
---|
| 1558 | |
---|
[605] | 1559 | // Execute the Network Simplex algorithm |
---|
[601] | 1560 | while (pivot.findEnteringArc()) { |
---|
| 1561 | findJoinNode(); |
---|
| 1562 | bool change = findLeavingArc(); |
---|
[811] | 1563 | if (delta >= MAX) return UNBOUNDED; |
---|
[601] | 1564 | changeFlow(change); |
---|
| 1565 | if (change) { |
---|
[604] | 1566 | updateTreeStructure(); |
---|
| 1567 | updatePotential(); |
---|
[601] | 1568 | } |
---|
| 1569 | } |
---|
[877] | 1570 | |
---|
[640] | 1571 | // Check feasibility |
---|
[663] | 1572 | for (int e = _search_arc_num; e != _all_arc_num; ++e) { |
---|
| 1573 | if (_flow[e] != 0) return INFEASIBLE; |
---|
[640] | 1574 | } |
---|
[601] | 1575 | |
---|
[642] | 1576 | // Transform the solution and the supply map to the original form |
---|
| 1577 | if (_have_lower) { |
---|
[601] | 1578 | for (int i = 0; i != _arc_num; ++i) { |
---|
[642] | 1579 | Value c = _lower[i]; |
---|
| 1580 | if (c != 0) { |
---|
| 1581 | _flow[i] += c; |
---|
| 1582 | _supply[_source[i]] += c; |
---|
| 1583 | _supply[_target[i]] -= c; |
---|
| 1584 | } |
---|
[601] | 1585 | } |
---|
| 1586 | } |
---|
[877] | 1587 | |
---|
[663] | 1588 | // Shift potentials to meet the requirements of the GEQ/LEQ type |
---|
| 1589 | // optimality conditions |
---|
| 1590 | if (_sum_supply == 0) { |
---|
| 1591 | if (_stype == GEQ) { |
---|
| 1592 | Cost max_pot = std::numeric_limits<Cost>::min(); |
---|
| 1593 | for (int i = 0; i != _node_num; ++i) { |
---|
| 1594 | if (_pi[i] > max_pot) max_pot = _pi[i]; |
---|
| 1595 | } |
---|
| 1596 | if (max_pot > 0) { |
---|
| 1597 | for (int i = 0; i != _node_num; ++i) |
---|
| 1598 | _pi[i] -= max_pot; |
---|
| 1599 | } |
---|
| 1600 | } else { |
---|
| 1601 | Cost min_pot = std::numeric_limits<Cost>::max(); |
---|
| 1602 | for (int i = 0; i != _node_num; ++i) { |
---|
| 1603 | if (_pi[i] < min_pot) min_pot = _pi[i]; |
---|
| 1604 | } |
---|
| 1605 | if (min_pot < 0) { |
---|
| 1606 | for (int i = 0; i != _node_num; ++i) |
---|
| 1607 | _pi[i] -= min_pot; |
---|
| 1608 | } |
---|
| 1609 | } |
---|
| 1610 | } |
---|
[601] | 1611 | |
---|
[640] | 1612 | return OPTIMAL; |
---|
[601] | 1613 | } |
---|
| 1614 | |
---|
| 1615 | }; //class NetworkSimplex |
---|
| 1616 | |
---|
| 1617 | ///@} |
---|
| 1618 | |
---|
| 1619 | } //namespace lemon |
---|
| 1620 | |
---|
| 1621 | #endif //LEMON_NETWORK_SIMPLEX_H |
---|