[601] | 1 | /* -*- mode: C++; indent-tabs-mode: nil; -*- |
---|
| 2 | * |
---|
| 3 | * This file is a part of LEMON, a generic C++ optimization library. |
---|
| 4 | * |
---|
| 5 | * Copyright (C) 2003-2009 |
---|
| 6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
| 7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
---|
| 8 | * |
---|
| 9 | * Permission to use, modify and distribute this software is granted |
---|
| 10 | * provided that this copyright notice appears in all copies. For |
---|
| 11 | * precise terms see the accompanying LICENSE file. |
---|
| 12 | * |
---|
| 13 | * This software is provided "AS IS" with no warranty of any kind, |
---|
| 14 | * express or implied, and with no claim as to its suitability for any |
---|
| 15 | * purpose. |
---|
| 16 | * |
---|
| 17 | */ |
---|
| 18 | |
---|
| 19 | #ifndef LEMON_NETWORK_SIMPLEX_H |
---|
| 20 | #define LEMON_NETWORK_SIMPLEX_H |
---|
| 21 | |
---|
| 22 | /// \ingroup min_cost_flow |
---|
| 23 | /// |
---|
| 24 | /// \file |
---|
[605] | 25 | /// \brief Network Simplex algorithm for finding a minimum cost flow. |
---|
[601] | 26 | |
---|
| 27 | #include <vector> |
---|
| 28 | #include <limits> |
---|
| 29 | #include <algorithm> |
---|
| 30 | |
---|
[603] | 31 | #include <lemon/core.h> |
---|
[601] | 32 | #include <lemon/math.h> |
---|
| 33 | |
---|
| 34 | namespace lemon { |
---|
| 35 | |
---|
| 36 | /// \addtogroup min_cost_flow |
---|
| 37 | /// @{ |
---|
| 38 | |
---|
[605] | 39 | /// \brief Implementation of the primal Network Simplex algorithm |
---|
[601] | 40 | /// for finding a \ref min_cost_flow "minimum cost flow". |
---|
| 41 | /// |
---|
[605] | 42 | /// \ref NetworkSimplex implements the primal Network Simplex algorithm |
---|
[601] | 43 | /// for finding a \ref min_cost_flow "minimum cost flow". |
---|
| 44 | /// |
---|
[605] | 45 | /// \tparam GR The digraph type the algorithm runs on. |
---|
| 46 | /// \tparam V The value type used in the algorithm. |
---|
| 47 | /// By default it is \c int. |
---|
[601] | 48 | /// |
---|
[605] | 49 | /// \warning \c V must be a signed integer type. |
---|
[601] | 50 | /// |
---|
[605] | 51 | /// \note %NetworkSimplex provides five different pivot rule |
---|
| 52 | /// implementations. For more information see \ref PivotRule. |
---|
| 53 | template <typename GR, typename V = int> |
---|
[601] | 54 | class NetworkSimplex |
---|
| 55 | { |
---|
[605] | 56 | public: |
---|
[601] | 57 | |
---|
[605] | 58 | /// The value type of the algorithm |
---|
| 59 | typedef V Value; |
---|
| 60 | /// The type of the flow map |
---|
| 61 | typedef typename GR::template ArcMap<Value> FlowMap; |
---|
| 62 | /// The type of the potential map |
---|
| 63 | typedef typename GR::template NodeMap<Value> PotentialMap; |
---|
| 64 | |
---|
| 65 | public: |
---|
| 66 | |
---|
| 67 | /// \brief Enum type for selecting the pivot rule. |
---|
| 68 | /// |
---|
| 69 | /// Enum type for selecting the pivot rule for the \ref run() |
---|
| 70 | /// function. |
---|
| 71 | /// |
---|
| 72 | /// \ref NetworkSimplex provides five different pivot rule |
---|
| 73 | /// implementations that significantly affect the running time |
---|
| 74 | /// of the algorithm. |
---|
| 75 | /// By default \ref BLOCK_SEARCH "Block Search" is used, which |
---|
| 76 | /// proved to be the most efficient and the most robust on various |
---|
| 77 | /// test inputs according to our benchmark tests. |
---|
| 78 | /// However another pivot rule can be selected using the \ref run() |
---|
| 79 | /// function with the proper parameter. |
---|
| 80 | enum PivotRule { |
---|
| 81 | |
---|
| 82 | /// The First Eligible pivot rule. |
---|
| 83 | /// The next eligible arc is selected in a wraparound fashion |
---|
| 84 | /// in every iteration. |
---|
| 85 | FIRST_ELIGIBLE, |
---|
| 86 | |
---|
| 87 | /// The Best Eligible pivot rule. |
---|
| 88 | /// The best eligible arc is selected in every iteration. |
---|
| 89 | BEST_ELIGIBLE, |
---|
| 90 | |
---|
| 91 | /// The Block Search pivot rule. |
---|
| 92 | /// A specified number of arcs are examined in every iteration |
---|
| 93 | /// in a wraparound fashion and the best eligible arc is selected |
---|
| 94 | /// from this block. |
---|
| 95 | BLOCK_SEARCH, |
---|
| 96 | |
---|
| 97 | /// The Candidate List pivot rule. |
---|
| 98 | /// In a major iteration a candidate list is built from eligible arcs |
---|
| 99 | /// in a wraparound fashion and in the following minor iterations |
---|
| 100 | /// the best eligible arc is selected from this list. |
---|
| 101 | CANDIDATE_LIST, |
---|
| 102 | |
---|
| 103 | /// The Altering Candidate List pivot rule. |
---|
| 104 | /// It is a modified version of the Candidate List method. |
---|
| 105 | /// It keeps only the several best eligible arcs from the former |
---|
| 106 | /// candidate list and extends this list in every iteration. |
---|
| 107 | ALTERING_LIST |
---|
| 108 | }; |
---|
| 109 | |
---|
| 110 | private: |
---|
| 111 | |
---|
| 112 | TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
---|
| 113 | |
---|
| 114 | typedef typename GR::template ArcMap<Value> ValueArcMap; |
---|
| 115 | typedef typename GR::template NodeMap<Value> ValueNodeMap; |
---|
[601] | 116 | |
---|
| 117 | typedef std::vector<Arc> ArcVector; |
---|
| 118 | typedef std::vector<Node> NodeVector; |
---|
| 119 | typedef std::vector<int> IntVector; |
---|
| 120 | typedef std::vector<bool> BoolVector; |
---|
[605] | 121 | typedef std::vector<Value> ValueVector; |
---|
[601] | 122 | |
---|
| 123 | // State constants for arcs |
---|
| 124 | enum ArcStateEnum { |
---|
| 125 | STATE_UPPER = -1, |
---|
| 126 | STATE_TREE = 0, |
---|
| 127 | STATE_LOWER = 1 |
---|
| 128 | }; |
---|
| 129 | |
---|
| 130 | private: |
---|
| 131 | |
---|
[605] | 132 | // Data related to the underlying digraph |
---|
| 133 | const GR &_graph; |
---|
| 134 | int _node_num; |
---|
| 135 | int _arc_num; |
---|
| 136 | |
---|
| 137 | // Parameters of the problem |
---|
| 138 | ValueArcMap *_plower; |
---|
| 139 | ValueArcMap *_pupper; |
---|
| 140 | ValueArcMap *_pcost; |
---|
| 141 | ValueNodeMap *_psupply; |
---|
| 142 | bool _pstsup; |
---|
| 143 | Node _psource, _ptarget; |
---|
| 144 | Value _pstflow; |
---|
[601] | 145 | |
---|
| 146 | // Result maps |
---|
[603] | 147 | FlowMap *_flow_map; |
---|
| 148 | PotentialMap *_potential_map; |
---|
[601] | 149 | bool _local_flow; |
---|
| 150 | bool _local_potential; |
---|
| 151 | |
---|
[605] | 152 | // Data structures for storing the digraph |
---|
[603] | 153 | IntNodeMap _node_id; |
---|
| 154 | ArcVector _arc_ref; |
---|
| 155 | IntVector _source; |
---|
| 156 | IntVector _target; |
---|
| 157 | |
---|
[605] | 158 | // Node and arc data |
---|
| 159 | ValueVector _cap; |
---|
| 160 | ValueVector _cost; |
---|
| 161 | ValueVector _supply; |
---|
| 162 | ValueVector _flow; |
---|
| 163 | ValueVector _pi; |
---|
[601] | 164 | |
---|
[603] | 165 | // Data for storing the spanning tree structure |
---|
[601] | 166 | IntVector _parent; |
---|
| 167 | IntVector _pred; |
---|
| 168 | IntVector _thread; |
---|
[604] | 169 | IntVector _rev_thread; |
---|
| 170 | IntVector _succ_num; |
---|
| 171 | IntVector _last_succ; |
---|
| 172 | IntVector _dirty_revs; |
---|
[601] | 173 | BoolVector _forward; |
---|
| 174 | IntVector _state; |
---|
| 175 | int _root; |
---|
| 176 | |
---|
| 177 | // Temporary data used in the current pivot iteration |
---|
[603] | 178 | int in_arc, join, u_in, v_in, u_out, v_out; |
---|
| 179 | int first, second, right, last; |
---|
[601] | 180 | int stem, par_stem, new_stem; |
---|
[605] | 181 | Value delta; |
---|
[601] | 182 | |
---|
| 183 | private: |
---|
| 184 | |
---|
[605] | 185 | // Implementation of the First Eligible pivot rule |
---|
[601] | 186 | class FirstEligiblePivotRule |
---|
| 187 | { |
---|
| 188 | private: |
---|
| 189 | |
---|
| 190 | // References to the NetworkSimplex class |
---|
| 191 | const IntVector &_source; |
---|
| 192 | const IntVector &_target; |
---|
[605] | 193 | const ValueVector &_cost; |
---|
[601] | 194 | const IntVector &_state; |
---|
[605] | 195 | const ValueVector &_pi; |
---|
[601] | 196 | int &_in_arc; |
---|
| 197 | int _arc_num; |
---|
| 198 | |
---|
| 199 | // Pivot rule data |
---|
| 200 | int _next_arc; |
---|
| 201 | |
---|
| 202 | public: |
---|
| 203 | |
---|
[605] | 204 | // Constructor |
---|
[601] | 205 | FirstEligiblePivotRule(NetworkSimplex &ns) : |
---|
[603] | 206 | _source(ns._source), _target(ns._target), |
---|
[601] | 207 | _cost(ns._cost), _state(ns._state), _pi(ns._pi), |
---|
[603] | 208 | _in_arc(ns.in_arc), _arc_num(ns._arc_num), _next_arc(0) |
---|
[601] | 209 | {} |
---|
| 210 | |
---|
[605] | 211 | // Find next entering arc |
---|
[601] | 212 | bool findEnteringArc() { |
---|
[605] | 213 | Value c; |
---|
[601] | 214 | for (int e = _next_arc; e < _arc_num; ++e) { |
---|
| 215 | c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
---|
| 216 | if (c < 0) { |
---|
| 217 | _in_arc = e; |
---|
| 218 | _next_arc = e + 1; |
---|
| 219 | return true; |
---|
| 220 | } |
---|
| 221 | } |
---|
| 222 | for (int e = 0; e < _next_arc; ++e) { |
---|
| 223 | c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
---|
| 224 | if (c < 0) { |
---|
| 225 | _in_arc = e; |
---|
| 226 | _next_arc = e + 1; |
---|
| 227 | return true; |
---|
| 228 | } |
---|
| 229 | } |
---|
| 230 | return false; |
---|
| 231 | } |
---|
| 232 | |
---|
| 233 | }; //class FirstEligiblePivotRule |
---|
| 234 | |
---|
| 235 | |
---|
[605] | 236 | // Implementation of the Best Eligible pivot rule |
---|
[601] | 237 | class BestEligiblePivotRule |
---|
| 238 | { |
---|
| 239 | private: |
---|
| 240 | |
---|
| 241 | // References to the NetworkSimplex class |
---|
| 242 | const IntVector &_source; |
---|
| 243 | const IntVector &_target; |
---|
[605] | 244 | const ValueVector &_cost; |
---|
[601] | 245 | const IntVector &_state; |
---|
[605] | 246 | const ValueVector &_pi; |
---|
[601] | 247 | int &_in_arc; |
---|
| 248 | int _arc_num; |
---|
| 249 | |
---|
| 250 | public: |
---|
| 251 | |
---|
[605] | 252 | // Constructor |
---|
[601] | 253 | BestEligiblePivotRule(NetworkSimplex &ns) : |
---|
[603] | 254 | _source(ns._source), _target(ns._target), |
---|
[601] | 255 | _cost(ns._cost), _state(ns._state), _pi(ns._pi), |
---|
[603] | 256 | _in_arc(ns.in_arc), _arc_num(ns._arc_num) |
---|
[601] | 257 | {} |
---|
| 258 | |
---|
[605] | 259 | // Find next entering arc |
---|
[601] | 260 | bool findEnteringArc() { |
---|
[605] | 261 | Value c, min = 0; |
---|
[601] | 262 | for (int e = 0; e < _arc_num; ++e) { |
---|
| 263 | c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
---|
| 264 | if (c < min) { |
---|
| 265 | min = c; |
---|
| 266 | _in_arc = e; |
---|
| 267 | } |
---|
| 268 | } |
---|
| 269 | return min < 0; |
---|
| 270 | } |
---|
| 271 | |
---|
| 272 | }; //class BestEligiblePivotRule |
---|
| 273 | |
---|
| 274 | |
---|
[605] | 275 | // Implementation of the Block Search pivot rule |
---|
[601] | 276 | class BlockSearchPivotRule |
---|
| 277 | { |
---|
| 278 | private: |
---|
| 279 | |
---|
| 280 | // References to the NetworkSimplex class |
---|
| 281 | const IntVector &_source; |
---|
| 282 | const IntVector &_target; |
---|
[605] | 283 | const ValueVector &_cost; |
---|
[601] | 284 | const IntVector &_state; |
---|
[605] | 285 | const ValueVector &_pi; |
---|
[601] | 286 | int &_in_arc; |
---|
| 287 | int _arc_num; |
---|
| 288 | |
---|
| 289 | // Pivot rule data |
---|
| 290 | int _block_size; |
---|
| 291 | int _next_arc; |
---|
| 292 | |
---|
| 293 | public: |
---|
| 294 | |
---|
[605] | 295 | // Constructor |
---|
[601] | 296 | BlockSearchPivotRule(NetworkSimplex &ns) : |
---|
[603] | 297 | _source(ns._source), _target(ns._target), |
---|
[601] | 298 | _cost(ns._cost), _state(ns._state), _pi(ns._pi), |
---|
[603] | 299 | _in_arc(ns.in_arc), _arc_num(ns._arc_num), _next_arc(0) |
---|
[601] | 300 | { |
---|
| 301 | // The main parameters of the pivot rule |
---|
| 302 | const double BLOCK_SIZE_FACTOR = 2.0; |
---|
| 303 | const int MIN_BLOCK_SIZE = 10; |
---|
| 304 | |
---|
| 305 | _block_size = std::max( int(BLOCK_SIZE_FACTOR * sqrt(_arc_num)), |
---|
| 306 | MIN_BLOCK_SIZE ); |
---|
| 307 | } |
---|
| 308 | |
---|
[605] | 309 | // Find next entering arc |
---|
[601] | 310 | bool findEnteringArc() { |
---|
[605] | 311 | Value c, min = 0; |
---|
[601] | 312 | int cnt = _block_size; |
---|
| 313 | int e, min_arc = _next_arc; |
---|
| 314 | for (e = _next_arc; e < _arc_num; ++e) { |
---|
| 315 | c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
---|
| 316 | if (c < min) { |
---|
| 317 | min = c; |
---|
| 318 | min_arc = e; |
---|
| 319 | } |
---|
| 320 | if (--cnt == 0) { |
---|
| 321 | if (min < 0) break; |
---|
| 322 | cnt = _block_size; |
---|
| 323 | } |
---|
| 324 | } |
---|
| 325 | if (min == 0 || cnt > 0) { |
---|
| 326 | for (e = 0; e < _next_arc; ++e) { |
---|
| 327 | c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
---|
| 328 | if (c < min) { |
---|
| 329 | min = c; |
---|
| 330 | min_arc = e; |
---|
| 331 | } |
---|
| 332 | if (--cnt == 0) { |
---|
| 333 | if (min < 0) break; |
---|
| 334 | cnt = _block_size; |
---|
| 335 | } |
---|
| 336 | } |
---|
| 337 | } |
---|
| 338 | if (min >= 0) return false; |
---|
| 339 | _in_arc = min_arc; |
---|
| 340 | _next_arc = e; |
---|
| 341 | return true; |
---|
| 342 | } |
---|
| 343 | |
---|
| 344 | }; //class BlockSearchPivotRule |
---|
| 345 | |
---|
| 346 | |
---|
[605] | 347 | // Implementation of the Candidate List pivot rule |
---|
[601] | 348 | class CandidateListPivotRule |
---|
| 349 | { |
---|
| 350 | private: |
---|
| 351 | |
---|
| 352 | // References to the NetworkSimplex class |
---|
| 353 | const IntVector &_source; |
---|
| 354 | const IntVector &_target; |
---|
[605] | 355 | const ValueVector &_cost; |
---|
[601] | 356 | const IntVector &_state; |
---|
[605] | 357 | const ValueVector &_pi; |
---|
[601] | 358 | int &_in_arc; |
---|
| 359 | int _arc_num; |
---|
| 360 | |
---|
| 361 | // Pivot rule data |
---|
| 362 | IntVector _candidates; |
---|
| 363 | int _list_length, _minor_limit; |
---|
| 364 | int _curr_length, _minor_count; |
---|
| 365 | int _next_arc; |
---|
| 366 | |
---|
| 367 | public: |
---|
| 368 | |
---|
| 369 | /// Constructor |
---|
| 370 | CandidateListPivotRule(NetworkSimplex &ns) : |
---|
[603] | 371 | _source(ns._source), _target(ns._target), |
---|
[601] | 372 | _cost(ns._cost), _state(ns._state), _pi(ns._pi), |
---|
[603] | 373 | _in_arc(ns.in_arc), _arc_num(ns._arc_num), _next_arc(0) |
---|
[601] | 374 | { |
---|
| 375 | // The main parameters of the pivot rule |
---|
| 376 | const double LIST_LENGTH_FACTOR = 1.0; |
---|
| 377 | const int MIN_LIST_LENGTH = 10; |
---|
| 378 | const double MINOR_LIMIT_FACTOR = 0.1; |
---|
| 379 | const int MIN_MINOR_LIMIT = 3; |
---|
| 380 | |
---|
| 381 | _list_length = std::max( int(LIST_LENGTH_FACTOR * sqrt(_arc_num)), |
---|
| 382 | MIN_LIST_LENGTH ); |
---|
| 383 | _minor_limit = std::max( int(MINOR_LIMIT_FACTOR * _list_length), |
---|
| 384 | MIN_MINOR_LIMIT ); |
---|
| 385 | _curr_length = _minor_count = 0; |
---|
| 386 | _candidates.resize(_list_length); |
---|
| 387 | } |
---|
| 388 | |
---|
| 389 | /// Find next entering arc |
---|
| 390 | bool findEnteringArc() { |
---|
[605] | 391 | Value min, c; |
---|
[601] | 392 | int e, min_arc = _next_arc; |
---|
| 393 | if (_curr_length > 0 && _minor_count < _minor_limit) { |
---|
| 394 | // Minor iteration: select the best eligible arc from the |
---|
| 395 | // current candidate list |
---|
| 396 | ++_minor_count; |
---|
| 397 | min = 0; |
---|
| 398 | for (int i = 0; i < _curr_length; ++i) { |
---|
| 399 | e = _candidates[i]; |
---|
| 400 | c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
---|
| 401 | if (c < min) { |
---|
| 402 | min = c; |
---|
| 403 | min_arc = e; |
---|
| 404 | } |
---|
| 405 | if (c >= 0) { |
---|
| 406 | _candidates[i--] = _candidates[--_curr_length]; |
---|
| 407 | } |
---|
| 408 | } |
---|
| 409 | if (min < 0) { |
---|
| 410 | _in_arc = min_arc; |
---|
| 411 | return true; |
---|
| 412 | } |
---|
| 413 | } |
---|
| 414 | |
---|
| 415 | // Major iteration: build a new candidate list |
---|
| 416 | min = 0; |
---|
| 417 | _curr_length = 0; |
---|
| 418 | for (e = _next_arc; e < _arc_num; ++e) { |
---|
| 419 | c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
---|
| 420 | if (c < 0) { |
---|
| 421 | _candidates[_curr_length++] = e; |
---|
| 422 | if (c < min) { |
---|
| 423 | min = c; |
---|
| 424 | min_arc = e; |
---|
| 425 | } |
---|
| 426 | if (_curr_length == _list_length) break; |
---|
| 427 | } |
---|
| 428 | } |
---|
| 429 | if (_curr_length < _list_length) { |
---|
| 430 | for (e = 0; e < _next_arc; ++e) { |
---|
| 431 | c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
---|
| 432 | if (c < 0) { |
---|
| 433 | _candidates[_curr_length++] = e; |
---|
| 434 | if (c < min) { |
---|
| 435 | min = c; |
---|
| 436 | min_arc = e; |
---|
| 437 | } |
---|
| 438 | if (_curr_length == _list_length) break; |
---|
| 439 | } |
---|
| 440 | } |
---|
| 441 | } |
---|
| 442 | if (_curr_length == 0) return false; |
---|
| 443 | _minor_count = 1; |
---|
| 444 | _in_arc = min_arc; |
---|
| 445 | _next_arc = e; |
---|
| 446 | return true; |
---|
| 447 | } |
---|
| 448 | |
---|
| 449 | }; //class CandidateListPivotRule |
---|
| 450 | |
---|
| 451 | |
---|
[605] | 452 | // Implementation of the Altering Candidate List pivot rule |
---|
[601] | 453 | class AlteringListPivotRule |
---|
| 454 | { |
---|
| 455 | private: |
---|
| 456 | |
---|
| 457 | // References to the NetworkSimplex class |
---|
| 458 | const IntVector &_source; |
---|
| 459 | const IntVector &_target; |
---|
[605] | 460 | const ValueVector &_cost; |
---|
[601] | 461 | const IntVector &_state; |
---|
[605] | 462 | const ValueVector &_pi; |
---|
[601] | 463 | int &_in_arc; |
---|
| 464 | int _arc_num; |
---|
| 465 | |
---|
| 466 | // Pivot rule data |
---|
| 467 | int _block_size, _head_length, _curr_length; |
---|
| 468 | int _next_arc; |
---|
| 469 | IntVector _candidates; |
---|
[605] | 470 | ValueVector _cand_cost; |
---|
[601] | 471 | |
---|
| 472 | // Functor class to compare arcs during sort of the candidate list |
---|
| 473 | class SortFunc |
---|
| 474 | { |
---|
| 475 | private: |
---|
[605] | 476 | const ValueVector &_map; |
---|
[601] | 477 | public: |
---|
[605] | 478 | SortFunc(const ValueVector &map) : _map(map) {} |
---|
[601] | 479 | bool operator()(int left, int right) { |
---|
| 480 | return _map[left] > _map[right]; |
---|
| 481 | } |
---|
| 482 | }; |
---|
| 483 | |
---|
| 484 | SortFunc _sort_func; |
---|
| 485 | |
---|
| 486 | public: |
---|
| 487 | |
---|
[605] | 488 | // Constructor |
---|
[601] | 489 | AlteringListPivotRule(NetworkSimplex &ns) : |
---|
[603] | 490 | _source(ns._source), _target(ns._target), |
---|
[601] | 491 | _cost(ns._cost), _state(ns._state), _pi(ns._pi), |
---|
[603] | 492 | _in_arc(ns.in_arc), _arc_num(ns._arc_num), |
---|
[601] | 493 | _next_arc(0), _cand_cost(ns._arc_num), _sort_func(_cand_cost) |
---|
| 494 | { |
---|
| 495 | // The main parameters of the pivot rule |
---|
| 496 | const double BLOCK_SIZE_FACTOR = 1.5; |
---|
| 497 | const int MIN_BLOCK_SIZE = 10; |
---|
| 498 | const double HEAD_LENGTH_FACTOR = 0.1; |
---|
| 499 | const int MIN_HEAD_LENGTH = 3; |
---|
| 500 | |
---|
| 501 | _block_size = std::max( int(BLOCK_SIZE_FACTOR * sqrt(_arc_num)), |
---|
| 502 | MIN_BLOCK_SIZE ); |
---|
| 503 | _head_length = std::max( int(HEAD_LENGTH_FACTOR * _block_size), |
---|
| 504 | MIN_HEAD_LENGTH ); |
---|
| 505 | _candidates.resize(_head_length + _block_size); |
---|
| 506 | _curr_length = 0; |
---|
| 507 | } |
---|
| 508 | |
---|
[605] | 509 | // Find next entering arc |
---|
[601] | 510 | bool findEnteringArc() { |
---|
| 511 | // Check the current candidate list |
---|
| 512 | int e; |
---|
| 513 | for (int i = 0; i < _curr_length; ++i) { |
---|
| 514 | e = _candidates[i]; |
---|
| 515 | _cand_cost[e] = _state[e] * |
---|
| 516 | (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
---|
| 517 | if (_cand_cost[e] >= 0) { |
---|
| 518 | _candidates[i--] = _candidates[--_curr_length]; |
---|
| 519 | } |
---|
| 520 | } |
---|
| 521 | |
---|
| 522 | // Extend the list |
---|
| 523 | int cnt = _block_size; |
---|
[603] | 524 | int last_arc = 0; |
---|
[601] | 525 | int limit = _head_length; |
---|
| 526 | |
---|
| 527 | for (int e = _next_arc; e < _arc_num; ++e) { |
---|
| 528 | _cand_cost[e] = _state[e] * |
---|
| 529 | (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
---|
| 530 | if (_cand_cost[e] < 0) { |
---|
| 531 | _candidates[_curr_length++] = e; |
---|
[603] | 532 | last_arc = e; |
---|
[601] | 533 | } |
---|
| 534 | if (--cnt == 0) { |
---|
| 535 | if (_curr_length > limit) break; |
---|
| 536 | limit = 0; |
---|
| 537 | cnt = _block_size; |
---|
| 538 | } |
---|
| 539 | } |
---|
| 540 | if (_curr_length <= limit) { |
---|
| 541 | for (int e = 0; e < _next_arc; ++e) { |
---|
| 542 | _cand_cost[e] = _state[e] * |
---|
| 543 | (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
---|
| 544 | if (_cand_cost[e] < 0) { |
---|
| 545 | _candidates[_curr_length++] = e; |
---|
[603] | 546 | last_arc = e; |
---|
[601] | 547 | } |
---|
| 548 | if (--cnt == 0) { |
---|
| 549 | if (_curr_length > limit) break; |
---|
| 550 | limit = 0; |
---|
| 551 | cnt = _block_size; |
---|
| 552 | } |
---|
| 553 | } |
---|
| 554 | } |
---|
| 555 | if (_curr_length == 0) return false; |
---|
[603] | 556 | _next_arc = last_arc + 1; |
---|
[601] | 557 | |
---|
| 558 | // Make heap of the candidate list (approximating a partial sort) |
---|
| 559 | make_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
---|
| 560 | _sort_func ); |
---|
| 561 | |
---|
| 562 | // Pop the first element of the heap |
---|
| 563 | _in_arc = _candidates[0]; |
---|
| 564 | pop_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
---|
| 565 | _sort_func ); |
---|
| 566 | _curr_length = std::min(_head_length, _curr_length - 1); |
---|
| 567 | return true; |
---|
| 568 | } |
---|
| 569 | |
---|
| 570 | }; //class AlteringListPivotRule |
---|
| 571 | |
---|
| 572 | public: |
---|
| 573 | |
---|
[605] | 574 | /// \brief Constructor. |
---|
[601] | 575 | /// |
---|
[605] | 576 | /// Constructor. |
---|
[601] | 577 | /// |
---|
[603] | 578 | /// \param graph The digraph the algorithm runs on. |
---|
[605] | 579 | NetworkSimplex(const GR& graph) : |
---|
| 580 | _graph(graph), |
---|
| 581 | _plower(NULL), _pupper(NULL), _pcost(NULL), |
---|
| 582 | _psupply(NULL), _pstsup(false), |
---|
[603] | 583 | _flow_map(NULL), _potential_map(NULL), |
---|
[601] | 584 | _local_flow(false), _local_potential(false), |
---|
[603] | 585 | _node_id(graph) |
---|
[605] | 586 | { |
---|
| 587 | LEMON_ASSERT(std::numeric_limits<Value>::is_integer && |
---|
| 588 | std::numeric_limits<Value>::is_signed, |
---|
| 589 | "The value type of NetworkSimplex must be a signed integer"); |
---|
| 590 | } |
---|
[601] | 591 | |
---|
| 592 | /// Destructor. |
---|
| 593 | ~NetworkSimplex() { |
---|
[603] | 594 | if (_local_flow) delete _flow_map; |
---|
| 595 | if (_local_potential) delete _potential_map; |
---|
[601] | 596 | } |
---|
| 597 | |
---|
[605] | 598 | /// \brief Set the lower bounds on the arcs. |
---|
| 599 | /// |
---|
| 600 | /// This function sets the lower bounds on the arcs. |
---|
| 601 | /// If neither this function nor \ref boundMaps() is used before |
---|
| 602 | /// calling \ref run(), the lower bounds will be set to zero |
---|
| 603 | /// on all arcs. |
---|
| 604 | /// |
---|
| 605 | /// \param map An arc map storing the lower bounds. |
---|
| 606 | /// Its \c Value type must be convertible to the \c Value type |
---|
| 607 | /// of the algorithm. |
---|
| 608 | /// |
---|
| 609 | /// \return <tt>(*this)</tt> |
---|
| 610 | template <typename LOWER> |
---|
| 611 | NetworkSimplex& lowerMap(const LOWER& map) { |
---|
| 612 | delete _plower; |
---|
| 613 | _plower = new ValueArcMap(_graph); |
---|
| 614 | for (ArcIt a(_graph); a != INVALID; ++a) { |
---|
| 615 | (*_plower)[a] = map[a]; |
---|
| 616 | } |
---|
| 617 | return *this; |
---|
| 618 | } |
---|
| 619 | |
---|
| 620 | /// \brief Set the upper bounds (capacities) on the arcs. |
---|
| 621 | /// |
---|
| 622 | /// This function sets the upper bounds (capacities) on the arcs. |
---|
| 623 | /// If none of the functions \ref upperMap(), \ref capacityMap() |
---|
| 624 | /// and \ref boundMaps() is used before calling \ref run(), |
---|
| 625 | /// the upper bounds (capacities) will be set to |
---|
| 626 | /// \c std::numeric_limits<Value>::max() on all arcs. |
---|
| 627 | /// |
---|
| 628 | /// \param map An arc map storing the upper bounds. |
---|
| 629 | /// Its \c Value type must be convertible to the \c Value type |
---|
| 630 | /// of the algorithm. |
---|
| 631 | /// |
---|
| 632 | /// \return <tt>(*this)</tt> |
---|
| 633 | template<typename UPPER> |
---|
| 634 | NetworkSimplex& upperMap(const UPPER& map) { |
---|
| 635 | delete _pupper; |
---|
| 636 | _pupper = new ValueArcMap(_graph); |
---|
| 637 | for (ArcIt a(_graph); a != INVALID; ++a) { |
---|
| 638 | (*_pupper)[a] = map[a]; |
---|
| 639 | } |
---|
| 640 | return *this; |
---|
| 641 | } |
---|
| 642 | |
---|
| 643 | /// \brief Set the upper bounds (capacities) on the arcs. |
---|
| 644 | /// |
---|
| 645 | /// This function sets the upper bounds (capacities) on the arcs. |
---|
| 646 | /// It is just an alias for \ref upperMap(). |
---|
| 647 | /// |
---|
| 648 | /// \return <tt>(*this)</tt> |
---|
| 649 | template<typename CAP> |
---|
| 650 | NetworkSimplex& capacityMap(const CAP& map) { |
---|
| 651 | return upperMap(map); |
---|
| 652 | } |
---|
| 653 | |
---|
| 654 | /// \brief Set the lower and upper bounds on the arcs. |
---|
| 655 | /// |
---|
| 656 | /// This function sets the lower and upper bounds on the arcs. |
---|
| 657 | /// If neither this function nor \ref lowerMap() is used before |
---|
| 658 | /// calling \ref run(), the lower bounds will be set to zero |
---|
| 659 | /// on all arcs. |
---|
| 660 | /// If none of the functions \ref upperMap(), \ref capacityMap() |
---|
| 661 | /// and \ref boundMaps() is used before calling \ref run(), |
---|
| 662 | /// the upper bounds (capacities) will be set to |
---|
| 663 | /// \c std::numeric_limits<Value>::max() on all arcs. |
---|
| 664 | /// |
---|
| 665 | /// \param lower An arc map storing the lower bounds. |
---|
| 666 | /// \param upper An arc map storing the upper bounds. |
---|
| 667 | /// |
---|
| 668 | /// The \c Value type of the maps must be convertible to the |
---|
| 669 | /// \c Value type of the algorithm. |
---|
| 670 | /// |
---|
| 671 | /// \note This function is just a shortcut of calling \ref lowerMap() |
---|
| 672 | /// and \ref upperMap() separately. |
---|
| 673 | /// |
---|
| 674 | /// \return <tt>(*this)</tt> |
---|
| 675 | template <typename LOWER, typename UPPER> |
---|
| 676 | NetworkSimplex& boundMaps(const LOWER& lower, const UPPER& upper) { |
---|
| 677 | return lowerMap(lower).upperMap(upper); |
---|
| 678 | } |
---|
| 679 | |
---|
| 680 | /// \brief Set the costs of the arcs. |
---|
| 681 | /// |
---|
| 682 | /// This function sets the costs of the arcs. |
---|
| 683 | /// If it is not used before calling \ref run(), the costs |
---|
| 684 | /// will be set to \c 1 on all arcs. |
---|
| 685 | /// |
---|
| 686 | /// \param map An arc map storing the costs. |
---|
| 687 | /// Its \c Value type must be convertible to the \c Value type |
---|
| 688 | /// of the algorithm. |
---|
| 689 | /// |
---|
| 690 | /// \return <tt>(*this)</tt> |
---|
| 691 | template<typename COST> |
---|
| 692 | NetworkSimplex& costMap(const COST& map) { |
---|
| 693 | delete _pcost; |
---|
| 694 | _pcost = new ValueArcMap(_graph); |
---|
| 695 | for (ArcIt a(_graph); a != INVALID; ++a) { |
---|
| 696 | (*_pcost)[a] = map[a]; |
---|
| 697 | } |
---|
| 698 | return *this; |
---|
| 699 | } |
---|
| 700 | |
---|
| 701 | /// \brief Set the supply values of the nodes. |
---|
| 702 | /// |
---|
| 703 | /// This function sets the supply values of the nodes. |
---|
| 704 | /// If neither this function nor \ref stSupply() is used before |
---|
| 705 | /// calling \ref run(), the supply of each node will be set to zero. |
---|
| 706 | /// (It makes sense only if non-zero lower bounds are given.) |
---|
| 707 | /// |
---|
| 708 | /// \param map A node map storing the supply values. |
---|
| 709 | /// Its \c Value type must be convertible to the \c Value type |
---|
| 710 | /// of the algorithm. |
---|
| 711 | /// |
---|
| 712 | /// \return <tt>(*this)</tt> |
---|
| 713 | template<typename SUP> |
---|
| 714 | NetworkSimplex& supplyMap(const SUP& map) { |
---|
| 715 | delete _psupply; |
---|
| 716 | _pstsup = false; |
---|
| 717 | _psupply = new ValueNodeMap(_graph); |
---|
| 718 | for (NodeIt n(_graph); n != INVALID; ++n) { |
---|
| 719 | (*_psupply)[n] = map[n]; |
---|
| 720 | } |
---|
| 721 | return *this; |
---|
| 722 | } |
---|
| 723 | |
---|
| 724 | /// \brief Set single source and target nodes and a supply value. |
---|
| 725 | /// |
---|
| 726 | /// This function sets a single source node and a single target node |
---|
| 727 | /// and the required flow value. |
---|
| 728 | /// If neither this function nor \ref supplyMap() is used before |
---|
| 729 | /// calling \ref run(), the supply of each node will be set to zero. |
---|
| 730 | /// (It makes sense only if non-zero lower bounds are given.) |
---|
| 731 | /// |
---|
| 732 | /// \param s The source node. |
---|
| 733 | /// \param t The target node. |
---|
| 734 | /// \param k The required amount of flow from node \c s to node \c t |
---|
| 735 | /// (i.e. the supply of \c s and the demand of \c t). |
---|
| 736 | /// |
---|
| 737 | /// \return <tt>(*this)</tt> |
---|
| 738 | NetworkSimplex& stSupply(const Node& s, const Node& t, Value k) { |
---|
| 739 | delete _psupply; |
---|
| 740 | _psupply = NULL; |
---|
| 741 | _pstsup = true; |
---|
| 742 | _psource = s; |
---|
| 743 | _ptarget = t; |
---|
| 744 | _pstflow = k; |
---|
| 745 | return *this; |
---|
| 746 | } |
---|
| 747 | |
---|
[601] | 748 | /// \brief Set the flow map. |
---|
| 749 | /// |
---|
| 750 | /// This function sets the flow map. |
---|
[605] | 751 | /// If it is not used before calling \ref run(), an instance will |
---|
| 752 | /// be allocated automatically. The destructor deallocates this |
---|
| 753 | /// automatically allocated map, of course. |
---|
[601] | 754 | /// |
---|
| 755 | /// \return <tt>(*this)</tt> |
---|
[605] | 756 | NetworkSimplex& flowMap(FlowMap& map) { |
---|
[601] | 757 | if (_local_flow) { |
---|
[603] | 758 | delete _flow_map; |
---|
[601] | 759 | _local_flow = false; |
---|
| 760 | } |
---|
[603] | 761 | _flow_map = ↦ |
---|
[601] | 762 | return *this; |
---|
| 763 | } |
---|
| 764 | |
---|
| 765 | /// \brief Set the potential map. |
---|
| 766 | /// |
---|
[605] | 767 | /// This function sets the potential map, which is used for storing |
---|
| 768 | /// the dual solution. |
---|
| 769 | /// If it is not used before calling \ref run(), an instance will |
---|
| 770 | /// be allocated automatically. The destructor deallocates this |
---|
| 771 | /// automatically allocated map, of course. |
---|
[601] | 772 | /// |
---|
| 773 | /// \return <tt>(*this)</tt> |
---|
[605] | 774 | NetworkSimplex& potentialMap(PotentialMap& map) { |
---|
[601] | 775 | if (_local_potential) { |
---|
[603] | 776 | delete _potential_map; |
---|
[601] | 777 | _local_potential = false; |
---|
| 778 | } |
---|
[603] | 779 | _potential_map = ↦ |
---|
[601] | 780 | return *this; |
---|
| 781 | } |
---|
| 782 | |
---|
[605] | 783 | /// \name Execution Control |
---|
| 784 | /// The algorithm can be executed using \ref run(). |
---|
| 785 | |
---|
[601] | 786 | /// @{ |
---|
| 787 | |
---|
| 788 | /// \brief Run the algorithm. |
---|
| 789 | /// |
---|
| 790 | /// This function runs the algorithm. |
---|
[605] | 791 | /// The paramters can be specified using \ref lowerMap(), |
---|
| 792 | /// \ref upperMap(), \ref capacityMap(), \ref boundMaps(), |
---|
| 793 | /// \ref costMap(), \ref supplyMap() and \ref stSupply() |
---|
| 794 | /// functions. For example, |
---|
| 795 | /// \code |
---|
| 796 | /// NetworkSimplex<ListDigraph> ns(graph); |
---|
| 797 | /// ns.boundMaps(lower, upper).costMap(cost) |
---|
| 798 | /// .supplyMap(sup).run(); |
---|
| 799 | /// \endcode |
---|
[601] | 800 | /// |
---|
[605] | 801 | /// \param pivot_rule The pivot rule that will be used during the |
---|
| 802 | /// algorithm. For more information see \ref PivotRule. |
---|
[601] | 803 | /// |
---|
| 804 | /// \return \c true if a feasible flow can be found. |
---|
[605] | 805 | bool run(PivotRule pivot_rule = BLOCK_SEARCH) { |
---|
[601] | 806 | return init() && start(pivot_rule); |
---|
| 807 | } |
---|
| 808 | |
---|
| 809 | /// @} |
---|
| 810 | |
---|
| 811 | /// \name Query Functions |
---|
| 812 | /// The results of the algorithm can be obtained using these |
---|
| 813 | /// functions.\n |
---|
[605] | 814 | /// The \ref run() function must be called before using them. |
---|
| 815 | |
---|
[601] | 816 | /// @{ |
---|
| 817 | |
---|
[605] | 818 | /// \brief Return the total cost of the found flow. |
---|
| 819 | /// |
---|
| 820 | /// This function returns the total cost of the found flow. |
---|
| 821 | /// The complexity of the function is \f$ O(e) \f$. |
---|
| 822 | /// |
---|
| 823 | /// \note The return type of the function can be specified as a |
---|
| 824 | /// template parameter. For example, |
---|
| 825 | /// \code |
---|
| 826 | /// ns.totalCost<double>(); |
---|
| 827 | /// \endcode |
---|
| 828 | /// It is useful if the total cost cannot be stored in the \c Value |
---|
| 829 | /// type of the algorithm, which is the default return type of the |
---|
| 830 | /// function. |
---|
| 831 | /// |
---|
| 832 | /// \pre \ref run() must be called before using this function. |
---|
| 833 | template <typename Num> |
---|
| 834 | Num totalCost() const { |
---|
| 835 | Num c = 0; |
---|
| 836 | if (_pcost) { |
---|
| 837 | for (ArcIt e(_graph); e != INVALID; ++e) |
---|
| 838 | c += (*_flow_map)[e] * (*_pcost)[e]; |
---|
| 839 | } else { |
---|
| 840 | for (ArcIt e(_graph); e != INVALID; ++e) |
---|
| 841 | c += (*_flow_map)[e]; |
---|
| 842 | } |
---|
| 843 | return c; |
---|
| 844 | } |
---|
| 845 | |
---|
| 846 | #ifndef DOXYGEN |
---|
| 847 | Value totalCost() const { |
---|
| 848 | return totalCost<Value>(); |
---|
| 849 | } |
---|
| 850 | #endif |
---|
| 851 | |
---|
| 852 | /// \brief Return the flow on the given arc. |
---|
| 853 | /// |
---|
| 854 | /// This function returns the flow on the given arc. |
---|
| 855 | /// |
---|
| 856 | /// \pre \ref run() must be called before using this function. |
---|
| 857 | Value flow(const Arc& a) const { |
---|
| 858 | return (*_flow_map)[a]; |
---|
| 859 | } |
---|
| 860 | |
---|
[601] | 861 | /// \brief Return a const reference to the flow map. |
---|
| 862 | /// |
---|
| 863 | /// This function returns a const reference to an arc map storing |
---|
| 864 | /// the found flow. |
---|
| 865 | /// |
---|
| 866 | /// \pre \ref run() must be called before using this function. |
---|
| 867 | const FlowMap& flowMap() const { |
---|
[603] | 868 | return *_flow_map; |
---|
[601] | 869 | } |
---|
| 870 | |
---|
[605] | 871 | /// \brief Return the potential (dual value) of the given node. |
---|
| 872 | /// |
---|
| 873 | /// This function returns the potential (dual value) of the |
---|
| 874 | /// given node. |
---|
| 875 | /// |
---|
| 876 | /// \pre \ref run() must be called before using this function. |
---|
| 877 | Value potential(const Node& n) const { |
---|
| 878 | return (*_potential_map)[n]; |
---|
| 879 | } |
---|
| 880 | |
---|
[601] | 881 | /// \brief Return a const reference to the potential map |
---|
| 882 | /// (the dual solution). |
---|
| 883 | /// |
---|
| 884 | /// This function returns a const reference to a node map storing |
---|
[605] | 885 | /// the found potentials, which form the dual solution of the |
---|
| 886 | /// \ref min_cost_flow "minimum cost flow" problem. |
---|
[601] | 887 | /// |
---|
| 888 | /// \pre \ref run() must be called before using this function. |
---|
| 889 | const PotentialMap& potentialMap() const { |
---|
[603] | 890 | return *_potential_map; |
---|
[601] | 891 | } |
---|
| 892 | |
---|
| 893 | /// @} |
---|
| 894 | |
---|
| 895 | private: |
---|
| 896 | |
---|
| 897 | // Initialize internal data structures |
---|
| 898 | bool init() { |
---|
| 899 | // Initialize result maps |
---|
[603] | 900 | if (!_flow_map) { |
---|
| 901 | _flow_map = new FlowMap(_graph); |
---|
[601] | 902 | _local_flow = true; |
---|
| 903 | } |
---|
[603] | 904 | if (!_potential_map) { |
---|
| 905 | _potential_map = new PotentialMap(_graph); |
---|
[601] | 906 | _local_potential = true; |
---|
| 907 | } |
---|
| 908 | |
---|
| 909 | // Initialize vectors |
---|
[603] | 910 | _node_num = countNodes(_graph); |
---|
| 911 | _arc_num = countArcs(_graph); |
---|
[601] | 912 | int all_node_num = _node_num + 1; |
---|
[603] | 913 | int all_arc_num = _arc_num + _node_num; |
---|
[605] | 914 | if (_node_num == 0) return false; |
---|
[601] | 915 | |
---|
[603] | 916 | _arc_ref.resize(_arc_num); |
---|
| 917 | _source.resize(all_arc_num); |
---|
| 918 | _target.resize(all_arc_num); |
---|
[601] | 919 | |
---|
[603] | 920 | _cap.resize(all_arc_num); |
---|
| 921 | _cost.resize(all_arc_num); |
---|
[601] | 922 | _supply.resize(all_node_num); |
---|
[603] | 923 | _flow.resize(all_arc_num, 0); |
---|
[601] | 924 | _pi.resize(all_node_num, 0); |
---|
| 925 | |
---|
| 926 | _parent.resize(all_node_num); |
---|
| 927 | _pred.resize(all_node_num); |
---|
[603] | 928 | _forward.resize(all_node_num); |
---|
[601] | 929 | _thread.resize(all_node_num); |
---|
[604] | 930 | _rev_thread.resize(all_node_num); |
---|
| 931 | _succ_num.resize(all_node_num); |
---|
| 932 | _last_succ.resize(all_node_num); |
---|
[603] | 933 | _state.resize(all_arc_num, STATE_LOWER); |
---|
[601] | 934 | |
---|
| 935 | // Initialize node related data |
---|
| 936 | bool valid_supply = true; |
---|
[605] | 937 | if (!_pstsup && !_psupply) { |
---|
| 938 | _pstsup = true; |
---|
| 939 | _psource = _ptarget = NodeIt(_graph); |
---|
| 940 | _pstflow = 0; |
---|
| 941 | } |
---|
| 942 | if (_psupply) { |
---|
| 943 | Value sum = 0; |
---|
[601] | 944 | int i = 0; |
---|
[603] | 945 | for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
---|
[601] | 946 | _node_id[n] = i; |
---|
[605] | 947 | _supply[i] = (*_psupply)[n]; |
---|
[601] | 948 | sum += _supply[i]; |
---|
| 949 | } |
---|
| 950 | valid_supply = (sum == 0); |
---|
| 951 | } else { |
---|
| 952 | int i = 0; |
---|
[603] | 953 | for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
---|
[601] | 954 | _node_id[n] = i; |
---|
| 955 | _supply[i] = 0; |
---|
| 956 | } |
---|
[605] | 957 | _supply[_node_id[_psource]] = _pstflow; |
---|
| 958 | _supply[_node_id[_ptarget]] = -_pstflow; |
---|
[601] | 959 | } |
---|
| 960 | if (!valid_supply) return false; |
---|
| 961 | |
---|
| 962 | // Set data for the artificial root node |
---|
| 963 | _root = _node_num; |
---|
| 964 | _parent[_root] = -1; |
---|
| 965 | _pred[_root] = -1; |
---|
| 966 | _thread[_root] = 0; |
---|
[604] | 967 | _rev_thread[0] = _root; |
---|
| 968 | _succ_num[_root] = all_node_num; |
---|
| 969 | _last_succ[_root] = _root - 1; |
---|
[601] | 970 | _supply[_root] = 0; |
---|
| 971 | _pi[_root] = 0; |
---|
| 972 | |
---|
| 973 | // Store the arcs in a mixed order |
---|
| 974 | int k = std::max(int(sqrt(_arc_num)), 10); |
---|
| 975 | int i = 0; |
---|
[603] | 976 | for (ArcIt e(_graph); e != INVALID; ++e) { |
---|
| 977 | _arc_ref[i] = e; |
---|
[601] | 978 | if ((i += k) >= _arc_num) i = (i % k) + 1; |
---|
| 979 | } |
---|
| 980 | |
---|
| 981 | // Initialize arc maps |
---|
[605] | 982 | if (_pupper && _pcost) { |
---|
| 983 | for (int i = 0; i != _arc_num; ++i) { |
---|
| 984 | Arc e = _arc_ref[i]; |
---|
| 985 | _source[i] = _node_id[_graph.source(e)]; |
---|
| 986 | _target[i] = _node_id[_graph.target(e)]; |
---|
| 987 | _cap[i] = (*_pupper)[e]; |
---|
| 988 | _cost[i] = (*_pcost)[e]; |
---|
| 989 | } |
---|
| 990 | } else { |
---|
| 991 | for (int i = 0; i != _arc_num; ++i) { |
---|
| 992 | Arc e = _arc_ref[i]; |
---|
| 993 | _source[i] = _node_id[_graph.source(e)]; |
---|
| 994 | _target[i] = _node_id[_graph.target(e)]; |
---|
| 995 | } |
---|
| 996 | if (_pupper) { |
---|
| 997 | for (int i = 0; i != _arc_num; ++i) |
---|
| 998 | _cap[i] = (*_pupper)[_arc_ref[i]]; |
---|
| 999 | } else { |
---|
| 1000 | Value val = std::numeric_limits<Value>::max(); |
---|
| 1001 | for (int i = 0; i != _arc_num; ++i) |
---|
| 1002 | _cap[i] = val; |
---|
| 1003 | } |
---|
| 1004 | if (_pcost) { |
---|
| 1005 | for (int i = 0; i != _arc_num; ++i) |
---|
| 1006 | _cost[i] = (*_pcost)[_arc_ref[i]]; |
---|
| 1007 | } else { |
---|
| 1008 | for (int i = 0; i != _arc_num; ++i) |
---|
| 1009 | _cost[i] = 1; |
---|
| 1010 | } |
---|
[601] | 1011 | } |
---|
| 1012 | |
---|
| 1013 | // Remove non-zero lower bounds |
---|
[605] | 1014 | if (_plower) { |
---|
[601] | 1015 | for (int i = 0; i != _arc_num; ++i) { |
---|
[605] | 1016 | Value c = (*_plower)[_arc_ref[i]]; |
---|
[601] | 1017 | if (c != 0) { |
---|
| 1018 | _cap[i] -= c; |
---|
| 1019 | _supply[_source[i]] -= c; |
---|
| 1020 | _supply[_target[i]] += c; |
---|
| 1021 | } |
---|
| 1022 | } |
---|
| 1023 | } |
---|
| 1024 | |
---|
| 1025 | // Add artificial arcs and initialize the spanning tree data structure |
---|
[605] | 1026 | Value max_cap = std::numeric_limits<Value>::max(); |
---|
| 1027 | Value max_cost = std::numeric_limits<Value>::max() / 4; |
---|
[601] | 1028 | for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
---|
| 1029 | _thread[u] = u + 1; |
---|
[604] | 1030 | _rev_thread[u + 1] = u; |
---|
| 1031 | _succ_num[u] = 1; |
---|
| 1032 | _last_succ[u] = u; |
---|
[601] | 1033 | _parent[u] = _root; |
---|
| 1034 | _pred[u] = e; |
---|
| 1035 | if (_supply[u] >= 0) { |
---|
| 1036 | _flow[e] = _supply[u]; |
---|
| 1037 | _forward[u] = true; |
---|
| 1038 | _pi[u] = -max_cost; |
---|
| 1039 | } else { |
---|
| 1040 | _flow[e] = -_supply[u]; |
---|
| 1041 | _forward[u] = false; |
---|
| 1042 | _pi[u] = max_cost; |
---|
| 1043 | } |
---|
| 1044 | _cost[e] = max_cost; |
---|
| 1045 | _cap[e] = max_cap; |
---|
| 1046 | _state[e] = STATE_TREE; |
---|
| 1047 | } |
---|
| 1048 | |
---|
| 1049 | return true; |
---|
| 1050 | } |
---|
| 1051 | |
---|
| 1052 | // Find the join node |
---|
| 1053 | void findJoinNode() { |
---|
[603] | 1054 | int u = _source[in_arc]; |
---|
| 1055 | int v = _target[in_arc]; |
---|
[601] | 1056 | while (u != v) { |
---|
[604] | 1057 | if (_succ_num[u] < _succ_num[v]) { |
---|
| 1058 | u = _parent[u]; |
---|
| 1059 | } else { |
---|
| 1060 | v = _parent[v]; |
---|
| 1061 | } |
---|
[601] | 1062 | } |
---|
| 1063 | join = u; |
---|
| 1064 | } |
---|
| 1065 | |
---|
| 1066 | // Find the leaving arc of the cycle and returns true if the |
---|
| 1067 | // leaving arc is not the same as the entering arc |
---|
| 1068 | bool findLeavingArc() { |
---|
| 1069 | // Initialize first and second nodes according to the direction |
---|
| 1070 | // of the cycle |
---|
[603] | 1071 | if (_state[in_arc] == STATE_LOWER) { |
---|
| 1072 | first = _source[in_arc]; |
---|
| 1073 | second = _target[in_arc]; |
---|
[601] | 1074 | } else { |
---|
[603] | 1075 | first = _target[in_arc]; |
---|
| 1076 | second = _source[in_arc]; |
---|
[601] | 1077 | } |
---|
[603] | 1078 | delta = _cap[in_arc]; |
---|
[601] | 1079 | int result = 0; |
---|
[605] | 1080 | Value d; |
---|
[601] | 1081 | int e; |
---|
| 1082 | |
---|
| 1083 | // Search the cycle along the path form the first node to the root |
---|
| 1084 | for (int u = first; u != join; u = _parent[u]) { |
---|
| 1085 | e = _pred[u]; |
---|
| 1086 | d = _forward[u] ? _flow[e] : _cap[e] - _flow[e]; |
---|
| 1087 | if (d < delta) { |
---|
| 1088 | delta = d; |
---|
| 1089 | u_out = u; |
---|
| 1090 | result = 1; |
---|
| 1091 | } |
---|
| 1092 | } |
---|
| 1093 | // Search the cycle along the path form the second node to the root |
---|
| 1094 | for (int u = second; u != join; u = _parent[u]) { |
---|
| 1095 | e = _pred[u]; |
---|
| 1096 | d = _forward[u] ? _cap[e] - _flow[e] : _flow[e]; |
---|
| 1097 | if (d <= delta) { |
---|
| 1098 | delta = d; |
---|
| 1099 | u_out = u; |
---|
| 1100 | result = 2; |
---|
| 1101 | } |
---|
| 1102 | } |
---|
| 1103 | |
---|
| 1104 | if (result == 1) { |
---|
| 1105 | u_in = first; |
---|
| 1106 | v_in = second; |
---|
| 1107 | } else { |
---|
| 1108 | u_in = second; |
---|
| 1109 | v_in = first; |
---|
| 1110 | } |
---|
| 1111 | return result != 0; |
---|
| 1112 | } |
---|
| 1113 | |
---|
| 1114 | // Change _flow and _state vectors |
---|
| 1115 | void changeFlow(bool change) { |
---|
| 1116 | // Augment along the cycle |
---|
| 1117 | if (delta > 0) { |
---|
[605] | 1118 | Value val = _state[in_arc] * delta; |
---|
[603] | 1119 | _flow[in_arc] += val; |
---|
| 1120 | for (int u = _source[in_arc]; u != join; u = _parent[u]) { |
---|
[601] | 1121 | _flow[_pred[u]] += _forward[u] ? -val : val; |
---|
| 1122 | } |
---|
[603] | 1123 | for (int u = _target[in_arc]; u != join; u = _parent[u]) { |
---|
[601] | 1124 | _flow[_pred[u]] += _forward[u] ? val : -val; |
---|
| 1125 | } |
---|
| 1126 | } |
---|
| 1127 | // Update the state of the entering and leaving arcs |
---|
| 1128 | if (change) { |
---|
[603] | 1129 | _state[in_arc] = STATE_TREE; |
---|
[601] | 1130 | _state[_pred[u_out]] = |
---|
| 1131 | (_flow[_pred[u_out]] == 0) ? STATE_LOWER : STATE_UPPER; |
---|
| 1132 | } else { |
---|
[603] | 1133 | _state[in_arc] = -_state[in_arc]; |
---|
[601] | 1134 | } |
---|
| 1135 | } |
---|
| 1136 | |
---|
[604] | 1137 | // Update the tree structure |
---|
| 1138 | void updateTreeStructure() { |
---|
| 1139 | int u, w; |
---|
| 1140 | int old_rev_thread = _rev_thread[u_out]; |
---|
| 1141 | int old_succ_num = _succ_num[u_out]; |
---|
| 1142 | int old_last_succ = _last_succ[u_out]; |
---|
[601] | 1143 | v_out = _parent[u_out]; |
---|
| 1144 | |
---|
[604] | 1145 | u = _last_succ[u_in]; // the last successor of u_in |
---|
| 1146 | right = _thread[u]; // the node after it |
---|
| 1147 | |
---|
| 1148 | // Handle the case when old_rev_thread equals to v_in |
---|
| 1149 | // (it also means that join and v_out coincide) |
---|
| 1150 | if (old_rev_thread == v_in) { |
---|
| 1151 | last = _thread[_last_succ[u_out]]; |
---|
| 1152 | } else { |
---|
| 1153 | last = _thread[v_in]; |
---|
[601] | 1154 | } |
---|
| 1155 | |
---|
[604] | 1156 | // Update _thread and _parent along the stem nodes (i.e. the nodes |
---|
| 1157 | // between u_in and u_out, whose parent have to be changed) |
---|
[601] | 1158 | _thread[v_in] = stem = u_in; |
---|
[604] | 1159 | _dirty_revs.clear(); |
---|
| 1160 | _dirty_revs.push_back(v_in); |
---|
[601] | 1161 | par_stem = v_in; |
---|
| 1162 | while (stem != u_out) { |
---|
[604] | 1163 | // Insert the next stem node into the thread list |
---|
| 1164 | new_stem = _parent[stem]; |
---|
| 1165 | _thread[u] = new_stem; |
---|
| 1166 | _dirty_revs.push_back(u); |
---|
[601] | 1167 | |
---|
[604] | 1168 | // Remove the subtree of stem from the thread list |
---|
| 1169 | w = _rev_thread[stem]; |
---|
| 1170 | _thread[w] = right; |
---|
| 1171 | _rev_thread[right] = w; |
---|
[601] | 1172 | |
---|
[604] | 1173 | // Change the parent node and shift stem nodes |
---|
[601] | 1174 | _parent[stem] = par_stem; |
---|
| 1175 | par_stem = stem; |
---|
| 1176 | stem = new_stem; |
---|
| 1177 | |
---|
[604] | 1178 | // Update u and right |
---|
| 1179 | u = _last_succ[stem] == _last_succ[par_stem] ? |
---|
| 1180 | _rev_thread[par_stem] : _last_succ[stem]; |
---|
[601] | 1181 | right = _thread[u]; |
---|
| 1182 | } |
---|
| 1183 | _parent[u_out] = par_stem; |
---|
| 1184 | _thread[u] = last; |
---|
[604] | 1185 | _rev_thread[last] = u; |
---|
| 1186 | _last_succ[u_out] = u; |
---|
[601] | 1187 | |
---|
[604] | 1188 | // Remove the subtree of u_out from the thread list except for |
---|
| 1189 | // the case when old_rev_thread equals to v_in |
---|
| 1190 | // (it also means that join and v_out coincide) |
---|
| 1191 | if (old_rev_thread != v_in) { |
---|
| 1192 | _thread[old_rev_thread] = right; |
---|
| 1193 | _rev_thread[right] = old_rev_thread; |
---|
| 1194 | } |
---|
| 1195 | |
---|
| 1196 | // Update _rev_thread using the new _thread values |
---|
| 1197 | for (int i = 0; i < int(_dirty_revs.size()); ++i) { |
---|
| 1198 | u = _dirty_revs[i]; |
---|
| 1199 | _rev_thread[_thread[u]] = u; |
---|
| 1200 | } |
---|
| 1201 | |
---|
| 1202 | // Update _pred, _forward, _last_succ and _succ_num for the |
---|
| 1203 | // stem nodes from u_out to u_in |
---|
| 1204 | int tmp_sc = 0, tmp_ls = _last_succ[u_out]; |
---|
| 1205 | u = u_out; |
---|
| 1206 | while (u != u_in) { |
---|
| 1207 | w = _parent[u]; |
---|
| 1208 | _pred[u] = _pred[w]; |
---|
| 1209 | _forward[u] = !_forward[w]; |
---|
| 1210 | tmp_sc += _succ_num[u] - _succ_num[w]; |
---|
| 1211 | _succ_num[u] = tmp_sc; |
---|
| 1212 | _last_succ[w] = tmp_ls; |
---|
| 1213 | u = w; |
---|
| 1214 | } |
---|
| 1215 | _pred[u_in] = in_arc; |
---|
| 1216 | _forward[u_in] = (u_in == _source[in_arc]); |
---|
| 1217 | _succ_num[u_in] = old_succ_num; |
---|
| 1218 | |
---|
| 1219 | // Set limits for updating _last_succ form v_in and v_out |
---|
| 1220 | // towards the root |
---|
| 1221 | int up_limit_in = -1; |
---|
| 1222 | int up_limit_out = -1; |
---|
| 1223 | if (_last_succ[join] == v_in) { |
---|
| 1224 | up_limit_out = join; |
---|
[601] | 1225 | } else { |
---|
[604] | 1226 | up_limit_in = join; |
---|
| 1227 | } |
---|
| 1228 | |
---|
| 1229 | // Update _last_succ from v_in towards the root |
---|
| 1230 | for (u = v_in; u != up_limit_in && _last_succ[u] == v_in; |
---|
| 1231 | u = _parent[u]) { |
---|
| 1232 | _last_succ[u] = _last_succ[u_out]; |
---|
| 1233 | } |
---|
| 1234 | // Update _last_succ from v_out towards the root |
---|
| 1235 | if (join != old_rev_thread && v_in != old_rev_thread) { |
---|
| 1236 | for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ; |
---|
| 1237 | u = _parent[u]) { |
---|
| 1238 | _last_succ[u] = old_rev_thread; |
---|
| 1239 | } |
---|
| 1240 | } else { |
---|
| 1241 | for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ; |
---|
| 1242 | u = _parent[u]) { |
---|
| 1243 | _last_succ[u] = _last_succ[u_out]; |
---|
| 1244 | } |
---|
| 1245 | } |
---|
| 1246 | |
---|
| 1247 | // Update _succ_num from v_in to join |
---|
| 1248 | for (u = v_in; u != join; u = _parent[u]) { |
---|
| 1249 | _succ_num[u] += old_succ_num; |
---|
| 1250 | } |
---|
| 1251 | // Update _succ_num from v_out to join |
---|
| 1252 | for (u = v_out; u != join; u = _parent[u]) { |
---|
| 1253 | _succ_num[u] -= old_succ_num; |
---|
[601] | 1254 | } |
---|
| 1255 | } |
---|
| 1256 | |
---|
[604] | 1257 | // Update potentials |
---|
| 1258 | void updatePotential() { |
---|
[605] | 1259 | Value sigma = _forward[u_in] ? |
---|
[601] | 1260 | _pi[v_in] - _pi[u_in] - _cost[_pred[u_in]] : |
---|
| 1261 | _pi[v_in] - _pi[u_in] + _cost[_pred[u_in]]; |
---|
[604] | 1262 | if (_succ_num[u_in] > _node_num / 2) { |
---|
| 1263 | // Update in the upper subtree (which contains the root) |
---|
| 1264 | int before = _rev_thread[u_in]; |
---|
| 1265 | int after = _thread[_last_succ[u_in]]; |
---|
| 1266 | _thread[before] = after; |
---|
| 1267 | _pi[_root] -= sigma; |
---|
| 1268 | for (int u = _thread[_root]; u != _root; u = _thread[u]) { |
---|
| 1269 | _pi[u] -= sigma; |
---|
| 1270 | } |
---|
| 1271 | _thread[before] = u_in; |
---|
| 1272 | } else { |
---|
| 1273 | // Update in the lower subtree (which has been moved) |
---|
| 1274 | int end = _thread[_last_succ[u_in]]; |
---|
| 1275 | for (int u = u_in; u != end; u = _thread[u]) { |
---|
| 1276 | _pi[u] += sigma; |
---|
| 1277 | } |
---|
[601] | 1278 | } |
---|
| 1279 | } |
---|
| 1280 | |
---|
| 1281 | // Execute the algorithm |
---|
[605] | 1282 | bool start(PivotRule pivot_rule) { |
---|
[601] | 1283 | // Select the pivot rule implementation |
---|
| 1284 | switch (pivot_rule) { |
---|
[605] | 1285 | case FIRST_ELIGIBLE: |
---|
[601] | 1286 | return start<FirstEligiblePivotRule>(); |
---|
[605] | 1287 | case BEST_ELIGIBLE: |
---|
[601] | 1288 | return start<BestEligiblePivotRule>(); |
---|
[605] | 1289 | case BLOCK_SEARCH: |
---|
[601] | 1290 | return start<BlockSearchPivotRule>(); |
---|
[605] | 1291 | case CANDIDATE_LIST: |
---|
[601] | 1292 | return start<CandidateListPivotRule>(); |
---|
[605] | 1293 | case ALTERING_LIST: |
---|
[601] | 1294 | return start<AlteringListPivotRule>(); |
---|
| 1295 | } |
---|
| 1296 | return false; |
---|
| 1297 | } |
---|
| 1298 | |
---|
[605] | 1299 | template <typename PivotRuleImpl> |
---|
[601] | 1300 | bool start() { |
---|
[605] | 1301 | PivotRuleImpl pivot(*this); |
---|
[601] | 1302 | |
---|
[605] | 1303 | // Execute the Network Simplex algorithm |
---|
[601] | 1304 | while (pivot.findEnteringArc()) { |
---|
| 1305 | findJoinNode(); |
---|
| 1306 | bool change = findLeavingArc(); |
---|
| 1307 | changeFlow(change); |
---|
| 1308 | if (change) { |
---|
[604] | 1309 | updateTreeStructure(); |
---|
| 1310 | updatePotential(); |
---|
[601] | 1311 | } |
---|
| 1312 | } |
---|
| 1313 | |
---|
| 1314 | // Check if the flow amount equals zero on all the artificial arcs |
---|
| 1315 | for (int e = _arc_num; e != _arc_num + _node_num; ++e) { |
---|
| 1316 | if (_flow[e] > 0) return false; |
---|
| 1317 | } |
---|
| 1318 | |
---|
[603] | 1319 | // Copy flow values to _flow_map |
---|
[605] | 1320 | if (_plower) { |
---|
[601] | 1321 | for (int i = 0; i != _arc_num; ++i) { |
---|
[603] | 1322 | Arc e = _arc_ref[i]; |
---|
[605] | 1323 | _flow_map->set(e, (*_plower)[e] + _flow[i]); |
---|
[601] | 1324 | } |
---|
| 1325 | } else { |
---|
| 1326 | for (int i = 0; i != _arc_num; ++i) { |
---|
[603] | 1327 | _flow_map->set(_arc_ref[i], _flow[i]); |
---|
[601] | 1328 | } |
---|
| 1329 | } |
---|
[603] | 1330 | // Copy potential values to _potential_map |
---|
| 1331 | for (NodeIt n(_graph); n != INVALID; ++n) { |
---|
| 1332 | _potential_map->set(n, _pi[_node_id[n]]); |
---|
[601] | 1333 | } |
---|
| 1334 | |
---|
| 1335 | return true; |
---|
| 1336 | } |
---|
| 1337 | |
---|
| 1338 | }; //class NetworkSimplex |
---|
| 1339 | |
---|
| 1340 | ///@} |
---|
| 1341 | |
---|
| 1342 | } //namespace lemon |
---|
| 1343 | |
---|
| 1344 | #endif //LEMON_NETWORK_SIMPLEX_H |
---|