[601] | 1 | /* -*- mode: C++; indent-tabs-mode: nil; -*- |
---|
| 2 | * |
---|
| 3 | * This file is a part of LEMON, a generic C++ optimization library. |
---|
| 4 | * |
---|
| 5 | * Copyright (C) 2003-2009 |
---|
| 6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
| 7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
---|
| 8 | * |
---|
| 9 | * Permission to use, modify and distribute this software is granted |
---|
| 10 | * provided that this copyright notice appears in all copies. For |
---|
| 11 | * precise terms see the accompanying LICENSE file. |
---|
| 12 | * |
---|
| 13 | * This software is provided "AS IS" with no warranty of any kind, |
---|
| 14 | * express or implied, and with no claim as to its suitability for any |
---|
| 15 | * purpose. |
---|
| 16 | * |
---|
| 17 | */ |
---|
| 18 | |
---|
| 19 | #ifndef LEMON_NETWORK_SIMPLEX_H |
---|
| 20 | #define LEMON_NETWORK_SIMPLEX_H |
---|
| 21 | |
---|
[663] | 22 | /// \ingroup min_cost_flow_algs |
---|
[601] | 23 | /// |
---|
| 24 | /// \file |
---|
[605] | 25 | /// \brief Network Simplex algorithm for finding a minimum cost flow. |
---|
[601] | 26 | |
---|
| 27 | #include <vector> |
---|
| 28 | #include <limits> |
---|
| 29 | #include <algorithm> |
---|
| 30 | |
---|
[603] | 31 | #include <lemon/core.h> |
---|
[601] | 32 | #include <lemon/math.h> |
---|
| 33 | |
---|
| 34 | namespace lemon { |
---|
| 35 | |
---|
[663] | 36 | /// \addtogroup min_cost_flow_algs |
---|
[601] | 37 | /// @{ |
---|
| 38 | |
---|
[605] | 39 | /// \brief Implementation of the primal Network Simplex algorithm |
---|
[601] | 40 | /// for finding a \ref min_cost_flow "minimum cost flow". |
---|
| 41 | /// |
---|
[605] | 42 | /// \ref NetworkSimplex implements the primal Network Simplex algorithm |
---|
[755] | 43 | /// for finding a \ref min_cost_flow "minimum cost flow" |
---|
| 44 | /// \ref amo93networkflows, \ref dantzig63linearprog, |
---|
| 45 | /// \ref kellyoneill91netsimplex. |
---|
[812] | 46 | /// This algorithm is a highly efficient specialized version of the |
---|
| 47 | /// linear programming simplex method directly for the minimum cost |
---|
| 48 | /// flow problem. |
---|
[606] | 49 | /// |
---|
[812] | 50 | /// In general, %NetworkSimplex is the fastest implementation available |
---|
| 51 | /// in LEMON for this problem. |
---|
| 52 | /// Moreover, it supports both directions of the supply/demand inequality |
---|
[786] | 53 | /// constraints. For more information, see \ref SupplyType. |
---|
[640] | 54 | /// |
---|
| 55 | /// Most of the parameters of the problem (except for the digraph) |
---|
| 56 | /// can be given using separate functions, and the algorithm can be |
---|
| 57 | /// executed using the \ref run() function. If some parameters are not |
---|
| 58 | /// specified, then default values will be used. |
---|
[601] | 59 | /// |
---|
[605] | 60 | /// \tparam GR The digraph type the algorithm runs on. |
---|
[812] | 61 | /// \tparam V The number type used for flow amounts, capacity bounds |
---|
[786] | 62 | /// and supply values in the algorithm. By default, it is \c int. |
---|
[812] | 63 | /// \tparam C The number type used for costs and potentials in the |
---|
[786] | 64 | /// algorithm. By default, it is the same as \c V. |
---|
[601] | 65 | /// |
---|
[812] | 66 | /// \warning Both number types must be signed and all input data must |
---|
[608] | 67 | /// be integer. |
---|
[601] | 68 | /// |
---|
[605] | 69 | /// \note %NetworkSimplex provides five different pivot rule |
---|
[609] | 70 | /// implementations, from which the most efficient one is used |
---|
[786] | 71 | /// by default. For more information, see \ref PivotRule. |
---|
[641] | 72 | template <typename GR, typename V = int, typename C = V> |
---|
[601] | 73 | class NetworkSimplex |
---|
| 74 | { |
---|
[605] | 75 | public: |
---|
[601] | 76 | |
---|
[642] | 77 | /// The type of the flow amounts, capacity bounds and supply values |
---|
[641] | 78 | typedef V Value; |
---|
[642] | 79 | /// The type of the arc costs |
---|
[607] | 80 | typedef C Cost; |
---|
[605] | 81 | |
---|
| 82 | public: |
---|
| 83 | |
---|
[640] | 84 | /// \brief Problem type constants for the \c run() function. |
---|
[605] | 85 | /// |
---|
[640] | 86 | /// Enum type containing the problem type constants that can be |
---|
| 87 | /// returned by the \ref run() function of the algorithm. |
---|
| 88 | enum ProblemType { |
---|
| 89 | /// The problem has no feasible solution (flow). |
---|
| 90 | INFEASIBLE, |
---|
| 91 | /// The problem has optimal solution (i.e. it is feasible and |
---|
| 92 | /// bounded), and the algorithm has found optimal flow and node |
---|
| 93 | /// potentials (primal and dual solutions). |
---|
| 94 | OPTIMAL, |
---|
| 95 | /// The objective function of the problem is unbounded, i.e. |
---|
| 96 | /// there is a directed cycle having negative total cost and |
---|
| 97 | /// infinite upper bound. |
---|
| 98 | UNBOUNDED |
---|
| 99 | }; |
---|
| 100 | |
---|
| 101 | /// \brief Constants for selecting the type of the supply constraints. |
---|
| 102 | /// |
---|
| 103 | /// Enum type containing constants for selecting the supply type, |
---|
| 104 | /// i.e. the direction of the inequalities in the supply/demand |
---|
| 105 | /// constraints of the \ref min_cost_flow "minimum cost flow problem". |
---|
| 106 | /// |
---|
[663] | 107 | /// The default supply type is \c GEQ, the \c LEQ type can be |
---|
| 108 | /// selected using \ref supplyType(). |
---|
| 109 | /// The equality form is a special case of both supply types. |
---|
[640] | 110 | enum SupplyType { |
---|
| 111 | /// This option means that there are <em>"greater or equal"</em> |
---|
[663] | 112 | /// supply/demand constraints in the definition of the problem. |
---|
[640] | 113 | GEQ, |
---|
| 114 | /// This option means that there are <em>"less or equal"</em> |
---|
[663] | 115 | /// supply/demand constraints in the definition of the problem. |
---|
| 116 | LEQ |
---|
[640] | 117 | }; |
---|
| 118 | |
---|
| 119 | /// \brief Constants for selecting the pivot rule. |
---|
| 120 | /// |
---|
| 121 | /// Enum type containing constants for selecting the pivot rule for |
---|
| 122 | /// the \ref run() function. |
---|
| 123 | /// |
---|
[605] | 124 | /// \ref NetworkSimplex provides five different pivot rule |
---|
| 125 | /// implementations that significantly affect the running time |
---|
| 126 | /// of the algorithm. |
---|
[786] | 127 | /// By default, \ref BLOCK_SEARCH "Block Search" is used, which |
---|
[605] | 128 | /// proved to be the most efficient and the most robust on various |
---|
[812] | 129 | /// test inputs. |
---|
[786] | 130 | /// However, another pivot rule can be selected using the \ref run() |
---|
[605] | 131 | /// function with the proper parameter. |
---|
| 132 | enum PivotRule { |
---|
| 133 | |
---|
[786] | 134 | /// The \e First \e Eligible pivot rule. |
---|
[605] | 135 | /// The next eligible arc is selected in a wraparound fashion |
---|
| 136 | /// in every iteration. |
---|
| 137 | FIRST_ELIGIBLE, |
---|
| 138 | |
---|
[786] | 139 | /// The \e Best \e Eligible pivot rule. |
---|
[605] | 140 | /// The best eligible arc is selected in every iteration. |
---|
| 141 | BEST_ELIGIBLE, |
---|
| 142 | |
---|
[786] | 143 | /// The \e Block \e Search pivot rule. |
---|
[605] | 144 | /// A specified number of arcs are examined in every iteration |
---|
| 145 | /// in a wraparound fashion and the best eligible arc is selected |
---|
| 146 | /// from this block. |
---|
| 147 | BLOCK_SEARCH, |
---|
| 148 | |
---|
[786] | 149 | /// The \e Candidate \e List pivot rule. |
---|
[605] | 150 | /// In a major iteration a candidate list is built from eligible arcs |
---|
| 151 | /// in a wraparound fashion and in the following minor iterations |
---|
| 152 | /// the best eligible arc is selected from this list. |
---|
| 153 | CANDIDATE_LIST, |
---|
| 154 | |
---|
[786] | 155 | /// The \e Altering \e Candidate \e List pivot rule. |
---|
[605] | 156 | /// It is a modified version of the Candidate List method. |
---|
| 157 | /// It keeps only the several best eligible arcs from the former |
---|
| 158 | /// candidate list and extends this list in every iteration. |
---|
| 159 | ALTERING_LIST |
---|
| 160 | }; |
---|
[609] | 161 | |
---|
[605] | 162 | private: |
---|
| 163 | |
---|
| 164 | TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
---|
| 165 | |
---|
[601] | 166 | typedef std::vector<int> IntVector; |
---|
[811] | 167 | typedef std::vector<char> CharVector; |
---|
[642] | 168 | typedef std::vector<Value> ValueVector; |
---|
[607] | 169 | typedef std::vector<Cost> CostVector; |
---|
[601] | 170 | |
---|
| 171 | // State constants for arcs |
---|
| 172 | enum ArcStateEnum { |
---|
| 173 | STATE_UPPER = -1, |
---|
| 174 | STATE_TREE = 0, |
---|
| 175 | STATE_LOWER = 1 |
---|
| 176 | }; |
---|
| 177 | |
---|
| 178 | private: |
---|
| 179 | |
---|
[605] | 180 | // Data related to the underlying digraph |
---|
| 181 | const GR &_graph; |
---|
| 182 | int _node_num; |
---|
| 183 | int _arc_num; |
---|
[663] | 184 | int _all_arc_num; |
---|
| 185 | int _search_arc_num; |
---|
[605] | 186 | |
---|
| 187 | // Parameters of the problem |
---|
[642] | 188 | bool _have_lower; |
---|
[640] | 189 | SupplyType _stype; |
---|
[641] | 190 | Value _sum_supply; |
---|
[601] | 191 | |
---|
[605] | 192 | // Data structures for storing the digraph |
---|
[603] | 193 | IntNodeMap _node_id; |
---|
[642] | 194 | IntArcMap _arc_id; |
---|
[603] | 195 | IntVector _source; |
---|
| 196 | IntVector _target; |
---|
[830] | 197 | bool _arc_mixing; |
---|
[603] | 198 | |
---|
[605] | 199 | // Node and arc data |
---|
[642] | 200 | ValueVector _lower; |
---|
| 201 | ValueVector _upper; |
---|
| 202 | ValueVector _cap; |
---|
[607] | 203 | CostVector _cost; |
---|
[642] | 204 | ValueVector _supply; |
---|
| 205 | ValueVector _flow; |
---|
[607] | 206 | CostVector _pi; |
---|
[601] | 207 | |
---|
[603] | 208 | // Data for storing the spanning tree structure |
---|
[601] | 209 | IntVector _parent; |
---|
| 210 | IntVector _pred; |
---|
| 211 | IntVector _thread; |
---|
[604] | 212 | IntVector _rev_thread; |
---|
| 213 | IntVector _succ_num; |
---|
| 214 | IntVector _last_succ; |
---|
| 215 | IntVector _dirty_revs; |
---|
[811] | 216 | CharVector _forward; |
---|
| 217 | CharVector _state; |
---|
[601] | 218 | int _root; |
---|
| 219 | |
---|
| 220 | // Temporary data used in the current pivot iteration |
---|
[603] | 221 | int in_arc, join, u_in, v_in, u_out, v_out; |
---|
| 222 | int first, second, right, last; |
---|
[601] | 223 | int stem, par_stem, new_stem; |
---|
[641] | 224 | Value delta; |
---|
[811] | 225 | |
---|
| 226 | const Value MAX; |
---|
[601] | 227 | |
---|
[640] | 228 | public: |
---|
| 229 | |
---|
| 230 | /// \brief Constant for infinite upper bounds (capacities). |
---|
| 231 | /// |
---|
| 232 | /// Constant for infinite upper bounds (capacities). |
---|
[641] | 233 | /// It is \c std::numeric_limits<Value>::infinity() if available, |
---|
| 234 | /// \c std::numeric_limits<Value>::max() otherwise. |
---|
| 235 | const Value INF; |
---|
[640] | 236 | |
---|
[601] | 237 | private: |
---|
| 238 | |
---|
[605] | 239 | // Implementation of the First Eligible pivot rule |
---|
[601] | 240 | class FirstEligiblePivotRule |
---|
| 241 | { |
---|
| 242 | private: |
---|
| 243 | |
---|
| 244 | // References to the NetworkSimplex class |
---|
| 245 | const IntVector &_source; |
---|
| 246 | const IntVector &_target; |
---|
[607] | 247 | const CostVector &_cost; |
---|
[811] | 248 | const CharVector &_state; |
---|
[607] | 249 | const CostVector &_pi; |
---|
[601] | 250 | int &_in_arc; |
---|
[663] | 251 | int _search_arc_num; |
---|
[601] | 252 | |
---|
| 253 | // Pivot rule data |
---|
| 254 | int _next_arc; |
---|
| 255 | |
---|
| 256 | public: |
---|
| 257 | |
---|
[605] | 258 | // Constructor |
---|
[601] | 259 | FirstEligiblePivotRule(NetworkSimplex &ns) : |
---|
[603] | 260 | _source(ns._source), _target(ns._target), |
---|
[601] | 261 | _cost(ns._cost), _state(ns._state), _pi(ns._pi), |
---|
[663] | 262 | _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
---|
| 263 | _next_arc(0) |
---|
[601] | 264 | {} |
---|
| 265 | |
---|
[605] | 266 | // Find next entering arc |
---|
[601] | 267 | bool findEnteringArc() { |
---|
[607] | 268 | Cost c; |
---|
[663] | 269 | for (int e = _next_arc; e < _search_arc_num; ++e) { |
---|
[601] | 270 | c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
---|
| 271 | if (c < 0) { |
---|
| 272 | _in_arc = e; |
---|
| 273 | _next_arc = e + 1; |
---|
| 274 | return true; |
---|
| 275 | } |
---|
| 276 | } |
---|
| 277 | for (int e = 0; e < _next_arc; ++e) { |
---|
| 278 | c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
---|
| 279 | if (c < 0) { |
---|
| 280 | _in_arc = e; |
---|
| 281 | _next_arc = e + 1; |
---|
| 282 | return true; |
---|
| 283 | } |
---|
| 284 | } |
---|
| 285 | return false; |
---|
| 286 | } |
---|
| 287 | |
---|
| 288 | }; //class FirstEligiblePivotRule |
---|
| 289 | |
---|
| 290 | |
---|
[605] | 291 | // Implementation of the Best Eligible pivot rule |
---|
[601] | 292 | class BestEligiblePivotRule |
---|
| 293 | { |
---|
| 294 | private: |
---|
| 295 | |
---|
| 296 | // References to the NetworkSimplex class |
---|
| 297 | const IntVector &_source; |
---|
| 298 | const IntVector &_target; |
---|
[607] | 299 | const CostVector &_cost; |
---|
[811] | 300 | const CharVector &_state; |
---|
[607] | 301 | const CostVector &_pi; |
---|
[601] | 302 | int &_in_arc; |
---|
[663] | 303 | int _search_arc_num; |
---|
[601] | 304 | |
---|
| 305 | public: |
---|
| 306 | |
---|
[605] | 307 | // Constructor |
---|
[601] | 308 | BestEligiblePivotRule(NetworkSimplex &ns) : |
---|
[603] | 309 | _source(ns._source), _target(ns._target), |
---|
[601] | 310 | _cost(ns._cost), _state(ns._state), _pi(ns._pi), |
---|
[663] | 311 | _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num) |
---|
[601] | 312 | {} |
---|
| 313 | |
---|
[605] | 314 | // Find next entering arc |
---|
[601] | 315 | bool findEnteringArc() { |
---|
[607] | 316 | Cost c, min = 0; |
---|
[663] | 317 | for (int e = 0; e < _search_arc_num; ++e) { |
---|
[601] | 318 | c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
---|
| 319 | if (c < min) { |
---|
| 320 | min = c; |
---|
| 321 | _in_arc = e; |
---|
| 322 | } |
---|
| 323 | } |
---|
| 324 | return min < 0; |
---|
| 325 | } |
---|
| 326 | |
---|
| 327 | }; //class BestEligiblePivotRule |
---|
| 328 | |
---|
| 329 | |
---|
[605] | 330 | // Implementation of the Block Search pivot rule |
---|
[601] | 331 | class BlockSearchPivotRule |
---|
| 332 | { |
---|
| 333 | private: |
---|
| 334 | |
---|
| 335 | // References to the NetworkSimplex class |
---|
| 336 | const IntVector &_source; |
---|
| 337 | const IntVector &_target; |
---|
[607] | 338 | const CostVector &_cost; |
---|
[811] | 339 | const CharVector &_state; |
---|
[607] | 340 | const CostVector &_pi; |
---|
[601] | 341 | int &_in_arc; |
---|
[663] | 342 | int _search_arc_num; |
---|
[601] | 343 | |
---|
| 344 | // Pivot rule data |
---|
| 345 | int _block_size; |
---|
| 346 | int _next_arc; |
---|
| 347 | |
---|
| 348 | public: |
---|
| 349 | |
---|
[605] | 350 | // Constructor |
---|
[601] | 351 | BlockSearchPivotRule(NetworkSimplex &ns) : |
---|
[603] | 352 | _source(ns._source), _target(ns._target), |
---|
[601] | 353 | _cost(ns._cost), _state(ns._state), _pi(ns._pi), |
---|
[663] | 354 | _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
---|
| 355 | _next_arc(0) |
---|
[601] | 356 | { |
---|
| 357 | // The main parameters of the pivot rule |
---|
[663] | 358 | const double BLOCK_SIZE_FACTOR = 0.5; |
---|
[601] | 359 | const int MIN_BLOCK_SIZE = 10; |
---|
| 360 | |
---|
[612] | 361 | _block_size = std::max( int(BLOCK_SIZE_FACTOR * |
---|
[663] | 362 | std::sqrt(double(_search_arc_num))), |
---|
[601] | 363 | MIN_BLOCK_SIZE ); |
---|
| 364 | } |
---|
| 365 | |
---|
[605] | 366 | // Find next entering arc |
---|
[601] | 367 | bool findEnteringArc() { |
---|
[607] | 368 | Cost c, min = 0; |
---|
[601] | 369 | int cnt = _block_size; |
---|
[727] | 370 | int e; |
---|
[663] | 371 | for (e = _next_arc; e < _search_arc_num; ++e) { |
---|
[601] | 372 | c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
---|
| 373 | if (c < min) { |
---|
| 374 | min = c; |
---|
[727] | 375 | _in_arc = e; |
---|
[601] | 376 | } |
---|
| 377 | if (--cnt == 0) { |
---|
[727] | 378 | if (min < 0) goto search_end; |
---|
[601] | 379 | cnt = _block_size; |
---|
| 380 | } |
---|
| 381 | } |
---|
[727] | 382 | for (e = 0; e < _next_arc; ++e) { |
---|
| 383 | c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
---|
| 384 | if (c < min) { |
---|
| 385 | min = c; |
---|
| 386 | _in_arc = e; |
---|
| 387 | } |
---|
| 388 | if (--cnt == 0) { |
---|
| 389 | if (min < 0) goto search_end; |
---|
| 390 | cnt = _block_size; |
---|
[601] | 391 | } |
---|
| 392 | } |
---|
| 393 | if (min >= 0) return false; |
---|
[727] | 394 | |
---|
| 395 | search_end: |
---|
[601] | 396 | _next_arc = e; |
---|
| 397 | return true; |
---|
| 398 | } |
---|
| 399 | |
---|
| 400 | }; //class BlockSearchPivotRule |
---|
| 401 | |
---|
| 402 | |
---|
[605] | 403 | // Implementation of the Candidate List pivot rule |
---|
[601] | 404 | class CandidateListPivotRule |
---|
| 405 | { |
---|
| 406 | private: |
---|
| 407 | |
---|
| 408 | // References to the NetworkSimplex class |
---|
| 409 | const IntVector &_source; |
---|
| 410 | const IntVector &_target; |
---|
[607] | 411 | const CostVector &_cost; |
---|
[811] | 412 | const CharVector &_state; |
---|
[607] | 413 | const CostVector &_pi; |
---|
[601] | 414 | int &_in_arc; |
---|
[663] | 415 | int _search_arc_num; |
---|
[601] | 416 | |
---|
| 417 | // Pivot rule data |
---|
| 418 | IntVector _candidates; |
---|
| 419 | int _list_length, _minor_limit; |
---|
| 420 | int _curr_length, _minor_count; |
---|
| 421 | int _next_arc; |
---|
| 422 | |
---|
| 423 | public: |
---|
| 424 | |
---|
| 425 | /// Constructor |
---|
| 426 | CandidateListPivotRule(NetworkSimplex &ns) : |
---|
[603] | 427 | _source(ns._source), _target(ns._target), |
---|
[601] | 428 | _cost(ns._cost), _state(ns._state), _pi(ns._pi), |
---|
[663] | 429 | _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
---|
| 430 | _next_arc(0) |
---|
[601] | 431 | { |
---|
| 432 | // The main parameters of the pivot rule |
---|
[727] | 433 | const double LIST_LENGTH_FACTOR = 0.25; |
---|
[601] | 434 | const int MIN_LIST_LENGTH = 10; |
---|
| 435 | const double MINOR_LIMIT_FACTOR = 0.1; |
---|
| 436 | const int MIN_MINOR_LIMIT = 3; |
---|
| 437 | |
---|
[612] | 438 | _list_length = std::max( int(LIST_LENGTH_FACTOR * |
---|
[663] | 439 | std::sqrt(double(_search_arc_num))), |
---|
[601] | 440 | MIN_LIST_LENGTH ); |
---|
| 441 | _minor_limit = std::max( int(MINOR_LIMIT_FACTOR * _list_length), |
---|
| 442 | MIN_MINOR_LIMIT ); |
---|
| 443 | _curr_length = _minor_count = 0; |
---|
| 444 | _candidates.resize(_list_length); |
---|
| 445 | } |
---|
| 446 | |
---|
| 447 | /// Find next entering arc |
---|
| 448 | bool findEnteringArc() { |
---|
[607] | 449 | Cost min, c; |
---|
[727] | 450 | int e; |
---|
[601] | 451 | if (_curr_length > 0 && _minor_count < _minor_limit) { |
---|
| 452 | // Minor iteration: select the best eligible arc from the |
---|
| 453 | // current candidate list |
---|
| 454 | ++_minor_count; |
---|
| 455 | min = 0; |
---|
| 456 | for (int i = 0; i < _curr_length; ++i) { |
---|
| 457 | e = _candidates[i]; |
---|
| 458 | c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
---|
| 459 | if (c < min) { |
---|
| 460 | min = c; |
---|
[727] | 461 | _in_arc = e; |
---|
[601] | 462 | } |
---|
[727] | 463 | else if (c >= 0) { |
---|
[601] | 464 | _candidates[i--] = _candidates[--_curr_length]; |
---|
| 465 | } |
---|
| 466 | } |
---|
[727] | 467 | if (min < 0) return true; |
---|
[601] | 468 | } |
---|
| 469 | |
---|
| 470 | // Major iteration: build a new candidate list |
---|
| 471 | min = 0; |
---|
| 472 | _curr_length = 0; |
---|
[663] | 473 | for (e = _next_arc; e < _search_arc_num; ++e) { |
---|
[601] | 474 | c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
---|
| 475 | if (c < 0) { |
---|
| 476 | _candidates[_curr_length++] = e; |
---|
| 477 | if (c < min) { |
---|
| 478 | min = c; |
---|
[727] | 479 | _in_arc = e; |
---|
[601] | 480 | } |
---|
[727] | 481 | if (_curr_length == _list_length) goto search_end; |
---|
[601] | 482 | } |
---|
| 483 | } |
---|
[727] | 484 | for (e = 0; e < _next_arc; ++e) { |
---|
| 485 | c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
---|
| 486 | if (c < 0) { |
---|
| 487 | _candidates[_curr_length++] = e; |
---|
| 488 | if (c < min) { |
---|
| 489 | min = c; |
---|
| 490 | _in_arc = e; |
---|
[601] | 491 | } |
---|
[727] | 492 | if (_curr_length == _list_length) goto search_end; |
---|
[601] | 493 | } |
---|
| 494 | } |
---|
| 495 | if (_curr_length == 0) return false; |
---|
[727] | 496 | |
---|
| 497 | search_end: |
---|
[601] | 498 | _minor_count = 1; |
---|
| 499 | _next_arc = e; |
---|
| 500 | return true; |
---|
| 501 | } |
---|
| 502 | |
---|
| 503 | }; //class CandidateListPivotRule |
---|
| 504 | |
---|
| 505 | |
---|
[605] | 506 | // Implementation of the Altering Candidate List pivot rule |
---|
[601] | 507 | class AlteringListPivotRule |
---|
| 508 | { |
---|
| 509 | private: |
---|
| 510 | |
---|
| 511 | // References to the NetworkSimplex class |
---|
| 512 | const IntVector &_source; |
---|
| 513 | const IntVector &_target; |
---|
[607] | 514 | const CostVector &_cost; |
---|
[811] | 515 | const CharVector &_state; |
---|
[607] | 516 | const CostVector &_pi; |
---|
[601] | 517 | int &_in_arc; |
---|
[663] | 518 | int _search_arc_num; |
---|
[601] | 519 | |
---|
| 520 | // Pivot rule data |
---|
| 521 | int _block_size, _head_length, _curr_length; |
---|
| 522 | int _next_arc; |
---|
| 523 | IntVector _candidates; |
---|
[607] | 524 | CostVector _cand_cost; |
---|
[601] | 525 | |
---|
| 526 | // Functor class to compare arcs during sort of the candidate list |
---|
| 527 | class SortFunc |
---|
| 528 | { |
---|
| 529 | private: |
---|
[607] | 530 | const CostVector &_map; |
---|
[601] | 531 | public: |
---|
[607] | 532 | SortFunc(const CostVector &map) : _map(map) {} |
---|
[601] | 533 | bool operator()(int left, int right) { |
---|
| 534 | return _map[left] > _map[right]; |
---|
| 535 | } |
---|
| 536 | }; |
---|
| 537 | |
---|
| 538 | SortFunc _sort_func; |
---|
| 539 | |
---|
| 540 | public: |
---|
| 541 | |
---|
[605] | 542 | // Constructor |
---|
[601] | 543 | AlteringListPivotRule(NetworkSimplex &ns) : |
---|
[603] | 544 | _source(ns._source), _target(ns._target), |
---|
[601] | 545 | _cost(ns._cost), _state(ns._state), _pi(ns._pi), |
---|
[663] | 546 | _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
---|
| 547 | _next_arc(0), _cand_cost(ns._search_arc_num), _sort_func(_cand_cost) |
---|
[601] | 548 | { |
---|
| 549 | // The main parameters of the pivot rule |
---|
[727] | 550 | const double BLOCK_SIZE_FACTOR = 1.0; |
---|
[601] | 551 | const int MIN_BLOCK_SIZE = 10; |
---|
| 552 | const double HEAD_LENGTH_FACTOR = 0.1; |
---|
| 553 | const int MIN_HEAD_LENGTH = 3; |
---|
| 554 | |
---|
[612] | 555 | _block_size = std::max( int(BLOCK_SIZE_FACTOR * |
---|
[663] | 556 | std::sqrt(double(_search_arc_num))), |
---|
[601] | 557 | MIN_BLOCK_SIZE ); |
---|
| 558 | _head_length = std::max( int(HEAD_LENGTH_FACTOR * _block_size), |
---|
| 559 | MIN_HEAD_LENGTH ); |
---|
| 560 | _candidates.resize(_head_length + _block_size); |
---|
| 561 | _curr_length = 0; |
---|
| 562 | } |
---|
| 563 | |
---|
[605] | 564 | // Find next entering arc |
---|
[601] | 565 | bool findEnteringArc() { |
---|
| 566 | // Check the current candidate list |
---|
| 567 | int e; |
---|
| 568 | for (int i = 0; i < _curr_length; ++i) { |
---|
| 569 | e = _candidates[i]; |
---|
| 570 | _cand_cost[e] = _state[e] * |
---|
| 571 | (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
---|
| 572 | if (_cand_cost[e] >= 0) { |
---|
| 573 | _candidates[i--] = _candidates[--_curr_length]; |
---|
| 574 | } |
---|
| 575 | } |
---|
| 576 | |
---|
| 577 | // Extend the list |
---|
| 578 | int cnt = _block_size; |
---|
| 579 | int limit = _head_length; |
---|
| 580 | |
---|
[727] | 581 | for (e = _next_arc; e < _search_arc_num; ++e) { |
---|
[601] | 582 | _cand_cost[e] = _state[e] * |
---|
| 583 | (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
---|
| 584 | if (_cand_cost[e] < 0) { |
---|
| 585 | _candidates[_curr_length++] = e; |
---|
| 586 | } |
---|
| 587 | if (--cnt == 0) { |
---|
[727] | 588 | if (_curr_length > limit) goto search_end; |
---|
[601] | 589 | limit = 0; |
---|
| 590 | cnt = _block_size; |
---|
| 591 | } |
---|
| 592 | } |
---|
[727] | 593 | for (e = 0; e < _next_arc; ++e) { |
---|
| 594 | _cand_cost[e] = _state[e] * |
---|
| 595 | (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
---|
| 596 | if (_cand_cost[e] < 0) { |
---|
| 597 | _candidates[_curr_length++] = e; |
---|
| 598 | } |
---|
| 599 | if (--cnt == 0) { |
---|
| 600 | if (_curr_length > limit) goto search_end; |
---|
| 601 | limit = 0; |
---|
| 602 | cnt = _block_size; |
---|
[601] | 603 | } |
---|
| 604 | } |
---|
| 605 | if (_curr_length == 0) return false; |
---|
[727] | 606 | |
---|
| 607 | search_end: |
---|
[601] | 608 | |
---|
| 609 | // Make heap of the candidate list (approximating a partial sort) |
---|
| 610 | make_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
---|
| 611 | _sort_func ); |
---|
| 612 | |
---|
| 613 | // Pop the first element of the heap |
---|
| 614 | _in_arc = _candidates[0]; |
---|
[727] | 615 | _next_arc = e; |
---|
[601] | 616 | pop_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
---|
| 617 | _sort_func ); |
---|
| 618 | _curr_length = std::min(_head_length, _curr_length - 1); |
---|
| 619 | return true; |
---|
| 620 | } |
---|
| 621 | |
---|
| 622 | }; //class AlteringListPivotRule |
---|
| 623 | |
---|
| 624 | public: |
---|
| 625 | |
---|
[605] | 626 | /// \brief Constructor. |
---|
[601] | 627 | /// |
---|
[609] | 628 | /// The constructor of the class. |
---|
[601] | 629 | /// |
---|
[603] | 630 | /// \param graph The digraph the algorithm runs on. |
---|
[728] | 631 | /// \param arc_mixing Indicate if the arcs have to be stored in a |
---|
| 632 | /// mixed order in the internal data structure. |
---|
| 633 | /// In special cases, it could lead to better overall performance, |
---|
| 634 | /// but it is usually slower. Therefore it is disabled by default. |
---|
| 635 | NetworkSimplex(const GR& graph, bool arc_mixing = false) : |
---|
[642] | 636 | _graph(graph), _node_id(graph), _arc_id(graph), |
---|
[830] | 637 | _arc_mixing(arc_mixing), |
---|
[811] | 638 | MAX(std::numeric_limits<Value>::max()), |
---|
[641] | 639 | INF(std::numeric_limits<Value>::has_infinity ? |
---|
[811] | 640 | std::numeric_limits<Value>::infinity() : MAX) |
---|
[605] | 641 | { |
---|
[812] | 642 | // Check the number types |
---|
[641] | 643 | LEMON_ASSERT(std::numeric_limits<Value>::is_signed, |
---|
[640] | 644 | "The flow type of NetworkSimplex must be signed"); |
---|
| 645 | LEMON_ASSERT(std::numeric_limits<Cost>::is_signed, |
---|
| 646 | "The cost type of NetworkSimplex must be signed"); |
---|
[642] | 647 | |
---|
[830] | 648 | // Reset data structures |
---|
[729] | 649 | reset(); |
---|
[601] | 650 | } |
---|
| 651 | |
---|
[609] | 652 | /// \name Parameters |
---|
| 653 | /// The parameters of the algorithm can be specified using these |
---|
| 654 | /// functions. |
---|
| 655 | |
---|
| 656 | /// @{ |
---|
| 657 | |
---|
[605] | 658 | /// \brief Set the lower bounds on the arcs. |
---|
| 659 | /// |
---|
| 660 | /// This function sets the lower bounds on the arcs. |
---|
[640] | 661 | /// If it is not used before calling \ref run(), the lower bounds |
---|
| 662 | /// will be set to zero on all arcs. |
---|
[605] | 663 | /// |
---|
| 664 | /// \param map An arc map storing the lower bounds. |
---|
[641] | 665 | /// Its \c Value type must be convertible to the \c Value type |
---|
[605] | 666 | /// of the algorithm. |
---|
| 667 | /// |
---|
| 668 | /// \return <tt>(*this)</tt> |
---|
[640] | 669 | template <typename LowerMap> |
---|
| 670 | NetworkSimplex& lowerMap(const LowerMap& map) { |
---|
[642] | 671 | _have_lower = true; |
---|
[605] | 672 | for (ArcIt a(_graph); a != INVALID; ++a) { |
---|
[642] | 673 | _lower[_arc_id[a]] = map[a]; |
---|
[605] | 674 | } |
---|
| 675 | return *this; |
---|
| 676 | } |
---|
| 677 | |
---|
| 678 | /// \brief Set the upper bounds (capacities) on the arcs. |
---|
| 679 | /// |
---|
| 680 | /// This function sets the upper bounds (capacities) on the arcs. |
---|
[640] | 681 | /// If it is not used before calling \ref run(), the upper bounds |
---|
| 682 | /// will be set to \ref INF on all arcs (i.e. the flow value will be |
---|
[812] | 683 | /// unbounded from above). |
---|
[605] | 684 | /// |
---|
| 685 | /// \param map An arc map storing the upper bounds. |
---|
[641] | 686 | /// Its \c Value type must be convertible to the \c Value type |
---|
[605] | 687 | /// of the algorithm. |
---|
| 688 | /// |
---|
| 689 | /// \return <tt>(*this)</tt> |
---|
[640] | 690 | template<typename UpperMap> |
---|
| 691 | NetworkSimplex& upperMap(const UpperMap& map) { |
---|
[605] | 692 | for (ArcIt a(_graph); a != INVALID; ++a) { |
---|
[642] | 693 | _upper[_arc_id[a]] = map[a]; |
---|
[605] | 694 | } |
---|
| 695 | return *this; |
---|
| 696 | } |
---|
| 697 | |
---|
| 698 | /// \brief Set the costs of the arcs. |
---|
| 699 | /// |
---|
| 700 | /// This function sets the costs of the arcs. |
---|
| 701 | /// If it is not used before calling \ref run(), the costs |
---|
| 702 | /// will be set to \c 1 on all arcs. |
---|
| 703 | /// |
---|
| 704 | /// \param map An arc map storing the costs. |
---|
[607] | 705 | /// Its \c Value type must be convertible to the \c Cost type |
---|
[605] | 706 | /// of the algorithm. |
---|
| 707 | /// |
---|
| 708 | /// \return <tt>(*this)</tt> |
---|
[640] | 709 | template<typename CostMap> |
---|
| 710 | NetworkSimplex& costMap(const CostMap& map) { |
---|
[605] | 711 | for (ArcIt a(_graph); a != INVALID; ++a) { |
---|
[642] | 712 | _cost[_arc_id[a]] = map[a]; |
---|
[605] | 713 | } |
---|
| 714 | return *this; |
---|
| 715 | } |
---|
| 716 | |
---|
| 717 | /// \brief Set the supply values of the nodes. |
---|
| 718 | /// |
---|
| 719 | /// This function sets the supply values of the nodes. |
---|
| 720 | /// If neither this function nor \ref stSupply() is used before |
---|
| 721 | /// calling \ref run(), the supply of each node will be set to zero. |
---|
| 722 | /// |
---|
| 723 | /// \param map A node map storing the supply values. |
---|
[641] | 724 | /// Its \c Value type must be convertible to the \c Value type |
---|
[605] | 725 | /// of the algorithm. |
---|
| 726 | /// |
---|
| 727 | /// \return <tt>(*this)</tt> |
---|
[640] | 728 | template<typename SupplyMap> |
---|
| 729 | NetworkSimplex& supplyMap(const SupplyMap& map) { |
---|
[605] | 730 | for (NodeIt n(_graph); n != INVALID; ++n) { |
---|
[642] | 731 | _supply[_node_id[n]] = map[n]; |
---|
[605] | 732 | } |
---|
| 733 | return *this; |
---|
| 734 | } |
---|
| 735 | |
---|
| 736 | /// \brief Set single source and target nodes and a supply value. |
---|
| 737 | /// |
---|
| 738 | /// This function sets a single source node and a single target node |
---|
| 739 | /// and the required flow value. |
---|
| 740 | /// If neither this function nor \ref supplyMap() is used before |
---|
| 741 | /// calling \ref run(), the supply of each node will be set to zero. |
---|
| 742 | /// |
---|
[640] | 743 | /// Using this function has the same effect as using \ref supplyMap() |
---|
| 744 | /// with such a map in which \c k is assigned to \c s, \c -k is |
---|
| 745 | /// assigned to \c t and all other nodes have zero supply value. |
---|
| 746 | /// |
---|
[605] | 747 | /// \param s The source node. |
---|
| 748 | /// \param t The target node. |
---|
| 749 | /// \param k The required amount of flow from node \c s to node \c t |
---|
| 750 | /// (i.e. the supply of \c s and the demand of \c t). |
---|
| 751 | /// |
---|
| 752 | /// \return <tt>(*this)</tt> |
---|
[641] | 753 | NetworkSimplex& stSupply(const Node& s, const Node& t, Value k) { |
---|
[642] | 754 | for (int i = 0; i != _node_num; ++i) { |
---|
| 755 | _supply[i] = 0; |
---|
| 756 | } |
---|
| 757 | _supply[_node_id[s]] = k; |
---|
| 758 | _supply[_node_id[t]] = -k; |
---|
[605] | 759 | return *this; |
---|
| 760 | } |
---|
[609] | 761 | |
---|
[640] | 762 | /// \brief Set the type of the supply constraints. |
---|
[609] | 763 | /// |
---|
[640] | 764 | /// This function sets the type of the supply/demand constraints. |
---|
| 765 | /// If it is not used before calling \ref run(), the \ref GEQ supply |
---|
[609] | 766 | /// type will be used. |
---|
| 767 | /// |
---|
[786] | 768 | /// For more information, see \ref SupplyType. |
---|
[609] | 769 | /// |
---|
| 770 | /// \return <tt>(*this)</tt> |
---|
[640] | 771 | NetworkSimplex& supplyType(SupplyType supply_type) { |
---|
| 772 | _stype = supply_type; |
---|
[609] | 773 | return *this; |
---|
| 774 | } |
---|
[605] | 775 | |
---|
[609] | 776 | /// @} |
---|
[601] | 777 | |
---|
[605] | 778 | /// \name Execution Control |
---|
| 779 | /// The algorithm can be executed using \ref run(). |
---|
| 780 | |
---|
[601] | 781 | /// @{ |
---|
| 782 | |
---|
| 783 | /// \brief Run the algorithm. |
---|
| 784 | /// |
---|
| 785 | /// This function runs the algorithm. |
---|
[609] | 786 | /// The paramters can be specified using functions \ref lowerMap(), |
---|
[640] | 787 | /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(), |
---|
[642] | 788 | /// \ref supplyType(). |
---|
[609] | 789 | /// For example, |
---|
[605] | 790 | /// \code |
---|
| 791 | /// NetworkSimplex<ListDigraph> ns(graph); |
---|
[640] | 792 | /// ns.lowerMap(lower).upperMap(upper).costMap(cost) |
---|
[605] | 793 | /// .supplyMap(sup).run(); |
---|
| 794 | /// \endcode |
---|
[601] | 795 | /// |
---|
[830] | 796 | /// This function can be called more than once. All the given parameters |
---|
| 797 | /// are kept for the next call, unless \ref resetParams() or \ref reset() |
---|
| 798 | /// is used, thus only the modified parameters have to be set again. |
---|
| 799 | /// If the underlying digraph was also modified after the construction |
---|
| 800 | /// of the class (or the last \ref reset() call), then the \ref reset() |
---|
| 801 | /// function must be called. |
---|
[606] | 802 | /// |
---|
[605] | 803 | /// \param pivot_rule The pivot rule that will be used during the |
---|
[786] | 804 | /// algorithm. For more information, see \ref PivotRule. |
---|
[601] | 805 | /// |
---|
[640] | 806 | /// \return \c INFEASIBLE if no feasible flow exists, |
---|
| 807 | /// \n \c OPTIMAL if the problem has optimal solution |
---|
| 808 | /// (i.e. it is feasible and bounded), and the algorithm has found |
---|
| 809 | /// optimal flow and node potentials (primal and dual solutions), |
---|
| 810 | /// \n \c UNBOUNDED if the objective function of the problem is |
---|
| 811 | /// unbounded, i.e. there is a directed cycle having negative total |
---|
| 812 | /// cost and infinite upper bound. |
---|
| 813 | /// |
---|
| 814 | /// \see ProblemType, PivotRule |
---|
[830] | 815 | /// \see resetParams(), reset() |
---|
[640] | 816 | ProblemType run(PivotRule pivot_rule = BLOCK_SEARCH) { |
---|
| 817 | if (!init()) return INFEASIBLE; |
---|
| 818 | return start(pivot_rule); |
---|
[601] | 819 | } |
---|
| 820 | |
---|
[606] | 821 | /// \brief Reset all the parameters that have been given before. |
---|
| 822 | /// |
---|
| 823 | /// This function resets all the paramaters that have been given |
---|
[609] | 824 | /// before using functions \ref lowerMap(), \ref upperMap(), |
---|
[642] | 825 | /// \ref costMap(), \ref supplyMap(), \ref stSupply(), \ref supplyType(). |
---|
[606] | 826 | /// |
---|
[830] | 827 | /// It is useful for multiple \ref run() calls. Basically, all the given |
---|
| 828 | /// parameters are kept for the next \ref run() call, unless |
---|
| 829 | /// \ref resetParams() or \ref reset() is used. |
---|
| 830 | /// If the underlying digraph was also modified after the construction |
---|
| 831 | /// of the class or the last \ref reset() call, then the \ref reset() |
---|
| 832 | /// function must be used, otherwise \ref resetParams() is sufficient. |
---|
[606] | 833 | /// |
---|
| 834 | /// For example, |
---|
| 835 | /// \code |
---|
| 836 | /// NetworkSimplex<ListDigraph> ns(graph); |
---|
| 837 | /// |
---|
| 838 | /// // First run |
---|
[640] | 839 | /// ns.lowerMap(lower).upperMap(upper).costMap(cost) |
---|
[606] | 840 | /// .supplyMap(sup).run(); |
---|
| 841 | /// |
---|
[830] | 842 | /// // Run again with modified cost map (resetParams() is not called, |
---|
[606] | 843 | /// // so only the cost map have to be set again) |
---|
| 844 | /// cost[e] += 100; |
---|
| 845 | /// ns.costMap(cost).run(); |
---|
| 846 | /// |
---|
[830] | 847 | /// // Run again from scratch using resetParams() |
---|
[606] | 848 | /// // (the lower bounds will be set to zero on all arcs) |
---|
[830] | 849 | /// ns.resetParams(); |
---|
[640] | 850 | /// ns.upperMap(capacity).costMap(cost) |
---|
[606] | 851 | /// .supplyMap(sup).run(); |
---|
| 852 | /// \endcode |
---|
| 853 | /// |
---|
| 854 | /// \return <tt>(*this)</tt> |
---|
[830] | 855 | /// |
---|
| 856 | /// \see reset(), run() |
---|
| 857 | NetworkSimplex& resetParams() { |
---|
[642] | 858 | for (int i = 0; i != _node_num; ++i) { |
---|
| 859 | _supply[i] = 0; |
---|
| 860 | } |
---|
| 861 | for (int i = 0; i != _arc_num; ++i) { |
---|
| 862 | _lower[i] = 0; |
---|
| 863 | _upper[i] = INF; |
---|
| 864 | _cost[i] = 1; |
---|
| 865 | } |
---|
| 866 | _have_lower = false; |
---|
[640] | 867 | _stype = GEQ; |
---|
[606] | 868 | return *this; |
---|
| 869 | } |
---|
| 870 | |
---|
[830] | 871 | /// \brief Reset the internal data structures and all the parameters |
---|
| 872 | /// that have been given before. |
---|
| 873 | /// |
---|
| 874 | /// This function resets the internal data structures and all the |
---|
| 875 | /// paramaters that have been given before using functions \ref lowerMap(), |
---|
| 876 | /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(), |
---|
| 877 | /// \ref supplyType(). |
---|
| 878 | /// |
---|
| 879 | /// It is useful for multiple \ref run() calls. Basically, all the given |
---|
| 880 | /// parameters are kept for the next \ref run() call, unless |
---|
| 881 | /// \ref resetParams() or \ref reset() is used. |
---|
| 882 | /// If the underlying digraph was also modified after the construction |
---|
| 883 | /// of the class or the last \ref reset() call, then the \ref reset() |
---|
| 884 | /// function must be used, otherwise \ref resetParams() is sufficient. |
---|
| 885 | /// |
---|
| 886 | /// See \ref resetParams() for examples. |
---|
| 887 | /// |
---|
| 888 | /// \return <tt>(*this)</tt> |
---|
| 889 | /// |
---|
| 890 | /// \see resetParams(), run() |
---|
| 891 | NetworkSimplex& reset() { |
---|
| 892 | // Resize vectors |
---|
| 893 | _node_num = countNodes(_graph); |
---|
| 894 | _arc_num = countArcs(_graph); |
---|
| 895 | int all_node_num = _node_num + 1; |
---|
| 896 | int max_arc_num = _arc_num + 2 * _node_num; |
---|
| 897 | |
---|
| 898 | _source.resize(max_arc_num); |
---|
| 899 | _target.resize(max_arc_num); |
---|
| 900 | |
---|
| 901 | _lower.resize(_arc_num); |
---|
| 902 | _upper.resize(_arc_num); |
---|
| 903 | _cap.resize(max_arc_num); |
---|
| 904 | _cost.resize(max_arc_num); |
---|
| 905 | _supply.resize(all_node_num); |
---|
| 906 | _flow.resize(max_arc_num); |
---|
| 907 | _pi.resize(all_node_num); |
---|
| 908 | |
---|
| 909 | _parent.resize(all_node_num); |
---|
| 910 | _pred.resize(all_node_num); |
---|
| 911 | _forward.resize(all_node_num); |
---|
| 912 | _thread.resize(all_node_num); |
---|
| 913 | _rev_thread.resize(all_node_num); |
---|
| 914 | _succ_num.resize(all_node_num); |
---|
| 915 | _last_succ.resize(all_node_num); |
---|
| 916 | _state.resize(max_arc_num); |
---|
| 917 | |
---|
| 918 | // Copy the graph |
---|
| 919 | int i = 0; |
---|
| 920 | for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
---|
| 921 | _node_id[n] = i; |
---|
| 922 | } |
---|
| 923 | if (_arc_mixing) { |
---|
| 924 | // Store the arcs in a mixed order |
---|
| 925 | int k = std::max(int(std::sqrt(double(_arc_num))), 10); |
---|
| 926 | int i = 0, j = 0; |
---|
| 927 | for (ArcIt a(_graph); a != INVALID; ++a) { |
---|
| 928 | _arc_id[a] = i; |
---|
| 929 | _source[i] = _node_id[_graph.source(a)]; |
---|
| 930 | _target[i] = _node_id[_graph.target(a)]; |
---|
| 931 | if ((i += k) >= _arc_num) i = ++j; |
---|
| 932 | } |
---|
| 933 | } else { |
---|
| 934 | // Store the arcs in the original order |
---|
| 935 | int i = 0; |
---|
| 936 | for (ArcIt a(_graph); a != INVALID; ++a, ++i) { |
---|
| 937 | _arc_id[a] = i; |
---|
| 938 | _source[i] = _node_id[_graph.source(a)]; |
---|
| 939 | _target[i] = _node_id[_graph.target(a)]; |
---|
| 940 | } |
---|
| 941 | } |
---|
| 942 | |
---|
| 943 | // Reset parameters |
---|
| 944 | resetParams(); |
---|
| 945 | return *this; |
---|
| 946 | } |
---|
| 947 | |
---|
[601] | 948 | /// @} |
---|
| 949 | |
---|
| 950 | /// \name Query Functions |
---|
| 951 | /// The results of the algorithm can be obtained using these |
---|
| 952 | /// functions.\n |
---|
[605] | 953 | /// The \ref run() function must be called before using them. |
---|
| 954 | |
---|
[601] | 955 | /// @{ |
---|
| 956 | |
---|
[605] | 957 | /// \brief Return the total cost of the found flow. |
---|
| 958 | /// |
---|
| 959 | /// This function returns the total cost of the found flow. |
---|
[640] | 960 | /// Its complexity is O(e). |
---|
[605] | 961 | /// |
---|
| 962 | /// \note The return type of the function can be specified as a |
---|
| 963 | /// template parameter. For example, |
---|
| 964 | /// \code |
---|
| 965 | /// ns.totalCost<double>(); |
---|
| 966 | /// \endcode |
---|
[607] | 967 | /// It is useful if the total cost cannot be stored in the \c Cost |
---|
[605] | 968 | /// type of the algorithm, which is the default return type of the |
---|
| 969 | /// function. |
---|
| 970 | /// |
---|
| 971 | /// \pre \ref run() must be called before using this function. |
---|
[642] | 972 | template <typename Number> |
---|
| 973 | Number totalCost() const { |
---|
| 974 | Number c = 0; |
---|
| 975 | for (ArcIt a(_graph); a != INVALID; ++a) { |
---|
| 976 | int i = _arc_id[a]; |
---|
| 977 | c += Number(_flow[i]) * Number(_cost[i]); |
---|
[605] | 978 | } |
---|
| 979 | return c; |
---|
| 980 | } |
---|
| 981 | |
---|
| 982 | #ifndef DOXYGEN |
---|
[607] | 983 | Cost totalCost() const { |
---|
| 984 | return totalCost<Cost>(); |
---|
[605] | 985 | } |
---|
| 986 | #endif |
---|
| 987 | |
---|
| 988 | /// \brief Return the flow on the given arc. |
---|
| 989 | /// |
---|
| 990 | /// This function returns the flow on the given arc. |
---|
| 991 | /// |
---|
| 992 | /// \pre \ref run() must be called before using this function. |
---|
[641] | 993 | Value flow(const Arc& a) const { |
---|
[642] | 994 | return _flow[_arc_id[a]]; |
---|
[605] | 995 | } |
---|
| 996 | |
---|
[642] | 997 | /// \brief Return the flow map (the primal solution). |
---|
[601] | 998 | /// |
---|
[642] | 999 | /// This function copies the flow value on each arc into the given |
---|
| 1000 | /// map. The \c Value type of the algorithm must be convertible to |
---|
| 1001 | /// the \c Value type of the map. |
---|
[601] | 1002 | /// |
---|
| 1003 | /// \pre \ref run() must be called before using this function. |
---|
[642] | 1004 | template <typename FlowMap> |
---|
| 1005 | void flowMap(FlowMap &map) const { |
---|
| 1006 | for (ArcIt a(_graph); a != INVALID; ++a) { |
---|
| 1007 | map.set(a, _flow[_arc_id[a]]); |
---|
| 1008 | } |
---|
[601] | 1009 | } |
---|
| 1010 | |
---|
[605] | 1011 | /// \brief Return the potential (dual value) of the given node. |
---|
| 1012 | /// |
---|
| 1013 | /// This function returns the potential (dual value) of the |
---|
| 1014 | /// given node. |
---|
| 1015 | /// |
---|
| 1016 | /// \pre \ref run() must be called before using this function. |
---|
[607] | 1017 | Cost potential(const Node& n) const { |
---|
[642] | 1018 | return _pi[_node_id[n]]; |
---|
[605] | 1019 | } |
---|
| 1020 | |
---|
[642] | 1021 | /// \brief Return the potential map (the dual solution). |
---|
[601] | 1022 | /// |
---|
[642] | 1023 | /// This function copies the potential (dual value) of each node |
---|
| 1024 | /// into the given map. |
---|
| 1025 | /// The \c Cost type of the algorithm must be convertible to the |
---|
| 1026 | /// \c Value type of the map. |
---|
[601] | 1027 | /// |
---|
| 1028 | /// \pre \ref run() must be called before using this function. |
---|
[642] | 1029 | template <typename PotentialMap> |
---|
| 1030 | void potentialMap(PotentialMap &map) const { |
---|
| 1031 | for (NodeIt n(_graph); n != INVALID; ++n) { |
---|
| 1032 | map.set(n, _pi[_node_id[n]]); |
---|
| 1033 | } |
---|
[601] | 1034 | } |
---|
| 1035 | |
---|
| 1036 | /// @} |
---|
| 1037 | |
---|
| 1038 | private: |
---|
| 1039 | |
---|
| 1040 | // Initialize internal data structures |
---|
| 1041 | bool init() { |
---|
[605] | 1042 | if (_node_num == 0) return false; |
---|
[601] | 1043 | |
---|
[642] | 1044 | // Check the sum of supply values |
---|
| 1045 | _sum_supply = 0; |
---|
| 1046 | for (int i = 0; i != _node_num; ++i) { |
---|
| 1047 | _sum_supply += _supply[i]; |
---|
| 1048 | } |
---|
[643] | 1049 | if ( !((_stype == GEQ && _sum_supply <= 0) || |
---|
| 1050 | (_stype == LEQ && _sum_supply >= 0)) ) return false; |
---|
[601] | 1051 | |
---|
[642] | 1052 | // Remove non-zero lower bounds |
---|
| 1053 | if (_have_lower) { |
---|
| 1054 | for (int i = 0; i != _arc_num; ++i) { |
---|
| 1055 | Value c = _lower[i]; |
---|
| 1056 | if (c >= 0) { |
---|
[811] | 1057 | _cap[i] = _upper[i] < MAX ? _upper[i] - c : INF; |
---|
[642] | 1058 | } else { |
---|
[811] | 1059 | _cap[i] = _upper[i] < MAX + c ? _upper[i] - c : INF; |
---|
[642] | 1060 | } |
---|
| 1061 | _supply[_source[i]] -= c; |
---|
| 1062 | _supply[_target[i]] += c; |
---|
| 1063 | } |
---|
| 1064 | } else { |
---|
| 1065 | for (int i = 0; i != _arc_num; ++i) { |
---|
| 1066 | _cap[i] = _upper[i]; |
---|
| 1067 | } |
---|
[605] | 1068 | } |
---|
[601] | 1069 | |
---|
[609] | 1070 | // Initialize artifical cost |
---|
[640] | 1071 | Cost ART_COST; |
---|
[609] | 1072 | if (std::numeric_limits<Cost>::is_exact) { |
---|
[663] | 1073 | ART_COST = std::numeric_limits<Cost>::max() / 2 + 1; |
---|
[609] | 1074 | } else { |
---|
[640] | 1075 | ART_COST = std::numeric_limits<Cost>::min(); |
---|
[609] | 1076 | for (int i = 0; i != _arc_num; ++i) { |
---|
[640] | 1077 | if (_cost[i] > ART_COST) ART_COST = _cost[i]; |
---|
[609] | 1078 | } |
---|
[640] | 1079 | ART_COST = (ART_COST + 1) * _node_num; |
---|
[609] | 1080 | } |
---|
| 1081 | |
---|
[642] | 1082 | // Initialize arc maps |
---|
| 1083 | for (int i = 0; i != _arc_num; ++i) { |
---|
| 1084 | _flow[i] = 0; |
---|
| 1085 | _state[i] = STATE_LOWER; |
---|
| 1086 | } |
---|
| 1087 | |
---|
[601] | 1088 | // Set data for the artificial root node |
---|
| 1089 | _root = _node_num; |
---|
| 1090 | _parent[_root] = -1; |
---|
| 1091 | _pred[_root] = -1; |
---|
| 1092 | _thread[_root] = 0; |
---|
[604] | 1093 | _rev_thread[0] = _root; |
---|
[642] | 1094 | _succ_num[_root] = _node_num + 1; |
---|
[604] | 1095 | _last_succ[_root] = _root - 1; |
---|
[640] | 1096 | _supply[_root] = -_sum_supply; |
---|
[663] | 1097 | _pi[_root] = 0; |
---|
[601] | 1098 | |
---|
| 1099 | // Add artificial arcs and initialize the spanning tree data structure |
---|
[663] | 1100 | if (_sum_supply == 0) { |
---|
| 1101 | // EQ supply constraints |
---|
| 1102 | _search_arc_num = _arc_num; |
---|
| 1103 | _all_arc_num = _arc_num + _node_num; |
---|
| 1104 | for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
---|
| 1105 | _parent[u] = _root; |
---|
| 1106 | _pred[u] = e; |
---|
| 1107 | _thread[u] = u + 1; |
---|
| 1108 | _rev_thread[u + 1] = u; |
---|
| 1109 | _succ_num[u] = 1; |
---|
| 1110 | _last_succ[u] = u; |
---|
| 1111 | _cap[e] = INF; |
---|
| 1112 | _state[e] = STATE_TREE; |
---|
| 1113 | if (_supply[u] >= 0) { |
---|
| 1114 | _forward[u] = true; |
---|
| 1115 | _pi[u] = 0; |
---|
| 1116 | _source[e] = u; |
---|
| 1117 | _target[e] = _root; |
---|
| 1118 | _flow[e] = _supply[u]; |
---|
| 1119 | _cost[e] = 0; |
---|
| 1120 | } else { |
---|
| 1121 | _forward[u] = false; |
---|
| 1122 | _pi[u] = ART_COST; |
---|
| 1123 | _source[e] = _root; |
---|
| 1124 | _target[e] = u; |
---|
| 1125 | _flow[e] = -_supply[u]; |
---|
| 1126 | _cost[e] = ART_COST; |
---|
| 1127 | } |
---|
[601] | 1128 | } |
---|
| 1129 | } |
---|
[663] | 1130 | else if (_sum_supply > 0) { |
---|
| 1131 | // LEQ supply constraints |
---|
| 1132 | _search_arc_num = _arc_num + _node_num; |
---|
| 1133 | int f = _arc_num + _node_num; |
---|
| 1134 | for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
---|
| 1135 | _parent[u] = _root; |
---|
| 1136 | _thread[u] = u + 1; |
---|
| 1137 | _rev_thread[u + 1] = u; |
---|
| 1138 | _succ_num[u] = 1; |
---|
| 1139 | _last_succ[u] = u; |
---|
| 1140 | if (_supply[u] >= 0) { |
---|
| 1141 | _forward[u] = true; |
---|
| 1142 | _pi[u] = 0; |
---|
| 1143 | _pred[u] = e; |
---|
| 1144 | _source[e] = u; |
---|
| 1145 | _target[e] = _root; |
---|
| 1146 | _cap[e] = INF; |
---|
| 1147 | _flow[e] = _supply[u]; |
---|
| 1148 | _cost[e] = 0; |
---|
| 1149 | _state[e] = STATE_TREE; |
---|
| 1150 | } else { |
---|
| 1151 | _forward[u] = false; |
---|
| 1152 | _pi[u] = ART_COST; |
---|
| 1153 | _pred[u] = f; |
---|
| 1154 | _source[f] = _root; |
---|
| 1155 | _target[f] = u; |
---|
| 1156 | _cap[f] = INF; |
---|
| 1157 | _flow[f] = -_supply[u]; |
---|
| 1158 | _cost[f] = ART_COST; |
---|
| 1159 | _state[f] = STATE_TREE; |
---|
| 1160 | _source[e] = u; |
---|
| 1161 | _target[e] = _root; |
---|
| 1162 | _cap[e] = INF; |
---|
| 1163 | _flow[e] = 0; |
---|
| 1164 | _cost[e] = 0; |
---|
| 1165 | _state[e] = STATE_LOWER; |
---|
| 1166 | ++f; |
---|
| 1167 | } |
---|
| 1168 | } |
---|
| 1169 | _all_arc_num = f; |
---|
| 1170 | } |
---|
| 1171 | else { |
---|
| 1172 | // GEQ supply constraints |
---|
| 1173 | _search_arc_num = _arc_num + _node_num; |
---|
| 1174 | int f = _arc_num + _node_num; |
---|
| 1175 | for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
---|
| 1176 | _parent[u] = _root; |
---|
| 1177 | _thread[u] = u + 1; |
---|
| 1178 | _rev_thread[u + 1] = u; |
---|
| 1179 | _succ_num[u] = 1; |
---|
| 1180 | _last_succ[u] = u; |
---|
| 1181 | if (_supply[u] <= 0) { |
---|
| 1182 | _forward[u] = false; |
---|
| 1183 | _pi[u] = 0; |
---|
| 1184 | _pred[u] = e; |
---|
| 1185 | _source[e] = _root; |
---|
| 1186 | _target[e] = u; |
---|
| 1187 | _cap[e] = INF; |
---|
| 1188 | _flow[e] = -_supply[u]; |
---|
| 1189 | _cost[e] = 0; |
---|
| 1190 | _state[e] = STATE_TREE; |
---|
| 1191 | } else { |
---|
| 1192 | _forward[u] = true; |
---|
| 1193 | _pi[u] = -ART_COST; |
---|
| 1194 | _pred[u] = f; |
---|
| 1195 | _source[f] = u; |
---|
| 1196 | _target[f] = _root; |
---|
| 1197 | _cap[f] = INF; |
---|
| 1198 | _flow[f] = _supply[u]; |
---|
| 1199 | _state[f] = STATE_TREE; |
---|
| 1200 | _cost[f] = ART_COST; |
---|
| 1201 | _source[e] = _root; |
---|
| 1202 | _target[e] = u; |
---|
| 1203 | _cap[e] = INF; |
---|
| 1204 | _flow[e] = 0; |
---|
| 1205 | _cost[e] = 0; |
---|
| 1206 | _state[e] = STATE_LOWER; |
---|
| 1207 | ++f; |
---|
| 1208 | } |
---|
| 1209 | } |
---|
| 1210 | _all_arc_num = f; |
---|
| 1211 | } |
---|
[601] | 1212 | |
---|
| 1213 | return true; |
---|
| 1214 | } |
---|
| 1215 | |
---|
| 1216 | // Find the join node |
---|
| 1217 | void findJoinNode() { |
---|
[603] | 1218 | int u = _source[in_arc]; |
---|
| 1219 | int v = _target[in_arc]; |
---|
[601] | 1220 | while (u != v) { |
---|
[604] | 1221 | if (_succ_num[u] < _succ_num[v]) { |
---|
| 1222 | u = _parent[u]; |
---|
| 1223 | } else { |
---|
| 1224 | v = _parent[v]; |
---|
| 1225 | } |
---|
[601] | 1226 | } |
---|
| 1227 | join = u; |
---|
| 1228 | } |
---|
| 1229 | |
---|
| 1230 | // Find the leaving arc of the cycle and returns true if the |
---|
| 1231 | // leaving arc is not the same as the entering arc |
---|
| 1232 | bool findLeavingArc() { |
---|
| 1233 | // Initialize first and second nodes according to the direction |
---|
| 1234 | // of the cycle |
---|
[603] | 1235 | if (_state[in_arc] == STATE_LOWER) { |
---|
| 1236 | first = _source[in_arc]; |
---|
| 1237 | second = _target[in_arc]; |
---|
[601] | 1238 | } else { |
---|
[603] | 1239 | first = _target[in_arc]; |
---|
| 1240 | second = _source[in_arc]; |
---|
[601] | 1241 | } |
---|
[603] | 1242 | delta = _cap[in_arc]; |
---|
[601] | 1243 | int result = 0; |
---|
[641] | 1244 | Value d; |
---|
[601] | 1245 | int e; |
---|
| 1246 | |
---|
| 1247 | // Search the cycle along the path form the first node to the root |
---|
| 1248 | for (int u = first; u != join; u = _parent[u]) { |
---|
| 1249 | e = _pred[u]; |
---|
[640] | 1250 | d = _forward[u] ? |
---|
[811] | 1251 | _flow[e] : (_cap[e] >= MAX ? INF : _cap[e] - _flow[e]); |
---|
[601] | 1252 | if (d < delta) { |
---|
| 1253 | delta = d; |
---|
| 1254 | u_out = u; |
---|
| 1255 | result = 1; |
---|
| 1256 | } |
---|
| 1257 | } |
---|
| 1258 | // Search the cycle along the path form the second node to the root |
---|
| 1259 | for (int u = second; u != join; u = _parent[u]) { |
---|
| 1260 | e = _pred[u]; |
---|
[640] | 1261 | d = _forward[u] ? |
---|
[811] | 1262 | (_cap[e] >= MAX ? INF : _cap[e] - _flow[e]) : _flow[e]; |
---|
[601] | 1263 | if (d <= delta) { |
---|
| 1264 | delta = d; |
---|
| 1265 | u_out = u; |
---|
| 1266 | result = 2; |
---|
| 1267 | } |
---|
| 1268 | } |
---|
| 1269 | |
---|
| 1270 | if (result == 1) { |
---|
| 1271 | u_in = first; |
---|
| 1272 | v_in = second; |
---|
| 1273 | } else { |
---|
| 1274 | u_in = second; |
---|
| 1275 | v_in = first; |
---|
| 1276 | } |
---|
| 1277 | return result != 0; |
---|
| 1278 | } |
---|
| 1279 | |
---|
| 1280 | // Change _flow and _state vectors |
---|
| 1281 | void changeFlow(bool change) { |
---|
| 1282 | // Augment along the cycle |
---|
| 1283 | if (delta > 0) { |
---|
[641] | 1284 | Value val = _state[in_arc] * delta; |
---|
[603] | 1285 | _flow[in_arc] += val; |
---|
| 1286 | for (int u = _source[in_arc]; u != join; u = _parent[u]) { |
---|
[601] | 1287 | _flow[_pred[u]] += _forward[u] ? -val : val; |
---|
| 1288 | } |
---|
[603] | 1289 | for (int u = _target[in_arc]; u != join; u = _parent[u]) { |
---|
[601] | 1290 | _flow[_pred[u]] += _forward[u] ? val : -val; |
---|
| 1291 | } |
---|
| 1292 | } |
---|
| 1293 | // Update the state of the entering and leaving arcs |
---|
| 1294 | if (change) { |
---|
[603] | 1295 | _state[in_arc] = STATE_TREE; |
---|
[601] | 1296 | _state[_pred[u_out]] = |
---|
| 1297 | (_flow[_pred[u_out]] == 0) ? STATE_LOWER : STATE_UPPER; |
---|
| 1298 | } else { |
---|
[603] | 1299 | _state[in_arc] = -_state[in_arc]; |
---|
[601] | 1300 | } |
---|
| 1301 | } |
---|
| 1302 | |
---|
[604] | 1303 | // Update the tree structure |
---|
| 1304 | void updateTreeStructure() { |
---|
| 1305 | int u, w; |
---|
| 1306 | int old_rev_thread = _rev_thread[u_out]; |
---|
| 1307 | int old_succ_num = _succ_num[u_out]; |
---|
| 1308 | int old_last_succ = _last_succ[u_out]; |
---|
[601] | 1309 | v_out = _parent[u_out]; |
---|
| 1310 | |
---|
[604] | 1311 | u = _last_succ[u_in]; // the last successor of u_in |
---|
| 1312 | right = _thread[u]; // the node after it |
---|
| 1313 | |
---|
| 1314 | // Handle the case when old_rev_thread equals to v_in |
---|
| 1315 | // (it also means that join and v_out coincide) |
---|
| 1316 | if (old_rev_thread == v_in) { |
---|
| 1317 | last = _thread[_last_succ[u_out]]; |
---|
| 1318 | } else { |
---|
| 1319 | last = _thread[v_in]; |
---|
[601] | 1320 | } |
---|
| 1321 | |
---|
[604] | 1322 | // Update _thread and _parent along the stem nodes (i.e. the nodes |
---|
| 1323 | // between u_in and u_out, whose parent have to be changed) |
---|
[601] | 1324 | _thread[v_in] = stem = u_in; |
---|
[604] | 1325 | _dirty_revs.clear(); |
---|
| 1326 | _dirty_revs.push_back(v_in); |
---|
[601] | 1327 | par_stem = v_in; |
---|
| 1328 | while (stem != u_out) { |
---|
[604] | 1329 | // Insert the next stem node into the thread list |
---|
| 1330 | new_stem = _parent[stem]; |
---|
| 1331 | _thread[u] = new_stem; |
---|
| 1332 | _dirty_revs.push_back(u); |
---|
[601] | 1333 | |
---|
[604] | 1334 | // Remove the subtree of stem from the thread list |
---|
| 1335 | w = _rev_thread[stem]; |
---|
| 1336 | _thread[w] = right; |
---|
| 1337 | _rev_thread[right] = w; |
---|
[601] | 1338 | |
---|
[604] | 1339 | // Change the parent node and shift stem nodes |
---|
[601] | 1340 | _parent[stem] = par_stem; |
---|
| 1341 | par_stem = stem; |
---|
| 1342 | stem = new_stem; |
---|
| 1343 | |
---|
[604] | 1344 | // Update u and right |
---|
| 1345 | u = _last_succ[stem] == _last_succ[par_stem] ? |
---|
| 1346 | _rev_thread[par_stem] : _last_succ[stem]; |
---|
[601] | 1347 | right = _thread[u]; |
---|
| 1348 | } |
---|
| 1349 | _parent[u_out] = par_stem; |
---|
| 1350 | _thread[u] = last; |
---|
[604] | 1351 | _rev_thread[last] = u; |
---|
| 1352 | _last_succ[u_out] = u; |
---|
[601] | 1353 | |
---|
[604] | 1354 | // Remove the subtree of u_out from the thread list except for |
---|
| 1355 | // the case when old_rev_thread equals to v_in |
---|
| 1356 | // (it also means that join and v_out coincide) |
---|
| 1357 | if (old_rev_thread != v_in) { |
---|
| 1358 | _thread[old_rev_thread] = right; |
---|
| 1359 | _rev_thread[right] = old_rev_thread; |
---|
| 1360 | } |
---|
| 1361 | |
---|
| 1362 | // Update _rev_thread using the new _thread values |
---|
| 1363 | for (int i = 0; i < int(_dirty_revs.size()); ++i) { |
---|
| 1364 | u = _dirty_revs[i]; |
---|
| 1365 | _rev_thread[_thread[u]] = u; |
---|
| 1366 | } |
---|
| 1367 | |
---|
| 1368 | // Update _pred, _forward, _last_succ and _succ_num for the |
---|
| 1369 | // stem nodes from u_out to u_in |
---|
| 1370 | int tmp_sc = 0, tmp_ls = _last_succ[u_out]; |
---|
| 1371 | u = u_out; |
---|
| 1372 | while (u != u_in) { |
---|
| 1373 | w = _parent[u]; |
---|
| 1374 | _pred[u] = _pred[w]; |
---|
| 1375 | _forward[u] = !_forward[w]; |
---|
| 1376 | tmp_sc += _succ_num[u] - _succ_num[w]; |
---|
| 1377 | _succ_num[u] = tmp_sc; |
---|
| 1378 | _last_succ[w] = tmp_ls; |
---|
| 1379 | u = w; |
---|
| 1380 | } |
---|
| 1381 | _pred[u_in] = in_arc; |
---|
| 1382 | _forward[u_in] = (u_in == _source[in_arc]); |
---|
| 1383 | _succ_num[u_in] = old_succ_num; |
---|
| 1384 | |
---|
| 1385 | // Set limits for updating _last_succ form v_in and v_out |
---|
| 1386 | // towards the root |
---|
| 1387 | int up_limit_in = -1; |
---|
| 1388 | int up_limit_out = -1; |
---|
| 1389 | if (_last_succ[join] == v_in) { |
---|
| 1390 | up_limit_out = join; |
---|
[601] | 1391 | } else { |
---|
[604] | 1392 | up_limit_in = join; |
---|
| 1393 | } |
---|
| 1394 | |
---|
| 1395 | // Update _last_succ from v_in towards the root |
---|
| 1396 | for (u = v_in; u != up_limit_in && _last_succ[u] == v_in; |
---|
| 1397 | u = _parent[u]) { |
---|
| 1398 | _last_succ[u] = _last_succ[u_out]; |
---|
| 1399 | } |
---|
| 1400 | // Update _last_succ from v_out towards the root |
---|
| 1401 | if (join != old_rev_thread && v_in != old_rev_thread) { |
---|
| 1402 | for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ; |
---|
| 1403 | u = _parent[u]) { |
---|
| 1404 | _last_succ[u] = old_rev_thread; |
---|
| 1405 | } |
---|
| 1406 | } else { |
---|
| 1407 | for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ; |
---|
| 1408 | u = _parent[u]) { |
---|
| 1409 | _last_succ[u] = _last_succ[u_out]; |
---|
| 1410 | } |
---|
| 1411 | } |
---|
| 1412 | |
---|
| 1413 | // Update _succ_num from v_in to join |
---|
| 1414 | for (u = v_in; u != join; u = _parent[u]) { |
---|
| 1415 | _succ_num[u] += old_succ_num; |
---|
| 1416 | } |
---|
| 1417 | // Update _succ_num from v_out to join |
---|
| 1418 | for (u = v_out; u != join; u = _parent[u]) { |
---|
| 1419 | _succ_num[u] -= old_succ_num; |
---|
[601] | 1420 | } |
---|
| 1421 | } |
---|
| 1422 | |
---|
[604] | 1423 | // Update potentials |
---|
| 1424 | void updatePotential() { |
---|
[607] | 1425 | Cost sigma = _forward[u_in] ? |
---|
[601] | 1426 | _pi[v_in] - _pi[u_in] - _cost[_pred[u_in]] : |
---|
| 1427 | _pi[v_in] - _pi[u_in] + _cost[_pred[u_in]]; |
---|
[608] | 1428 | // Update potentials in the subtree, which has been moved |
---|
| 1429 | int end = _thread[_last_succ[u_in]]; |
---|
| 1430 | for (int u = u_in; u != end; u = _thread[u]) { |
---|
| 1431 | _pi[u] += sigma; |
---|
[601] | 1432 | } |
---|
| 1433 | } |
---|
| 1434 | |
---|
| 1435 | // Execute the algorithm |
---|
[640] | 1436 | ProblemType start(PivotRule pivot_rule) { |
---|
[601] | 1437 | // Select the pivot rule implementation |
---|
| 1438 | switch (pivot_rule) { |
---|
[605] | 1439 | case FIRST_ELIGIBLE: |
---|
[601] | 1440 | return start<FirstEligiblePivotRule>(); |
---|
[605] | 1441 | case BEST_ELIGIBLE: |
---|
[601] | 1442 | return start<BestEligiblePivotRule>(); |
---|
[605] | 1443 | case BLOCK_SEARCH: |
---|
[601] | 1444 | return start<BlockSearchPivotRule>(); |
---|
[605] | 1445 | case CANDIDATE_LIST: |
---|
[601] | 1446 | return start<CandidateListPivotRule>(); |
---|
[605] | 1447 | case ALTERING_LIST: |
---|
[601] | 1448 | return start<AlteringListPivotRule>(); |
---|
| 1449 | } |
---|
[640] | 1450 | return INFEASIBLE; // avoid warning |
---|
[601] | 1451 | } |
---|
| 1452 | |
---|
[605] | 1453 | template <typename PivotRuleImpl> |
---|
[640] | 1454 | ProblemType start() { |
---|
[605] | 1455 | PivotRuleImpl pivot(*this); |
---|
[601] | 1456 | |
---|
[605] | 1457 | // Execute the Network Simplex algorithm |
---|
[601] | 1458 | while (pivot.findEnteringArc()) { |
---|
| 1459 | findJoinNode(); |
---|
| 1460 | bool change = findLeavingArc(); |
---|
[811] | 1461 | if (delta >= MAX) return UNBOUNDED; |
---|
[601] | 1462 | changeFlow(change); |
---|
| 1463 | if (change) { |
---|
[604] | 1464 | updateTreeStructure(); |
---|
| 1465 | updatePotential(); |
---|
[601] | 1466 | } |
---|
| 1467 | } |
---|
[640] | 1468 | |
---|
| 1469 | // Check feasibility |
---|
[663] | 1470 | for (int e = _search_arc_num; e != _all_arc_num; ++e) { |
---|
| 1471 | if (_flow[e] != 0) return INFEASIBLE; |
---|
[640] | 1472 | } |
---|
[601] | 1473 | |
---|
[642] | 1474 | // Transform the solution and the supply map to the original form |
---|
| 1475 | if (_have_lower) { |
---|
[601] | 1476 | for (int i = 0; i != _arc_num; ++i) { |
---|
[642] | 1477 | Value c = _lower[i]; |
---|
| 1478 | if (c != 0) { |
---|
| 1479 | _flow[i] += c; |
---|
| 1480 | _supply[_source[i]] += c; |
---|
| 1481 | _supply[_target[i]] -= c; |
---|
| 1482 | } |
---|
[601] | 1483 | } |
---|
| 1484 | } |
---|
[663] | 1485 | |
---|
| 1486 | // Shift potentials to meet the requirements of the GEQ/LEQ type |
---|
| 1487 | // optimality conditions |
---|
| 1488 | if (_sum_supply == 0) { |
---|
| 1489 | if (_stype == GEQ) { |
---|
| 1490 | Cost max_pot = std::numeric_limits<Cost>::min(); |
---|
| 1491 | for (int i = 0; i != _node_num; ++i) { |
---|
| 1492 | if (_pi[i] > max_pot) max_pot = _pi[i]; |
---|
| 1493 | } |
---|
| 1494 | if (max_pot > 0) { |
---|
| 1495 | for (int i = 0; i != _node_num; ++i) |
---|
| 1496 | _pi[i] -= max_pot; |
---|
| 1497 | } |
---|
| 1498 | } else { |
---|
| 1499 | Cost min_pot = std::numeric_limits<Cost>::max(); |
---|
| 1500 | for (int i = 0; i != _node_num; ++i) { |
---|
| 1501 | if (_pi[i] < min_pot) min_pot = _pi[i]; |
---|
| 1502 | } |
---|
| 1503 | if (min_pot < 0) { |
---|
| 1504 | for (int i = 0; i != _node_num; ++i) |
---|
| 1505 | _pi[i] -= min_pot; |
---|
| 1506 | } |
---|
| 1507 | } |
---|
| 1508 | } |
---|
[601] | 1509 | |
---|
[640] | 1510 | return OPTIMAL; |
---|
[601] | 1511 | } |
---|
| 1512 | |
---|
| 1513 | }; //class NetworkSimplex |
---|
| 1514 | |
---|
| 1515 | ///@} |
---|
| 1516 | |
---|
| 1517 | } //namespace lemon |
---|
| 1518 | |
---|
| 1519 | #endif //LEMON_NETWORK_SIMPLEX_H |
---|