/* -*- mode: C++; indent-tabs-mode: nil; -*- * * This file is a part of LEMON, a generic C++ optimization library. * * Copyright (C) 2003-2009 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport * (Egervary Research Group on Combinatorial Optimization, EGRES). * * Permission to use, modify and distribute this software is granted * provided that this copyright notice appears in all copies. For * precise terms see the accompanying LICENSE file. * * This software is provided "AS IS" with no warranty of any kind, * express or implied, and with no claim as to its suitability for any * purpose. * */ #ifndef LEMON_PAIRING_HEAP_H #define LEMON_PAIRING_HEAP_H ///\file ///\ingroup heaps ///\brief Pairing heap implementation. #include #include #include #include namespace lemon { /// \ingroup heaps /// ///\brief Pairing Heap. /// /// This class implements the \e pairing \e heap data structure. /// It fully conforms to the \ref concepts::Heap "heap concept". /// /// The methods \ref increase() and \ref erase() are not efficient /// in a pairing heap. In case of many calls of these operations, /// it is better to use other heap structure, e.g. \ref BinHeap /// "binary heap". /// /// \tparam PR Type of the priorities of the items. /// \tparam IM A read-writable item map with \c int values, used /// internally to handle the cross references. /// \tparam CMP A functor class for comparing the priorities. /// The default is \c std::less. #ifdef DOXYGEN template #else template > #endif class PairingHeap { public: /// Type of the item-int map. typedef IM ItemIntMap; /// Type of the priorities. typedef PR Prio; /// Type of the items stored in the heap. typedef typename ItemIntMap::Key Item; /// Functor type for comparing the priorities. typedef CMP Compare; /// \brief Type to represent the states of the items. /// /// Each item has a state associated to it. It can be "in heap", /// "pre-heap" or "post-heap". The latter two are indifferent from the /// heap's point of view, but may be useful to the user. /// /// The item-int map must be initialized in such way that it assigns /// \c PRE_HEAP (-1) to any element to be put in the heap. enum State { IN_HEAP = 0, ///< = 0. PRE_HEAP = -1, ///< = -1. POST_HEAP = -2 ///< = -2. }; private: class store; std::vector _data; int _min; ItemIntMap &_iim; Compare _comp; int _num_items; public: /// \brief Constructor. /// /// Constructor. /// \param map A map that assigns \c int values to the items. /// It is used internally to handle the cross references. /// The assigned value must be \c PRE_HEAP (-1) for each item. explicit PairingHeap(ItemIntMap &map) : _min(0), _iim(map), _num_items(0) {} /// \brief Constructor. /// /// Constructor. /// \param map A map that assigns \c int values to the items. /// It is used internally to handle the cross references. /// The assigned value must be \c PRE_HEAP (-1) for each item. /// \param comp The function object used for comparing the priorities. PairingHeap(ItemIntMap &map, const Compare &comp) : _min(0), _iim(map), _comp(comp), _num_items(0) {} /// \brief The number of items stored in the heap. /// /// This function returns the number of items stored in the heap. int size() const { return _num_items; } /// \brief Check if the heap is empty. /// /// This function returns \c true if the heap is empty. bool empty() const { return _num_items==0; } /// \brief Make the heap empty. /// /// This functon makes the heap empty. /// It does not change the cross reference map. If you want to reuse /// a heap that is not surely empty, you should first clear it and /// then you should set the cross reference map to \c PRE_HEAP /// for each item. void clear() { _data.clear(); _min = 0; _num_items = 0; } /// \brief Set the priority of an item or insert it, if it is /// not stored in the heap. /// /// This method sets the priority of the given item if it is /// already stored in the heap. Otherwise it inserts the given /// item into the heap with the given priority. /// \param item The item. /// \param value The priority. void set (const Item& item, const Prio& value) { int i=_iim[item]; if ( i>=0 && _data[i].in ) { if ( _comp(value, _data[i].prio) ) decrease(item, value); if ( _comp(_data[i].prio, value) ) increase(item, value); } else push(item, value); } /// \brief Insert an item into the heap with the given priority. /// /// This function inserts the given item into the heap with the /// given priority. /// \param item The item to insert. /// \param value The priority of the item. /// \pre \e item must not be stored in the heap. void push (const Item& item, const Prio& value) { int i=_iim[item]; if( i<0 ) { int s=_data.size(); _iim.set(item, s); store st; st.name=item; _data.push_back(st); i=s; } else { _data[i].parent=_data[i].child=-1; _data[i].left_child=false; _data[i].degree=0; _data[i].in=true; } _data[i].prio=value; if ( _num_items!=0 ) { if ( _comp( value, _data[_min].prio) ) { fuse(i,_min); _min=i; } else fuse(_min,i); } else _min=i; ++_num_items; } /// \brief Return the item having minimum priority. /// /// This function returns the item having minimum priority. /// \pre The heap must be non-empty. Item top() const { return _data[_min].name; } /// \brief The minimum priority. /// /// This function returns the minimum priority. /// \pre The heap must be non-empty. const Prio& prio() const { return _data[_min].prio; } /// \brief The priority of the given item. /// /// This function returns the priority of the given item. /// \param item The item. /// \pre \e item must be in the heap. const Prio& operator[](const Item& item) const { return _data[_iim[item]].prio; } /// \brief Remove the item having minimum priority. /// /// This function removes the item having minimum priority. /// \pre The heap must be non-empty. void pop() { std::vector trees; int i=0, child_right = 0; _data[_min].in=false; if( -1!=_data[_min].child ) { i=_data[_min].child; trees.push_back(i); _data[i].parent = -1; _data[_min].child = -1; int ch=-1; while( _data[i].child!=-1 ) { ch=_data[i].child; if( _data[ch].left_child && i==_data[ch].parent ) { break; } else { if( _data[ch].left_child ) { child_right=_data[ch].parent; _data[ch].parent = i; --_data[i].degree; } else { child_right=ch; _data[i].child=-1; _data[i].degree=0; } _data[child_right].parent = -1; trees.push_back(child_right); i = child_right; } } int num_child = trees.size(); int other; for( i=0; i=2) { if ( _comp(_data[trees[i]].prio, _data[trees[i-2]].prio) ) { other=trees[i]; trees[i]=trees[i-2]; trees[i-2]=other; } fuse( trees[i-2], trees[i] ); i-=2; } _min = trees[0]; } else { _min = _data[_min].child; } if (_min >= 0) _data[_min].left_child = false; --_num_items; } /// \brief Remove the given item from the heap. /// /// This function removes the given item from the heap if it is /// already stored. /// \param item The item to delete. /// \pre \e item must be in the heap. void erase (const Item& item) { int i=_iim[item]; if ( i>=0 && _data[i].in ) { decrease( item, _data[_min].prio-1 ); pop(); } } /// \brief Decrease the priority of an item to the given value. /// /// This function decreases the priority of an item to the given value. /// \param item The item. /// \param value The priority. /// \pre \e item must be stored in the heap with priority at least \e value. void decrease (Item item, const Prio& value) { int i=_iim[item]; _data[i].prio=value; int p=_data[i].parent; if( _data[i].left_child && i!=_data[p].child ) { p=_data[p].parent; } if ( p!=-1 && _comp(value,_data[p].prio) ) { cut(i,p); if ( _comp(_data[_min].prio,value) ) { fuse(_min,i); } else { fuse(i,_min); _min=i; } } } /// \brief Increase the priority of an item to the given value. /// /// This function increases the priority of an item to the given value. /// \param item The item. /// \param value The priority. /// \pre \e item must be stored in the heap with priority at most \e value. void increase (Item item, const Prio& value) { erase(item); push(item,value); } /// \brief Return the state of an item. /// /// This method returns \c PRE_HEAP if the given item has never /// been in the heap, \c IN_HEAP if it is in the heap at the moment, /// and \c POST_HEAP otherwise. /// In the latter case it is possible that the item will get back /// to the heap again. /// \param item The item. State state(const Item &item) const { int i=_iim[item]; if( i>=0 ) { if( _data[i].in ) i=0; else i=-2; } return State(i); } /// \brief Set the state of an item in the heap. /// /// This function sets the state of the given item in the heap. /// It can be used to manually clear the heap when it is important /// to achive better time complexity. /// \param i The item. /// \param st The state. It should not be \c IN_HEAP. void state(const Item& i, State st) { switch (st) { case POST_HEAP: case PRE_HEAP: if (state(i) == IN_HEAP) erase(i); _iim[i]=st; break; case IN_HEAP: break; } } private: void cut(int a, int b) { int child_a; switch (_data[a].degree) { case 2: child_a = _data[_data[a].child].parent; if( _data[a].left_child ) { _data[child_a].left_child=true; _data[b].child=child_a; _data[child_a].parent=_data[a].parent; } else { _data[child_a].left_child=false; _data[child_a].parent=b; if( a!=_data[b].child ) _data[_data[b].child].parent=child_a; else _data[b].child=child_a; } --_data[a].degree; _data[_data[a].child].parent=a; break; case 1: child_a = _data[a].child; if( !_data[child_a].left_child ) { --_data[a].degree; if( _data[a].left_child ) { _data[child_a].left_child=true; _data[child_a].parent=_data[a].parent; _data[b].child=child_a; } else { _data[child_a].left_child=false; _data[child_a].parent=b; if( a!=_data[b].child ) _data[_data[b].child].parent=child_a; else _data[b].child=child_a; } _data[a].child=-1; } else { --_data[b].degree; if( _data[a].left_child ) { _data[b].child = (1==_data[b].degree) ? _data[a].parent : -1; } else { if (1==_data[b].degree) _data[_data[b].child].parent=b; else _data[b].child=-1; } } break; case 0: --_data[b].degree; if( _data[a].left_child ) { _data[b].child = (0!=_data[b].degree) ? _data[a].parent : -1; } else { if( 0!=_data[b].degree ) _data[_data[b].child].parent=b; else _data[b].child=-1; } break; } _data[a].parent=-1; _data[a].left_child=false; } void fuse(int a, int b) { int child_a = _data[a].child; int child_b = _data[b].child; _data[a].child=b; _data[b].parent=a; _data[b].left_child=true; if( -1!=child_a ) { _data[b].child=child_a; _data[child_a].parent=b; _data[child_a].left_child=false; ++_data[b].degree; if( -1!=child_b ) { _data[b].child=child_b; _data[child_b].parent=child_a; } } else { ++_data[a].degree; } } class store { friend class PairingHeap; Item name; int parent; int child; bool left_child; int degree; bool in; Prio prio; store() : parent(-1), child(-1), left_child(false), degree(0), in(true) {} }; }; } //namespace lemon #endif //LEMON_PAIRING_HEAP_H