[209] | 1 | /* -*- mode: C++; indent-tabs-mode: nil; -*- |
---|
[10] | 2 | * |
---|
[209] | 3 | * This file is a part of LEMON, a generic C++ optimization library. |
---|
[10] | 4 | * |
---|
[440] | 5 | * Copyright (C) 2003-2009 |
---|
[10] | 6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
| 7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
---|
| 8 | * |
---|
| 9 | * Permission to use, modify and distribute this software is granted |
---|
| 10 | * provided that this copyright notice appears in all copies. For |
---|
| 11 | * precise terms see the accompanying LICENSE file. |
---|
| 12 | * |
---|
| 13 | * This software is provided "AS IS" with no warranty of any kind, |
---|
| 14 | * express or implied, and with no claim as to its suitability for any |
---|
| 15 | * purpose. |
---|
| 16 | * |
---|
| 17 | */ |
---|
| 18 | |
---|
| 19 | /* |
---|
| 20 | * This file contains the reimplemented version of the Mersenne Twister |
---|
| 21 | * Generator of Matsumoto and Nishimura. |
---|
| 22 | * |
---|
| 23 | * See the appropriate copyright notice below. |
---|
[209] | 24 | * |
---|
[10] | 25 | * Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura, |
---|
[209] | 26 | * All rights reserved. |
---|
[10] | 27 | * |
---|
| 28 | * Redistribution and use in source and binary forms, with or without |
---|
| 29 | * modification, are permitted provided that the following conditions |
---|
| 30 | * are met: |
---|
| 31 | * |
---|
| 32 | * 1. Redistributions of source code must retain the above copyright |
---|
| 33 | * notice, this list of conditions and the following disclaimer. |
---|
| 34 | * |
---|
| 35 | * 2. Redistributions in binary form must reproduce the above copyright |
---|
| 36 | * notice, this list of conditions and the following disclaimer in the |
---|
| 37 | * documentation and/or other materials provided with the distribution. |
---|
| 38 | * |
---|
[209] | 39 | * 3. The names of its contributors may not be used to endorse or promote |
---|
| 40 | * products derived from this software without specific prior written |
---|
[10] | 41 | * permission. |
---|
| 42 | * |
---|
| 43 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
---|
| 44 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
---|
| 45 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
---|
| 46 | * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
---|
| 47 | * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
---|
| 48 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
---|
| 49 | * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
---|
| 50 | * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
---|
| 51 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
---|
| 52 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
---|
| 53 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
---|
| 54 | * OF THE POSSIBILITY OF SUCH DAMAGE. |
---|
| 55 | * |
---|
| 56 | * |
---|
| 57 | * Any feedback is very welcome. |
---|
| 58 | * http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html |
---|
| 59 | * email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space) |
---|
| 60 | */ |
---|
| 61 | |
---|
| 62 | #ifndef LEMON_RANDOM_H |
---|
| 63 | #define LEMON_RANDOM_H |
---|
| 64 | |
---|
| 65 | #include <algorithm> |
---|
| 66 | #include <iterator> |
---|
| 67 | #include <vector> |
---|
[110] | 68 | #include <limits> |
---|
[177] | 69 | #include <fstream> |
---|
[10] | 70 | |
---|
[68] | 71 | #include <lemon/math.h> |
---|
[10] | 72 | #include <lemon/dim2.h> |
---|
[68] | 73 | |
---|
[177] | 74 | #ifndef WIN32 |
---|
| 75 | #include <sys/time.h> |
---|
| 76 | #include <ctime> |
---|
| 77 | #include <sys/types.h> |
---|
| 78 | #include <unistd.h> |
---|
| 79 | #else |
---|
[482] | 80 | #include <lemon/bits/windows.h> |
---|
[177] | 81 | #endif |
---|
| 82 | |
---|
[10] | 83 | ///\ingroup misc |
---|
| 84 | ///\file |
---|
| 85 | ///\brief Mersenne Twister random number generator |
---|
| 86 | |
---|
| 87 | namespace lemon { |
---|
| 88 | |
---|
| 89 | namespace _random_bits { |
---|
[209] | 90 | |
---|
[10] | 91 | template <typename _Word, int _bits = std::numeric_limits<_Word>::digits> |
---|
| 92 | struct RandomTraits {}; |
---|
| 93 | |
---|
| 94 | template <typename _Word> |
---|
| 95 | struct RandomTraits<_Word, 32> { |
---|
| 96 | |
---|
| 97 | typedef _Word Word; |
---|
| 98 | static const int bits = 32; |
---|
| 99 | |
---|
| 100 | static const int length = 624; |
---|
| 101 | static const int shift = 397; |
---|
[209] | 102 | |
---|
[10] | 103 | static const Word mul = 0x6c078965u; |
---|
| 104 | static const Word arrayInit = 0x012BD6AAu; |
---|
| 105 | static const Word arrayMul1 = 0x0019660Du; |
---|
| 106 | static const Word arrayMul2 = 0x5D588B65u; |
---|
| 107 | |
---|
| 108 | static const Word mask = 0x9908B0DFu; |
---|
| 109 | static const Word loMask = (1u << 31) - 1; |
---|
| 110 | static const Word hiMask = ~loMask; |
---|
| 111 | |
---|
| 112 | |
---|
| 113 | static Word tempering(Word rnd) { |
---|
| 114 | rnd ^= (rnd >> 11); |
---|
| 115 | rnd ^= (rnd << 7) & 0x9D2C5680u; |
---|
| 116 | rnd ^= (rnd << 15) & 0xEFC60000u; |
---|
| 117 | rnd ^= (rnd >> 18); |
---|
| 118 | return rnd; |
---|
| 119 | } |
---|
| 120 | |
---|
| 121 | }; |
---|
| 122 | |
---|
| 123 | template <typename _Word> |
---|
| 124 | struct RandomTraits<_Word, 64> { |
---|
| 125 | |
---|
| 126 | typedef _Word Word; |
---|
| 127 | static const int bits = 64; |
---|
| 128 | |
---|
| 129 | static const int length = 312; |
---|
| 130 | static const int shift = 156; |
---|
| 131 | |
---|
| 132 | static const Word mul = Word(0x5851F42Du) << 32 | Word(0x4C957F2Du); |
---|
| 133 | static const Word arrayInit = Word(0x00000000u) << 32 |Word(0x012BD6AAu); |
---|
| 134 | static const Word arrayMul1 = Word(0x369DEA0Fu) << 32 |Word(0x31A53F85u); |
---|
| 135 | static const Word arrayMul2 = Word(0x27BB2EE6u) << 32 |Word(0x87B0B0FDu); |
---|
| 136 | |
---|
| 137 | static const Word mask = Word(0xB5026F5Au) << 32 | Word(0xA96619E9u); |
---|
| 138 | static const Word loMask = (Word(1u) << 31) - 1; |
---|
| 139 | static const Word hiMask = ~loMask; |
---|
| 140 | |
---|
| 141 | static Word tempering(Word rnd) { |
---|
| 142 | rnd ^= (rnd >> 29) & (Word(0x55555555u) << 32 | Word(0x55555555u)); |
---|
| 143 | rnd ^= (rnd << 17) & (Word(0x71D67FFFu) << 32 | Word(0xEDA60000u)); |
---|
| 144 | rnd ^= (rnd << 37) & (Word(0xFFF7EEE0u) << 32 | Word(0x00000000u)); |
---|
| 145 | rnd ^= (rnd >> 43); |
---|
| 146 | return rnd; |
---|
| 147 | } |
---|
| 148 | |
---|
| 149 | }; |
---|
| 150 | |
---|
| 151 | template <typename _Word> |
---|
| 152 | class RandomCore { |
---|
| 153 | public: |
---|
| 154 | |
---|
| 155 | typedef _Word Word; |
---|
| 156 | |
---|
| 157 | private: |
---|
| 158 | |
---|
| 159 | static const int bits = RandomTraits<Word>::bits; |
---|
| 160 | |
---|
| 161 | static const int length = RandomTraits<Word>::length; |
---|
| 162 | static const int shift = RandomTraits<Word>::shift; |
---|
| 163 | |
---|
| 164 | public: |
---|
| 165 | |
---|
| 166 | void initState() { |
---|
| 167 | static const Word seedArray[4] = { |
---|
| 168 | 0x12345u, 0x23456u, 0x34567u, 0x45678u |
---|
| 169 | }; |
---|
[209] | 170 | |
---|
[10] | 171 | initState(seedArray, seedArray + 4); |
---|
| 172 | } |
---|
| 173 | |
---|
| 174 | void initState(Word seed) { |
---|
| 175 | |
---|
| 176 | static const Word mul = RandomTraits<Word>::mul; |
---|
| 177 | |
---|
[209] | 178 | current = state; |
---|
[10] | 179 | |
---|
| 180 | Word *curr = state + length - 1; |
---|
| 181 | curr[0] = seed; --curr; |
---|
| 182 | for (int i = 1; i < length; ++i) { |
---|
| 183 | curr[0] = (mul * ( curr[1] ^ (curr[1] >> (bits - 2)) ) + i); |
---|
| 184 | --curr; |
---|
| 185 | } |
---|
| 186 | } |
---|
| 187 | |
---|
| 188 | template <typename Iterator> |
---|
| 189 | void initState(Iterator begin, Iterator end) { |
---|
| 190 | |
---|
| 191 | static const Word init = RandomTraits<Word>::arrayInit; |
---|
| 192 | static const Word mul1 = RandomTraits<Word>::arrayMul1; |
---|
| 193 | static const Word mul2 = RandomTraits<Word>::arrayMul2; |
---|
| 194 | |
---|
| 195 | |
---|
| 196 | Word *curr = state + length - 1; --curr; |
---|
| 197 | Iterator it = begin; int cnt = 0; |
---|
| 198 | int num; |
---|
| 199 | |
---|
| 200 | initState(init); |
---|
| 201 | |
---|
| 202 | num = length > end - begin ? length : end - begin; |
---|
| 203 | while (num--) { |
---|
[209] | 204 | curr[0] = (curr[0] ^ ((curr[1] ^ (curr[1] >> (bits - 2))) * mul1)) |
---|
[10] | 205 | + *it + cnt; |
---|
| 206 | ++it; ++cnt; |
---|
| 207 | if (it == end) { |
---|
| 208 | it = begin; cnt = 0; |
---|
| 209 | } |
---|
| 210 | if (curr == state) { |
---|
| 211 | curr = state + length - 1; curr[0] = state[0]; |
---|
| 212 | } |
---|
| 213 | --curr; |
---|
| 214 | } |
---|
| 215 | |
---|
| 216 | num = length - 1; cnt = length - (curr - state) - 1; |
---|
| 217 | while (num--) { |
---|
| 218 | curr[0] = (curr[0] ^ ((curr[1] ^ (curr[1] >> (bits - 2))) * mul2)) |
---|
| 219 | - cnt; |
---|
| 220 | --curr; ++cnt; |
---|
| 221 | if (curr == state) { |
---|
| 222 | curr = state + length - 1; curr[0] = state[0]; --curr; |
---|
| 223 | cnt = 1; |
---|
| 224 | } |
---|
| 225 | } |
---|
[209] | 226 | |
---|
[10] | 227 | state[length - 1] = Word(1) << (bits - 1); |
---|
| 228 | } |
---|
[209] | 229 | |
---|
[10] | 230 | void copyState(const RandomCore& other) { |
---|
| 231 | std::copy(other.state, other.state + length, state); |
---|
| 232 | current = state + (other.current - other.state); |
---|
| 233 | } |
---|
| 234 | |
---|
| 235 | Word operator()() { |
---|
| 236 | if (current == state) fillState(); |
---|
| 237 | --current; |
---|
| 238 | Word rnd = *current; |
---|
| 239 | return RandomTraits<Word>::tempering(rnd); |
---|
| 240 | } |
---|
| 241 | |
---|
| 242 | private: |
---|
| 243 | |
---|
[209] | 244 | |
---|
[10] | 245 | void fillState() { |
---|
| 246 | static const Word mask[2] = { 0x0ul, RandomTraits<Word>::mask }; |
---|
| 247 | static const Word loMask = RandomTraits<Word>::loMask; |
---|
| 248 | static const Word hiMask = RandomTraits<Word>::hiMask; |
---|
| 249 | |
---|
[209] | 250 | current = state + length; |
---|
[10] | 251 | |
---|
| 252 | register Word *curr = state + length - 1; |
---|
| 253 | register long num; |
---|
[209] | 254 | |
---|
[10] | 255 | num = length - shift; |
---|
| 256 | while (num--) { |
---|
| 257 | curr[0] = (((curr[0] & hiMask) | (curr[-1] & loMask)) >> 1) ^ |
---|
| 258 | curr[- shift] ^ mask[curr[-1] & 1ul]; |
---|
| 259 | --curr; |
---|
| 260 | } |
---|
| 261 | num = shift - 1; |
---|
| 262 | while (num--) { |
---|
| 263 | curr[0] = (((curr[0] & hiMask) | (curr[-1] & loMask)) >> 1) ^ |
---|
| 264 | curr[length - shift] ^ mask[curr[-1] & 1ul]; |
---|
| 265 | --curr; |
---|
| 266 | } |
---|
[62] | 267 | state[0] = (((state[0] & hiMask) | (curr[length - 1] & loMask)) >> 1) ^ |
---|
[10] | 268 | curr[length - shift] ^ mask[curr[length - 1] & 1ul]; |
---|
| 269 | |
---|
| 270 | } |
---|
| 271 | |
---|
[209] | 272 | |
---|
[10] | 273 | Word *current; |
---|
| 274 | Word state[length]; |
---|
[209] | 275 | |
---|
[10] | 276 | }; |
---|
| 277 | |
---|
| 278 | |
---|
[209] | 279 | template <typename Result, |
---|
[10] | 280 | int shift = (std::numeric_limits<Result>::digits + 1) / 2> |
---|
| 281 | struct Masker { |
---|
| 282 | static Result mask(const Result& result) { |
---|
| 283 | return Masker<Result, (shift + 1) / 2>:: |
---|
| 284 | mask(static_cast<Result>(result | (result >> shift))); |
---|
| 285 | } |
---|
| 286 | }; |
---|
[209] | 287 | |
---|
[10] | 288 | template <typename Result> |
---|
| 289 | struct Masker<Result, 1> { |
---|
| 290 | static Result mask(const Result& result) { |
---|
| 291 | return static_cast<Result>(result | (result >> 1)); |
---|
| 292 | } |
---|
| 293 | }; |
---|
| 294 | |
---|
[209] | 295 | template <typename Result, typename Word, |
---|
| 296 | int rest = std::numeric_limits<Result>::digits, int shift = 0, |
---|
[10] | 297 | bool last = rest <= std::numeric_limits<Word>::digits> |
---|
| 298 | struct IntConversion { |
---|
| 299 | static const int bits = std::numeric_limits<Word>::digits; |
---|
[209] | 300 | |
---|
[10] | 301 | static Result convert(RandomCore<Word>& rnd) { |
---|
| 302 | return static_cast<Result>(rnd() >> (bits - rest)) << shift; |
---|
| 303 | } |
---|
| 304 | |
---|
[209] | 305 | }; |
---|
| 306 | |
---|
| 307 | template <typename Result, typename Word, int rest, int shift> |
---|
[10] | 308 | struct IntConversion<Result, Word, rest, shift, false> { |
---|
| 309 | static const int bits = std::numeric_limits<Word>::digits; |
---|
| 310 | |
---|
| 311 | static Result convert(RandomCore<Word>& rnd) { |
---|
[209] | 312 | return (static_cast<Result>(rnd()) << shift) | |
---|
[10] | 313 | IntConversion<Result, Word, rest - bits, shift + bits>::convert(rnd); |
---|
| 314 | } |
---|
| 315 | }; |
---|
| 316 | |
---|
| 317 | |
---|
| 318 | template <typename Result, typename Word, |
---|
[209] | 319 | bool one_word = (std::numeric_limits<Word>::digits < |
---|
| 320 | std::numeric_limits<Result>::digits) > |
---|
[10] | 321 | struct Mapping { |
---|
| 322 | static Result map(RandomCore<Word>& rnd, const Result& bound) { |
---|
| 323 | Word max = Word(bound - 1); |
---|
| 324 | Result mask = Masker<Result>::mask(bound - 1); |
---|
| 325 | Result num; |
---|
| 326 | do { |
---|
[209] | 327 | num = IntConversion<Result, Word>::convert(rnd) & mask; |
---|
[10] | 328 | } while (num > max); |
---|
| 329 | return num; |
---|
| 330 | } |
---|
| 331 | }; |
---|
| 332 | |
---|
| 333 | template <typename Result, typename Word> |
---|
| 334 | struct Mapping<Result, Word, false> { |
---|
| 335 | static Result map(RandomCore<Word>& rnd, const Result& bound) { |
---|
| 336 | Word max = Word(bound - 1); |
---|
| 337 | Word mask = Masker<Word, (std::numeric_limits<Result>::digits + 1) / 2> |
---|
| 338 | ::mask(max); |
---|
| 339 | Word num; |
---|
| 340 | do { |
---|
| 341 | num = rnd() & mask; |
---|
| 342 | } while (num > max); |
---|
| 343 | return num; |
---|
| 344 | } |
---|
| 345 | }; |
---|
| 346 | |
---|
[487] | 347 | template <typename Result, int exp> |
---|
[10] | 348 | struct ShiftMultiplier { |
---|
| 349 | static const Result multiplier() { |
---|
| 350 | Result res = ShiftMultiplier<Result, exp / 2>::multiplier(); |
---|
| 351 | res *= res; |
---|
| 352 | if ((exp & 1) == 1) res *= static_cast<Result>(0.5); |
---|
[209] | 353 | return res; |
---|
[10] | 354 | } |
---|
| 355 | }; |
---|
| 356 | |
---|
| 357 | template <typename Result> |
---|
[487] | 358 | struct ShiftMultiplier<Result, 0> { |
---|
[10] | 359 | static const Result multiplier() { |
---|
[209] | 360 | return static_cast<Result>(1.0); |
---|
[10] | 361 | } |
---|
| 362 | }; |
---|
| 363 | |
---|
| 364 | template <typename Result> |
---|
[487] | 365 | struct ShiftMultiplier<Result, 20> { |
---|
[10] | 366 | static const Result multiplier() { |
---|
[209] | 367 | return static_cast<Result>(1.0/1048576.0); |
---|
[10] | 368 | } |
---|
| 369 | }; |
---|
[209] | 370 | |
---|
[10] | 371 | template <typename Result> |
---|
[487] | 372 | struct ShiftMultiplier<Result, 32> { |
---|
[10] | 373 | static const Result multiplier() { |
---|
[487] | 374 | return static_cast<Result>(1.0/4294967296.0); |
---|
[10] | 375 | } |
---|
| 376 | }; |
---|
| 377 | |
---|
| 378 | template <typename Result> |
---|
[487] | 379 | struct ShiftMultiplier<Result, 53> { |
---|
[10] | 380 | static const Result multiplier() { |
---|
[209] | 381 | return static_cast<Result>(1.0/9007199254740992.0); |
---|
[10] | 382 | } |
---|
| 383 | }; |
---|
| 384 | |
---|
| 385 | template <typename Result> |
---|
[487] | 386 | struct ShiftMultiplier<Result, 64> { |
---|
[10] | 387 | static const Result multiplier() { |
---|
[209] | 388 | return static_cast<Result>(1.0/18446744073709551616.0); |
---|
[10] | 389 | } |
---|
| 390 | }; |
---|
| 391 | |
---|
| 392 | template <typename Result, int exp> |
---|
| 393 | struct Shifting { |
---|
| 394 | static Result shift(const Result& result) { |
---|
| 395 | return result * ShiftMultiplier<Result, exp>::multiplier(); |
---|
| 396 | } |
---|
| 397 | }; |
---|
| 398 | |
---|
| 399 | template <typename Result, typename Word, |
---|
[209] | 400 | int rest = std::numeric_limits<Result>::digits, int shift = 0, |
---|
[10] | 401 | bool last = rest <= std::numeric_limits<Word>::digits> |
---|
[209] | 402 | struct RealConversion{ |
---|
[10] | 403 | static const int bits = std::numeric_limits<Word>::digits; |
---|
| 404 | |
---|
| 405 | static Result convert(RandomCore<Word>& rnd) { |
---|
[487] | 406 | return Shifting<Result, shift + rest>:: |
---|
[10] | 407 | shift(static_cast<Result>(rnd() >> (bits - rest))); |
---|
| 408 | } |
---|
| 409 | }; |
---|
| 410 | |
---|
| 411 | template <typename Result, typename Word, int rest, int shift> |
---|
[209] | 412 | struct RealConversion<Result, Word, rest, shift, false> { |
---|
[10] | 413 | static const int bits = std::numeric_limits<Word>::digits; |
---|
| 414 | |
---|
| 415 | static Result convert(RandomCore<Word>& rnd) { |
---|
[487] | 416 | return Shifting<Result, shift + bits>:: |
---|
[10] | 417 | shift(static_cast<Result>(rnd())) + |
---|
| 418 | RealConversion<Result, Word, rest-bits, shift + bits>:: |
---|
| 419 | convert(rnd); |
---|
| 420 | } |
---|
| 421 | }; |
---|
| 422 | |
---|
| 423 | template <typename Result, typename Word> |
---|
| 424 | struct Initializer { |
---|
| 425 | |
---|
| 426 | template <typename Iterator> |
---|
| 427 | static void init(RandomCore<Word>& rnd, Iterator begin, Iterator end) { |
---|
| 428 | std::vector<Word> ws; |
---|
| 429 | for (Iterator it = begin; it != end; ++it) { |
---|
| 430 | ws.push_back(Word(*it)); |
---|
| 431 | } |
---|
| 432 | rnd.initState(ws.begin(), ws.end()); |
---|
| 433 | } |
---|
| 434 | |
---|
| 435 | static void init(RandomCore<Word>& rnd, Result seed) { |
---|
| 436 | rnd.initState(seed); |
---|
| 437 | } |
---|
| 438 | }; |
---|
| 439 | |
---|
| 440 | template <typename Word> |
---|
| 441 | struct BoolConversion { |
---|
| 442 | static bool convert(RandomCore<Word>& rnd) { |
---|
| 443 | return (rnd() & 1) == 1; |
---|
| 444 | } |
---|
| 445 | }; |
---|
| 446 | |
---|
| 447 | template <typename Word> |
---|
| 448 | struct BoolProducer { |
---|
| 449 | Word buffer; |
---|
| 450 | int num; |
---|
[209] | 451 | |
---|
[10] | 452 | BoolProducer() : num(0) {} |
---|
| 453 | |
---|
| 454 | bool convert(RandomCore<Word>& rnd) { |
---|
| 455 | if (num == 0) { |
---|
| 456 | buffer = rnd(); |
---|
| 457 | num = RandomTraits<Word>::bits; |
---|
| 458 | } |
---|
| 459 | bool r = (buffer & 1); |
---|
| 460 | buffer >>= 1; |
---|
| 461 | --num; |
---|
| 462 | return r; |
---|
| 463 | } |
---|
| 464 | }; |
---|
| 465 | |
---|
| 466 | } |
---|
| 467 | |
---|
| 468 | /// \ingroup misc |
---|
| 469 | /// |
---|
| 470 | /// \brief Mersenne Twister random number generator |
---|
| 471 | /// |
---|
| 472 | /// The Mersenne Twister is a twisted generalized feedback |
---|
| 473 | /// shift-register generator of Matsumoto and Nishimura. The period |
---|
| 474 | /// of this generator is \f$ 2^{19937} - 1 \f$ and it is |
---|
| 475 | /// equi-distributed in 623 dimensions for 32-bit numbers. The time |
---|
| 476 | /// performance of this generator is comparable to the commonly used |
---|
| 477 | /// generators. |
---|
| 478 | /// |
---|
| 479 | /// This implementation is specialized for both 32-bit and 64-bit |
---|
| 480 | /// architectures. The generators differ sligthly in the |
---|
| 481 | /// initialization and generation phase so they produce two |
---|
| 482 | /// completly different sequences. |
---|
| 483 | /// |
---|
| 484 | /// The generator gives back random numbers of serveral types. To |
---|
| 485 | /// get a random number from a range of a floating point type you |
---|
| 486 | /// can use one form of the \c operator() or the \c real() member |
---|
| 487 | /// function. If you want to get random number from the {0, 1, ..., |
---|
| 488 | /// n-1} integer range use the \c operator[] or the \c integer() |
---|
| 489 | /// method. And to get random number from the whole range of an |
---|
| 490 | /// integer type you can use the argumentless \c integer() or \c |
---|
| 491 | /// uinteger() functions. After all you can get random bool with |
---|
| 492 | /// equal chance of true and false or given probability of true |
---|
| 493 | /// result with the \c boolean() member functions. |
---|
| 494 | /// |
---|
| 495 | ///\code |
---|
| 496 | /// // The commented code is identical to the other |
---|
| 497 | /// double a = rnd(); // [0.0, 1.0) |
---|
| 498 | /// // double a = rnd.real(); // [0.0, 1.0) |
---|
| 499 | /// double b = rnd(100.0); // [0.0, 100.0) |
---|
| 500 | /// // double b = rnd.real(100.0); // [0.0, 100.0) |
---|
| 501 | /// double c = rnd(1.0, 2.0); // [1.0, 2.0) |
---|
| 502 | /// // double c = rnd.real(1.0, 2.0); // [1.0, 2.0) |
---|
| 503 | /// int d = rnd[100000]; // 0..99999 |
---|
| 504 | /// // int d = rnd.integer(100000); // 0..99999 |
---|
| 505 | /// int e = rnd[6] + 1; // 1..6 |
---|
| 506 | /// // int e = rnd.integer(1, 1 + 6); // 1..6 |
---|
| 507 | /// int b = rnd.uinteger<int>(); // 0 .. 2^31 - 1 |
---|
| 508 | /// int c = rnd.integer<int>(); // - 2^31 .. 2^31 - 1 |
---|
| 509 | /// bool g = rnd.boolean(); // P(g = true) = 0.5 |
---|
| 510 | /// bool h = rnd.boolean(0.8); // P(h = true) = 0.8 |
---|
| 511 | ///\endcode |
---|
| 512 | /// |
---|
[49] | 513 | /// LEMON provides a global instance of the random number |
---|
[10] | 514 | /// generator which name is \ref lemon::rnd "rnd". Usually it is a |
---|
| 515 | /// good programming convenience to use this global generator to get |
---|
| 516 | /// random numbers. |
---|
| 517 | class Random { |
---|
| 518 | private: |
---|
| 519 | |
---|
[16] | 520 | // Architecture word |
---|
[10] | 521 | typedef unsigned long Word; |
---|
[209] | 522 | |
---|
[10] | 523 | _random_bits::RandomCore<Word> core; |
---|
| 524 | _random_bits::BoolProducer<Word> bool_producer; |
---|
[209] | 525 | |
---|
[10] | 526 | |
---|
| 527 | public: |
---|
| 528 | |
---|
[177] | 529 | ///\name Initialization |
---|
| 530 | /// |
---|
| 531 | /// @{ |
---|
| 532 | |
---|
[49] | 533 | /// \brief Default constructor |
---|
[10] | 534 | /// |
---|
| 535 | /// Constructor with constant seeding. |
---|
| 536 | Random() { core.initState(); } |
---|
| 537 | |
---|
[49] | 538 | /// \brief Constructor with seed |
---|
[10] | 539 | /// |
---|
| 540 | /// Constructor with seed. The current number type will be converted |
---|
| 541 | /// to the architecture word type. |
---|
| 542 | template <typename Number> |
---|
[209] | 543 | Random(Number seed) { |
---|
[10] | 544 | _random_bits::Initializer<Number, Word>::init(core, seed); |
---|
| 545 | } |
---|
| 546 | |
---|
[49] | 547 | /// \brief Constructor with array seeding |
---|
[10] | 548 | /// |
---|
| 549 | /// Constructor with array seeding. The given range should contain |
---|
| 550 | /// any number type and the numbers will be converted to the |
---|
| 551 | /// architecture word type. |
---|
| 552 | template <typename Iterator> |
---|
[209] | 553 | Random(Iterator begin, Iterator end) { |
---|
[10] | 554 | typedef typename std::iterator_traits<Iterator>::value_type Number; |
---|
| 555 | _random_bits::Initializer<Number, Word>::init(core, begin, end); |
---|
| 556 | } |
---|
| 557 | |
---|
| 558 | /// \brief Copy constructor |
---|
| 559 | /// |
---|
| 560 | /// Copy constructor. The generated sequence will be identical to |
---|
| 561 | /// the other sequence. It can be used to save the current state |
---|
| 562 | /// of the generator and later use it to generate the same |
---|
| 563 | /// sequence. |
---|
| 564 | Random(const Random& other) { |
---|
| 565 | core.copyState(other.core); |
---|
| 566 | } |
---|
| 567 | |
---|
| 568 | /// \brief Assign operator |
---|
| 569 | /// |
---|
| 570 | /// Assign operator. The generated sequence will be identical to |
---|
| 571 | /// the other sequence. It can be used to save the current state |
---|
| 572 | /// of the generator and later use it to generate the same |
---|
| 573 | /// sequence. |
---|
| 574 | Random& operator=(const Random& other) { |
---|
| 575 | if (&other != this) { |
---|
| 576 | core.copyState(other.core); |
---|
| 577 | } |
---|
| 578 | return *this; |
---|
| 579 | } |
---|
| 580 | |
---|
[102] | 581 | /// \brief Seeding random sequence |
---|
| 582 | /// |
---|
| 583 | /// Seeding the random sequence. The current number type will be |
---|
| 584 | /// converted to the architecture word type. |
---|
| 585 | template <typename Number> |
---|
[209] | 586 | void seed(Number seed) { |
---|
[102] | 587 | _random_bits::Initializer<Number, Word>::init(core, seed); |
---|
| 588 | } |
---|
| 589 | |
---|
| 590 | /// \brief Seeding random sequence |
---|
| 591 | /// |
---|
| 592 | /// Seeding the random sequence. The given range should contain |
---|
| 593 | /// any number type and the numbers will be converted to the |
---|
| 594 | /// architecture word type. |
---|
| 595 | template <typename Iterator> |
---|
[209] | 596 | void seed(Iterator begin, Iterator end) { |
---|
[102] | 597 | typedef typename std::iterator_traits<Iterator>::value_type Number; |
---|
| 598 | _random_bits::Initializer<Number, Word>::init(core, begin, end); |
---|
| 599 | } |
---|
| 600 | |
---|
[177] | 601 | /// \brief Seeding from file or from process id and time |
---|
| 602 | /// |
---|
| 603 | /// By default, this function calls the \c seedFromFile() member |
---|
[178] | 604 | /// function with the <tt>/dev/urandom</tt> file. If it does not success, |
---|
[177] | 605 | /// it uses the \c seedFromTime(). |
---|
[559] | 606 | /// \return Currently always \c true. |
---|
[177] | 607 | bool seed() { |
---|
| 608 | #ifndef WIN32 |
---|
| 609 | if (seedFromFile("/dev/urandom", 0)) return true; |
---|
| 610 | #endif |
---|
| 611 | if (seedFromTime()) return true; |
---|
| 612 | return false; |
---|
| 613 | } |
---|
[209] | 614 | |
---|
[177] | 615 | /// \brief Seeding from file |
---|
| 616 | /// |
---|
| 617 | /// Seeding the random sequence from file. The linux kernel has two |
---|
| 618 | /// devices, <tt>/dev/random</tt> and <tt>/dev/urandom</tt> which |
---|
| 619 | /// could give good seed values for pseudo random generators (The |
---|
| 620 | /// difference between two devices is that the <tt>random</tt> may |
---|
| 621 | /// block the reading operation while the kernel can give good |
---|
| 622 | /// source of randomness, while the <tt>urandom</tt> does not |
---|
| 623 | /// block the input, but it could give back bytes with worse |
---|
| 624 | /// entropy). |
---|
| 625 | /// \param file The source file |
---|
| 626 | /// \param offset The offset, from the file read. |
---|
[559] | 627 | /// \return \c true when the seeding successes. |
---|
[177] | 628 | #ifndef WIN32 |
---|
[209] | 629 | bool seedFromFile(const std::string& file = "/dev/urandom", int offset = 0) |
---|
[177] | 630 | #else |
---|
[209] | 631 | bool seedFromFile(const std::string& file = "", int offset = 0) |
---|
[177] | 632 | #endif |
---|
| 633 | { |
---|
| 634 | std::ifstream rs(file.c_str()); |
---|
| 635 | const int size = 4; |
---|
| 636 | Word buf[size]; |
---|
| 637 | if (offset != 0 && !rs.seekg(offset)) return false; |
---|
| 638 | if (!rs.read(reinterpret_cast<char*>(buf), sizeof(buf))) return false; |
---|
| 639 | seed(buf, buf + size); |
---|
| 640 | return true; |
---|
| 641 | } |
---|
| 642 | |
---|
| 643 | /// \brief Seding from process id and time |
---|
| 644 | /// |
---|
| 645 | /// Seding from process id and time. This function uses the |
---|
| 646 | /// current process id and the current time for initialize the |
---|
| 647 | /// random sequence. |
---|
[559] | 648 | /// \return Currently always \c true. |
---|
[209] | 649 | bool seedFromTime() { |
---|
[177] | 650 | #ifndef WIN32 |
---|
| 651 | timeval tv; |
---|
| 652 | gettimeofday(&tv, 0); |
---|
| 653 | seed(getpid() + tv.tv_sec + tv.tv_usec); |
---|
| 654 | #else |
---|
[482] | 655 | seed(bits::getWinRndSeed()); |
---|
[177] | 656 | #endif |
---|
| 657 | return true; |
---|
| 658 | } |
---|
| 659 | |
---|
| 660 | /// @} |
---|
| 661 | |
---|
[584] | 662 | ///\name Uniform Distributions |
---|
[177] | 663 | /// |
---|
| 664 | /// @{ |
---|
| 665 | |
---|
[10] | 666 | /// \brief Returns a random real number from the range [0, 1) |
---|
| 667 | /// |
---|
| 668 | /// It returns a random real number from the range [0, 1). The |
---|
[49] | 669 | /// default Number type is \c double. |
---|
[10] | 670 | template <typename Number> |
---|
| 671 | Number real() { |
---|
| 672 | return _random_bits::RealConversion<Number, Word>::convert(core); |
---|
| 673 | } |
---|
| 674 | |
---|
| 675 | double real() { |
---|
| 676 | return real<double>(); |
---|
| 677 | } |
---|
| 678 | |
---|
| 679 | /// \brief Returns a random real number from the range [0, 1) |
---|
| 680 | /// |
---|
| 681 | /// It returns a random double from the range [0, 1). |
---|
| 682 | double operator()() { |
---|
| 683 | return real<double>(); |
---|
| 684 | } |
---|
| 685 | |
---|
| 686 | /// \brief Returns a random real number from the range [0, b) |
---|
| 687 | /// |
---|
| 688 | /// It returns a random real number from the range [0, b). |
---|
[377] | 689 | double operator()(double b) { |
---|
| 690 | return real<double>() * b; |
---|
[10] | 691 | } |
---|
| 692 | |
---|
| 693 | /// \brief Returns a random real number from the range [a, b) |
---|
| 694 | /// |
---|
| 695 | /// It returns a random real number from the range [a, b). |
---|
[377] | 696 | double operator()(double a, double b) { |
---|
| 697 | return real<double>() * (b - a) + a; |
---|
[10] | 698 | } |
---|
| 699 | |
---|
| 700 | /// \brief Returns a random integer from a range |
---|
| 701 | /// |
---|
| 702 | /// It returns a random integer from the range {0, 1, ..., b - 1}. |
---|
| 703 | template <typename Number> |
---|
| 704 | Number integer(Number b) { |
---|
| 705 | return _random_bits::Mapping<Number, Word>::map(core, b); |
---|
| 706 | } |
---|
| 707 | |
---|
| 708 | /// \brief Returns a random integer from a range |
---|
| 709 | /// |
---|
| 710 | /// It returns a random integer from the range {a, a + 1, ..., b - 1}. |
---|
| 711 | template <typename Number> |
---|
| 712 | Number integer(Number a, Number b) { |
---|
| 713 | return _random_bits::Mapping<Number, Word>::map(core, b - a) + a; |
---|
| 714 | } |
---|
| 715 | |
---|
| 716 | /// \brief Returns a random integer from a range |
---|
| 717 | /// |
---|
| 718 | /// It returns a random integer from the range {0, 1, ..., b - 1}. |
---|
| 719 | template <typename Number> |
---|
| 720 | Number operator[](Number b) { |
---|
| 721 | return _random_bits::Mapping<Number, Word>::map(core, b); |
---|
| 722 | } |
---|
| 723 | |
---|
| 724 | /// \brief Returns a random non-negative integer |
---|
| 725 | /// |
---|
| 726 | /// It returns a random non-negative integer uniformly from the |
---|
[49] | 727 | /// whole range of the current \c Number type. The default result |
---|
| 728 | /// type of this function is <tt>unsigned int</tt>. |
---|
[10] | 729 | template <typename Number> |
---|
| 730 | Number uinteger() { |
---|
| 731 | return _random_bits::IntConversion<Number, Word>::convert(core); |
---|
| 732 | } |
---|
| 733 | |
---|
| 734 | unsigned int uinteger() { |
---|
| 735 | return uinteger<unsigned int>(); |
---|
| 736 | } |
---|
| 737 | |
---|
| 738 | /// \brief Returns a random integer |
---|
| 739 | /// |
---|
| 740 | /// It returns a random integer uniformly from the whole range of |
---|
| 741 | /// the current \c Number type. The default result type of this |
---|
[49] | 742 | /// function is \c int. |
---|
[10] | 743 | template <typename Number> |
---|
| 744 | Number integer() { |
---|
[209] | 745 | static const int nb = std::numeric_limits<Number>::digits + |
---|
[10] | 746 | (std::numeric_limits<Number>::is_signed ? 1 : 0); |
---|
| 747 | return _random_bits::IntConversion<Number, Word, nb>::convert(core); |
---|
| 748 | } |
---|
| 749 | |
---|
| 750 | int integer() { |
---|
| 751 | return integer<int>(); |
---|
| 752 | } |
---|
[209] | 753 | |
---|
[10] | 754 | /// \brief Returns a random bool |
---|
| 755 | /// |
---|
| 756 | /// It returns a random bool. The generator holds a buffer for |
---|
| 757 | /// random bits. Every time when it become empty the generator makes |
---|
| 758 | /// a new random word and fill the buffer up. |
---|
| 759 | bool boolean() { |
---|
| 760 | return bool_producer.convert(core); |
---|
| 761 | } |
---|
| 762 | |
---|
[177] | 763 | /// @} |
---|
| 764 | |
---|
[584] | 765 | ///\name Non-uniform Distributions |
---|
[10] | 766 | /// |
---|
| 767 | ///@{ |
---|
[209] | 768 | |
---|
[340] | 769 | /// \brief Returns a random bool with given probability of true result. |
---|
[10] | 770 | /// |
---|
[23] | 771 | /// It returns a random bool with given probability of true result. |
---|
[10] | 772 | bool boolean(double p) { |
---|
| 773 | return operator()() < p; |
---|
| 774 | } |
---|
| 775 | |
---|
[340] | 776 | /// Standard normal (Gauss) distribution |
---|
[10] | 777 | |
---|
[340] | 778 | /// Standard normal (Gauss) distribution. |
---|
[10] | 779 | /// \note The Cartesian form of the Box-Muller |
---|
| 780 | /// transformation is used to generate a random normal distribution. |
---|
[209] | 781 | double gauss() |
---|
[10] | 782 | { |
---|
| 783 | double V1,V2,S; |
---|
| 784 | do { |
---|
[209] | 785 | V1=2*real<double>()-1; |
---|
| 786 | V2=2*real<double>()-1; |
---|
| 787 | S=V1*V1+V2*V2; |
---|
[10] | 788 | } while(S>=1); |
---|
| 789 | return std::sqrt(-2*std::log(S)/S)*V1; |
---|
| 790 | } |
---|
[340] | 791 | /// Normal (Gauss) distribution with given mean and standard deviation |
---|
[10] | 792 | |
---|
[340] | 793 | /// Normal (Gauss) distribution with given mean and standard deviation. |
---|
[10] | 794 | /// \sa gauss() |
---|
| 795 | double gauss(double mean,double std_dev) |
---|
| 796 | { |
---|
| 797 | return gauss()*std_dev+mean; |
---|
| 798 | } |
---|
| 799 | |
---|
[339] | 800 | /// Lognormal distribution |
---|
| 801 | |
---|
| 802 | /// Lognormal distribution. The parameters are the mean and the standard |
---|
| 803 | /// deviation of <tt>exp(X)</tt>. |
---|
| 804 | /// |
---|
| 805 | double lognormal(double n_mean,double n_std_dev) |
---|
| 806 | { |
---|
| 807 | return std::exp(gauss(n_mean,n_std_dev)); |
---|
| 808 | } |
---|
| 809 | /// Lognormal distribution |
---|
| 810 | |
---|
| 811 | /// Lognormal distribution. The parameter is an <tt>std::pair</tt> of |
---|
| 812 | /// the mean and the standard deviation of <tt>exp(X)</tt>. |
---|
| 813 | /// |
---|
| 814 | double lognormal(const std::pair<double,double> ¶ms) |
---|
| 815 | { |
---|
| 816 | return std::exp(gauss(params.first,params.second)); |
---|
| 817 | } |
---|
| 818 | /// Compute the lognormal parameters from mean and standard deviation |
---|
| 819 | |
---|
| 820 | /// This function computes the lognormal parameters from mean and |
---|
| 821 | /// standard deviation. The return value can direcly be passed to |
---|
| 822 | /// lognormal(). |
---|
| 823 | std::pair<double,double> lognormalParamsFromMD(double mean, |
---|
[340] | 824 | double std_dev) |
---|
[339] | 825 | { |
---|
| 826 | double fr=std_dev/mean; |
---|
| 827 | fr*=fr; |
---|
| 828 | double lg=std::log(1+fr); |
---|
| 829 | return std::pair<double,double>(std::log(mean)-lg/2.0,std::sqrt(lg)); |
---|
| 830 | } |
---|
| 831 | /// Lognormal distribution with given mean and standard deviation |
---|
[340] | 832 | |
---|
[339] | 833 | /// Lognormal distribution with given mean and standard deviation. |
---|
| 834 | /// |
---|
| 835 | double lognormalMD(double mean,double std_dev) |
---|
| 836 | { |
---|
| 837 | return lognormal(lognormalParamsFromMD(mean,std_dev)); |
---|
| 838 | } |
---|
[340] | 839 | |
---|
[10] | 840 | /// Exponential distribution with given mean |
---|
| 841 | |
---|
| 842 | /// This function generates an exponential distribution random number |
---|
| 843 | /// with mean <tt>1/lambda</tt>. |
---|
| 844 | /// |
---|
| 845 | double exponential(double lambda=1.0) |
---|
| 846 | { |
---|
[11] | 847 | return -std::log(1.0-real<double>())/lambda; |
---|
[10] | 848 | } |
---|
| 849 | |
---|
| 850 | /// Gamma distribution with given integer shape |
---|
| 851 | |
---|
| 852 | /// This function generates a gamma distribution random number. |
---|
[209] | 853 | /// |
---|
[10] | 854 | ///\param k shape parameter (<tt>k>0</tt> integer) |
---|
[209] | 855 | double gamma(int k) |
---|
[10] | 856 | { |
---|
| 857 | double s = 0; |
---|
| 858 | for(int i=0;i<k;i++) s-=std::log(1.0-real<double>()); |
---|
| 859 | return s; |
---|
| 860 | } |
---|
[209] | 861 | |
---|
[10] | 862 | /// Gamma distribution with given shape and scale parameter |
---|
| 863 | |
---|
| 864 | /// This function generates a gamma distribution random number. |
---|
[209] | 865 | /// |
---|
[10] | 866 | ///\param k shape parameter (<tt>k>0</tt>) |
---|
| 867 | ///\param theta scale parameter |
---|
| 868 | /// |
---|
| 869 | double gamma(double k,double theta=1.0) |
---|
| 870 | { |
---|
| 871 | double xi,nu; |
---|
| 872 | const double delta = k-std::floor(k); |
---|
[68] | 873 | const double v0=E/(E-delta); |
---|
[10] | 874 | do { |
---|
[209] | 875 | double V0=1.0-real<double>(); |
---|
| 876 | double V1=1.0-real<double>(); |
---|
| 877 | double V2=1.0-real<double>(); |
---|
| 878 | if(V2<=v0) |
---|
| 879 | { |
---|
| 880 | xi=std::pow(V1,1.0/delta); |
---|
| 881 | nu=V0*std::pow(xi,delta-1.0); |
---|
| 882 | } |
---|
| 883 | else |
---|
| 884 | { |
---|
| 885 | xi=1.0-std::log(V1); |
---|
| 886 | nu=V0*std::exp(-xi); |
---|
| 887 | } |
---|
[10] | 888 | } while(nu>std::pow(xi,delta-1.0)*std::exp(-xi)); |
---|
[116] | 889 | return theta*(xi+gamma(int(std::floor(k)))); |
---|
[10] | 890 | } |
---|
[209] | 891 | |
---|
[11] | 892 | /// Weibull distribution |
---|
| 893 | |
---|
| 894 | /// This function generates a Weibull distribution random number. |
---|
[209] | 895 | /// |
---|
[11] | 896 | ///\param k shape parameter (<tt>k>0</tt>) |
---|
| 897 | ///\param lambda scale parameter (<tt>lambda>0</tt>) |
---|
| 898 | /// |
---|
| 899 | double weibull(double k,double lambda) |
---|
| 900 | { |
---|
| 901 | return lambda*pow(-std::log(1.0-real<double>()),1.0/k); |
---|
[209] | 902 | } |
---|
| 903 | |
---|
[11] | 904 | /// Pareto distribution |
---|
| 905 | |
---|
| 906 | /// This function generates a Pareto distribution random number. |
---|
[209] | 907 | /// |
---|
[12] | 908 | ///\param k shape parameter (<tt>k>0</tt>) |
---|
[11] | 909 | ///\param x_min location parameter (<tt>x_min>0</tt>) |
---|
| 910 | /// |
---|
[12] | 911 | double pareto(double k,double x_min) |
---|
[11] | 912 | { |
---|
[116] | 913 | return exponential(gamma(k,1.0/x_min))+x_min; |
---|
[209] | 914 | } |
---|
| 915 | |
---|
[92] | 916 | /// Poisson distribution |
---|
| 917 | |
---|
| 918 | /// This function generates a Poisson distribution random number with |
---|
| 919 | /// parameter \c lambda. |
---|
[209] | 920 | /// |
---|
[92] | 921 | /// The probability mass function of this distribusion is |
---|
| 922 | /// \f[ \frac{e^{-\lambda}\lambda^k}{k!} \f] |
---|
| 923 | /// \note The algorithm is taken from the book of Donald E. Knuth titled |
---|
| 924 | /// ''Seminumerical Algorithms'' (1969). Its running time is linear in the |
---|
| 925 | /// return value. |
---|
[209] | 926 | |
---|
[92] | 927 | int poisson(double lambda) |
---|
| 928 | { |
---|
| 929 | const double l = std::exp(-lambda); |
---|
| 930 | int k=0; |
---|
| 931 | double p = 1.0; |
---|
| 932 | do { |
---|
[209] | 933 | k++; |
---|
| 934 | p*=real<double>(); |
---|
[92] | 935 | } while (p>=l); |
---|
| 936 | return k-1; |
---|
[209] | 937 | } |
---|
| 938 | |
---|
[10] | 939 | ///@} |
---|
[209] | 940 | |
---|
[584] | 941 | ///\name Two Dimensional Distributions |
---|
[10] | 942 | /// |
---|
| 943 | ///@{ |
---|
[209] | 944 | |
---|
[23] | 945 | /// Uniform distribution on the full unit circle |
---|
[16] | 946 | |
---|
| 947 | /// Uniform distribution on the full unit circle. |
---|
| 948 | /// |
---|
[209] | 949 | dim2::Point<double> disc() |
---|
[10] | 950 | { |
---|
| 951 | double V1,V2; |
---|
| 952 | do { |
---|
[209] | 953 | V1=2*real<double>()-1; |
---|
| 954 | V2=2*real<double>()-1; |
---|
| 955 | |
---|
[10] | 956 | } while(V1*V1+V2*V2>=1); |
---|
| 957 | return dim2::Point<double>(V1,V2); |
---|
| 958 | } |
---|
[340] | 959 | /// A kind of two dimensional normal (Gauss) distribution |
---|
[10] | 960 | |
---|
| 961 | /// This function provides a turning symmetric two-dimensional distribution. |
---|
| 962 | /// Both coordinates are of standard normal distribution, but they are not |
---|
| 963 | /// independent. |
---|
| 964 | /// |
---|
| 965 | /// \note The coordinates are the two random variables provided by |
---|
| 966 | /// the Box-Muller method. |
---|
| 967 | dim2::Point<double> gauss2() |
---|
| 968 | { |
---|
| 969 | double V1,V2,S; |
---|
| 970 | do { |
---|
[209] | 971 | V1=2*real<double>()-1; |
---|
| 972 | V2=2*real<double>()-1; |
---|
| 973 | S=V1*V1+V2*V2; |
---|
[10] | 974 | } while(S>=1); |
---|
| 975 | double W=std::sqrt(-2*std::log(S)/S); |
---|
| 976 | return dim2::Point<double>(W*V1,W*V2); |
---|
| 977 | } |
---|
| 978 | /// A kind of two dimensional exponential distribution |
---|
| 979 | |
---|
| 980 | /// This function provides a turning symmetric two-dimensional distribution. |
---|
| 981 | /// The x-coordinate is of conditionally exponential distribution |
---|
[209] | 982 | /// with the condition that x is positive and y=0. If x is negative and |
---|
[10] | 983 | /// y=0 then, -x is of exponential distribution. The same is true for the |
---|
| 984 | /// y-coordinate. |
---|
[209] | 985 | dim2::Point<double> exponential2() |
---|
[10] | 986 | { |
---|
| 987 | double V1,V2,S; |
---|
| 988 | do { |
---|
[209] | 989 | V1=2*real<double>()-1; |
---|
| 990 | V2=2*real<double>()-1; |
---|
| 991 | S=V1*V1+V2*V2; |
---|
[10] | 992 | } while(S>=1); |
---|
| 993 | double W=-std::log(S)/S; |
---|
| 994 | return dim2::Point<double>(W*V1,W*V2); |
---|
| 995 | } |
---|
| 996 | |
---|
[209] | 997 | ///@} |
---|
[10] | 998 | }; |
---|
| 999 | |
---|
| 1000 | |
---|
| 1001 | extern Random rnd; |
---|
| 1002 | |
---|
| 1003 | } |
---|
| 1004 | |
---|
| 1005 | #endif |
---|