COIN-OR::LEMON - Graph Library

source: lemon-1.2/lemon/time_measure.h @ 373:5a3d689ea770

Last change on this file since 373:5a3d689ea770 was 314:2cc60866a0c9, checked in by Peter Kovacs <kpeter@…>, 16 years ago

Doc reorganization + improvements

  • Reorganize several tools (move them to other modules).
  • Add new module for map concepts.
  • Remove the doc of all tools in lemon/bits.
  • Improvements in groups.dox.
  • Fix some doxygen warnings.
File size: 14.1 KB
RevLine 
[209]1/* -*- mode: C++; indent-tabs-mode: nil; -*-
[119]2 *
[209]3 * This file is a part of LEMON, a generic C++ optimization library.
[119]4 *
5 * Copyright (C) 2003-2008
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 *
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
12 *
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
15 * purpose.
16 *
17 */
18
19#ifndef LEMON_TIME_MEASURE_H
20#define LEMON_TIME_MEASURE_H
21
22///\ingroup timecount
23///\file
24///\brief Tools for measuring cpu usage
25
[126]26#ifdef WIN32
[143]27#define WIN32_LEAN_AND_MEAN
28#define NOMINMAX
[126]29#include <windows.h>
30#include <cmath>
31#else
[119]32#include <sys/times.h>
[126]33#include <sys/time.h>
34#endif
[119]35
[143]36#include <string>
[119]37#include <fstream>
38#include <iostream>
39
40namespace lemon {
41
42  /// \addtogroup timecount
43  /// @{
44
45  /// A class to store (cpu)time instances.
46
47  /// This class stores five time values.
48  /// - a real time
49  /// - a user cpu time
50  /// - a system cpu time
51  /// - a user cpu time of children
52  /// - a system cpu time of children
53  ///
54  /// TimeStamp's can be added to or substracted from each other and
55  /// they can be pushed to a stream.
56  ///
57  /// In most cases, perhaps the \ref Timer or the \ref TimeReport
58  /// class is what you want to use instead.
59
60  class TimeStamp
61  {
[126]62    double utime;
63    double stime;
64    double cutime;
65    double cstime;
66    double rtime;
[209]67
68    void _reset() {
[126]69      utime = stime = cutime = cstime = rtime = 0;
[119]70    }
71
72  public:
73
74    ///Read the current time values of the process
75    void stamp()
76    {
[126]77#ifndef WIN32
[119]78      timeval tv;
[126]79      gettimeofday(&tv, 0);
80      rtime=tv.tv_sec+double(tv.tv_usec)/1e6;
81
82      tms ts;
83      double tck=sysconf(_SC_CLK_TCK);
84      times(&ts);
85      utime=ts.tms_utime/tck;
86      stime=ts.tms_stime/tck;
87      cutime=ts.tms_cutime/tck;
88      cstime=ts.tms_cstime/tck;
89#else
90      static const double ch = 4294967296.0e-7;
91      static const double cl = 1.0e-7;
92
93      FILETIME system;
94      GetSystemTimeAsFileTime(&system);
95      rtime = ch * system.dwHighDateTime + cl * system.dwLowDateTime;
96
97      FILETIME create, exit, kernel, user;
98      if (GetProcessTimes(GetCurrentProcess(),&create, &exit, &kernel, &user)) {
[209]99        utime = ch * user.dwHighDateTime + cl * user.dwLowDateTime;
100        stime = ch * kernel.dwHighDateTime + cl * kernel.dwLowDateTime;
101        cutime = 0;
102        cstime = 0;
[126]103      } else {
[209]104        rtime = 0;
105        utime = 0;
106        stime = 0;
107        cutime = 0;
108        cstime = 0;
[126]109      }
[209]110#endif
[119]111    }
[209]112
[119]113    /// Constructor initializing with zero
114    TimeStamp()
115    { _reset(); }
116    ///Constructor initializing with the current time values of the process
117    TimeStamp(void *) { stamp();}
[209]118
[119]119    ///Set every time value to zero
120    TimeStamp &reset() {_reset();return *this;}
121
122    ///\e
123    TimeStamp &operator+=(const TimeStamp &b)
124    {
[126]125      utime+=b.utime;
126      stime+=b.stime;
127      cutime+=b.cutime;
128      cstime+=b.cstime;
129      rtime+=b.rtime;
[119]130      return *this;
131    }
132    ///\e
133    TimeStamp operator+(const TimeStamp &b) const
134    {
135      TimeStamp t(*this);
136      return t+=b;
137    }
138    ///\e
139    TimeStamp &operator-=(const TimeStamp &b)
140    {
[126]141      utime-=b.utime;
142      stime-=b.stime;
143      cutime-=b.cutime;
144      cstime-=b.cstime;
145      rtime-=b.rtime;
[119]146      return *this;
147    }
148    ///\e
149    TimeStamp operator-(const TimeStamp &b) const
150    {
151      TimeStamp t(*this);
152      return t-=b;
153    }
154    ///\e
155    TimeStamp &operator*=(double b)
156    {
[126]157      utime*=b;
158      stime*=b;
159      cutime*=b;
160      cstime*=b;
161      rtime*=b;
[119]162      return *this;
163    }
164    ///\e
165    TimeStamp operator*(double b) const
166    {
167      TimeStamp t(*this);
168      return t*=b;
169    }
170    friend TimeStamp operator*(double b,const TimeStamp &t);
171    ///\e
172    TimeStamp &operator/=(double b)
173    {
[126]174      utime/=b;
175      stime/=b;
176      cutime/=b;
177      cstime/=b;
178      rtime/=b;
[119]179      return *this;
180    }
181    ///\e
182    TimeStamp operator/(double b) const
183    {
184      TimeStamp t(*this);
185      return t/=b;
186    }
187    ///The time ellapsed since the last call of stamp()
188    TimeStamp ellapsed() const
189    {
190      TimeStamp t(NULL);
191      return t-*this;
192    }
[209]193
[119]194    friend std::ostream& operator<<(std::ostream& os,const TimeStamp &t);
[209]195
[119]196    ///Gives back the user time of the process
197    double userTime() const
198    {
[126]199      return utime;
[119]200    }
201    ///Gives back the system time of the process
202    double systemTime() const
203    {
[126]204      return stime;
[119]205    }
206    ///Gives back the user time of the process' children
[126]207
[209]208    ///\note On <tt>WIN32</tt> platform this value is not calculated.
[126]209    ///
[119]210    double cUserTime() const
211    {
[126]212      return cutime;
[119]213    }
214    ///Gives back the user time of the process' children
[126]215
[209]216    ///\note On <tt>WIN32</tt> platform this value is not calculated.
[126]217    ///
[119]218    double cSystemTime() const
219    {
[126]220      return cstime;
[119]221    }
222    ///Gives back the real time
[126]223    double realTime() const {return rtime;}
[119]224  };
225
[209]226  TimeStamp operator*(double b,const TimeStamp &t)
[119]227  {
228    return t*b;
229  }
[209]230
[119]231  ///Prints the time counters
232
233  ///Prints the time counters in the following form:
234  ///
235  /// <tt>u: XX.XXs s: XX.XXs cu: XX.XXs cs: XX.XXs real: XX.XXs</tt>
236  ///
237  /// where the values are the
238  /// \li \c u: user cpu time,
239  /// \li \c s: system cpu time,
240  /// \li \c cu: user cpu time of children,
241  /// \li \c cs: system cpu time of children,
242  /// \li \c real: real time.
243  /// \relates TimeStamp
[126]244  /// \note On <tt>WIN32</tt> platform the cummulative values are not
245  /// calculated.
[119]246  inline std::ostream& operator<<(std::ostream& os,const TimeStamp &t)
247  {
[126]248    os << "u: " << t.userTime() <<
249      "s, s: " << t.systemTime() <<
250      "s, cu: " << t.cUserTime() <<
251      "s, cs: " << t.cSystemTime() <<
[119]252      "s, real: " << t.realTime() << "s";
253    return os;
254  }
255
256  ///Class for measuring the cpu time and real time usage of the process
257
258  ///Class for measuring the cpu time and real time usage of the process.
259  ///It is quite easy-to-use, here is a short example.
260  ///\code
261  /// #include<lemon/time_measure.h>
262  /// #include<iostream>
263  ///
264  /// int main()
265  /// {
266  ///
267  ///   ...
268  ///
269  ///   Timer t;
270  ///   doSomething();
271  ///   std::cout << t << '\n';
272  ///   t.restart();
273  ///   doSomethingElse();
274  ///   std::cout << t << '\n';
275  ///
276  ///   ...
277  ///
278  /// }
279  ///\endcode
280  ///
281  ///The \ref Timer can also be \ref stop() "stopped" and
282  ///\ref start() "started" again, so it is possible to compute collected
283  ///running times.
284  ///
285  ///\warning Depending on the operation system and its actual configuration
286  ///the time counters have a certain (10ms on a typical Linux system)
287  ///granularity.
288  ///Therefore this tool is not appropriate to measure very short times.
289  ///Also, if you start and stop the timer very frequently, it could lead to
290  ///distorted results.
291  ///
292  ///\note If you want to measure the running time of the execution of a certain
293  ///function, consider the usage of \ref TimeReport instead.
294  ///
295  ///\sa TimeReport
296  class Timer
297  {
298    int _running; //Timer is running iff _running>0; (_running>=0 always holds)
299    TimeStamp start_time; //This is the relativ start-time if the timer
300                          //is _running, the collected _running time otherwise.
[209]301
[119]302    void _reset() {if(_running) start_time.stamp(); else start_time.reset();}
[209]303
304  public:
[119]305    ///Constructor.
306
307    ///\param run indicates whether or not the timer starts immediately.
308    ///
309    Timer(bool run=true) :_running(run) {_reset();}
310
311    ///\name Control the state of the timer
312    ///Basically a Timer can be either running or stopped,
313    ///but it provides a bit finer control on the execution.
[314]314    ///The \ref lemon::Timer "Timer" also counts the number of
315    ///\ref lemon::Timer::start() "start()" executions, and it stops
[313]316    ///only after the same amount (or more) \ref lemon::Timer::stop()
317    ///"stop()"s. This can be useful e.g. to compute the running time
[119]318    ///of recursive functions.
319
320    ///@{
321
322    ///Reset and stop the time counters
323
324    ///This function resets and stops the time counters
325    ///\sa restart()
326    void reset()
327    {
328      _running=0;
329      _reset();
330    }
331
332    ///Start the time counters
[209]333
[119]334    ///This function starts the time counters.
335    ///
336    ///If the timer is started more than ones, it will remain running
337    ///until the same amount of \ref stop() is called.
338    ///\sa stop()
[209]339    void start()
[119]340    {
341      if(_running) _running++;
342      else {
[209]343        _running=1;
344        TimeStamp t;
345        t.stamp();
346        start_time=t-start_time;
[119]347      }
348    }
349
[209]350
[119]351    ///Stop the time counters
352
353    ///This function stops the time counters. If start() was executed more than
354    ///once, then the same number of stop() execution is necessary the really
355    ///stop the timer.
[209]356    ///
[119]357    ///\sa halt()
358    ///\sa start()
359    ///\sa restart()
360    ///\sa reset()
361
[209]362    void stop()
[119]363    {
364      if(_running && !--_running) {
[209]365        TimeStamp t;
366        t.stamp();
367        start_time=t-start_time;
[119]368      }
369    }
370
371    ///Halt (i.e stop immediately) the time counters
372
[120]373    ///This function stops immediately the time counters, i.e. <tt>t.halt()</tt>
[119]374    ///is a faster
375    ///equivalent of the following.
376    ///\code
377    ///  while(t.running()) t.stop()
378    ///\endcode
379    ///
380    ///
381    ///\sa stop()
382    ///\sa restart()
383    ///\sa reset()
384
[209]385    void halt()
[119]386    {
387      if(_running) {
[209]388        _running=0;
389        TimeStamp t;
390        t.stamp();
391        start_time=t-start_time;
[119]392      }
393    }
394
395    ///Returns the running state of the timer
396
397    ///This function returns the number of stop() exections that is
398    ///necessary to really stop the timer.
399    ///For example the timer
400    ///is running if and only if the return value is \c true
401    ///(i.e. greater than
402    ///zero).
403    int running()  { return _running; }
[209]404
405
[119]406    ///Restart the time counters
407
408    ///This function is a shorthand for
409    ///a reset() and a start() calls.
410    ///
[209]411    void restart()
[119]412    {
413      reset();
414      start();
415    }
[209]416
[119]417    ///@}
418
419    ///\name Query Functions for the ellapsed time
420
421    ///@{
422
423    ///Gives back the ellapsed user time of the process
424    double userTime() const
425    {
426      return operator TimeStamp().userTime();
427    }
428    ///Gives back the ellapsed system time of the process
429    double systemTime() const
430    {
431      return operator TimeStamp().systemTime();
432    }
433    ///Gives back the ellapsed user time of the process' children
[126]434
[209]435    ///\note On <tt>WIN32</tt> platform this value is not calculated.
[126]436    ///
[119]437    double cUserTime() const
438    {
439      return operator TimeStamp().cUserTime();
440    }
441    ///Gives back the ellapsed user time of the process' children
[126]442
[209]443    ///\note On <tt>WIN32</tt> platform this value is not calculated.
[126]444    ///
[119]445    double cSystemTime() const
446    {
447      return operator TimeStamp().cSystemTime();
448    }
449    ///Gives back the ellapsed real time
450    double realTime() const
451    {
452      return operator TimeStamp().realTime();
453    }
454    ///Computes the ellapsed time
455
456    ///This conversion computes the ellapsed time, therefore you can print
457    ///the ellapsed time like this.
458    ///\code
459    ///  Timer t;
460    ///  doSomething();
461    ///  std::cout << t << '\n';
462    ///\endcode
463    operator TimeStamp () const
464    {
465      TimeStamp t;
466      t.stamp();
467      return _running?t-start_time:start_time;
468    }
469
470
471    ///@}
472  };
473
[313]474  ///Same as Timer but prints a report on destruction.
[119]475
476  ///Same as \ref Timer but prints a report on destruction.
477  ///This example shows its usage.
478  ///\code
479  ///  void myAlg(ListGraph &g,int n)
480  ///  {
481  ///    TimeReport tr("Running time of myAlg: ");
482  ///    ... //Here comes the algorithm
483  ///  }
484  ///\endcode
485  ///
486  ///\sa Timer
487  ///\sa NoTimeReport
[209]488  class TimeReport : public Timer
[119]489  {
490    std::string _title;
491    std::ostream &_os;
492  public:
[313]493    ///Constructor
[119]494
[313]495    ///Constructor.
[119]496    ///\param title This text will be printed before the ellapsed time.
497    ///\param os The stream to print the report to.
498    ///\param run Sets whether the timer should start immediately.
[209]499    TimeReport(std::string title,std::ostream &os=std::cerr,bool run=true)
[119]500      : Timer(run), _title(title), _os(os){}
[313]501    ///Destructor that prints the ellapsed time
[209]502    ~TimeReport()
[119]503    {
504      _os << _title << *this << std::endl;
505    }
506  };
[209]507
[313]508  ///'Do nothing' version of TimeReport
[119]509
510  ///\sa TimeReport
511  ///
512  class NoTimeReport
513  {
514  public:
515    ///\e
516    NoTimeReport(std::string,std::ostream &,bool) {}
517    ///\e
518    NoTimeReport(std::string,std::ostream &) {}
519    ///\e
520    NoTimeReport(std::string) {}
521    ///\e Do nothing.
522    ~NoTimeReport() {}
523
524    operator TimeStamp () const { return TimeStamp(); }
525    void reset() {}
526    void start() {}
527    void stop() {}
[209]528    void halt() {}
[119]529    int running() { return 0; }
530    void restart() {}
531    double userTime() const { return 0; }
532    double systemTime() const { return 0; }
533    double cUserTime() const { return 0; }
534    double cSystemTime() const { return 0; }
535    double realTime() const { return 0; }
536  };
[209]537
[119]538  ///Tool to measure the running time more exactly.
[209]539
[119]540  ///This function calls \c f several times and returns the average
541  ///running time. The number of the executions will be choosen in such a way
542  ///that the full real running time will be roughly between \c min_time
543  ///and <tt>2*min_time</tt>.
544  ///\param f the function object to be measured.
545  ///\param min_time the minimum total running time.
546  ///\retval num if it is not \c NULL, then the actual
547  ///        number of execution of \c f will be written into <tt>*num</tt>.
548  ///\retval full_time if it is not \c NULL, then the actual
549  ///        total running time will be written into <tt>*full_time</tt>.
550  ///\return The average running time of \c f.
[209]551
[119]552  template<class F>
553  TimeStamp runningTimeTest(F f,double min_time=10,unsigned int *num = NULL,
554                            TimeStamp *full_time=NULL)
555  {
556    TimeStamp full;
557    unsigned int total=0;
558    Timer t;
559    for(unsigned int tn=1;tn <= 1U<<31 && full.realTime()<=min_time; tn*=2) {
560      for(;total<tn;total++) f();
561      full=t;
562    }
563    if(num) *num=total;
564    if(full_time) *full_time=full;
565    return full/total;
566  }
[209]567
568  /// @}
[119]569
570
571} //namespace lemon
572
573#endif //LEMON_TIME_MEASURE_H
Note: See TracBrowser for help on using the repository browser.