/* -*- mode: C++; indent-tabs-mode: nil; -*- * * This file is a part of LEMON, a generic C++ optimization library. * * Copyright (C) 2003-2010 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport * (Egervary Research Group on Combinatorial Optimization, EGRES). * * Permission to use, modify and distribute this software is granted * provided that this copyright notice appears in all copies. For * precise terms see the accompanying LICENSE file. * * This software is provided "AS IS" with no warranty of any kind, * express or implied, and with no claim as to its suitability for any * purpose. * */ #include #include #include #include "test_tools.h" using namespace lemon; int main() { typedef ListDigraph Digraph; typedef Undirector Graph; { Digraph d; Digraph::NodeMap order(d); Graph g(d); check(stronglyConnected(d), "The empty digraph is strongly connected"); check(countStronglyConnectedComponents(d) == 0, "The empty digraph has 0 strongly connected component"); check(connected(g), "The empty graph is connected"); check(countConnectedComponents(g) == 0, "The empty graph has 0 connected component"); check(biNodeConnected(g), "The empty graph is bi-node-connected"); check(countBiNodeConnectedComponents(g) == 0, "The empty graph has 0 bi-node-connected component"); check(biEdgeConnected(g), "The empty graph is bi-edge-connected"); check(countBiEdgeConnectedComponents(g) == 0, "The empty graph has 0 bi-edge-connected component"); check(dag(d), "The empty digraph is DAG."); check(checkedTopologicalSort(d, order), "The empty digraph is DAG."); check(loopFree(d), "The empty digraph is loop-free."); check(parallelFree(d), "The empty digraph is parallel-free."); check(simpleGraph(d), "The empty digraph is simple."); check(acyclic(g), "The empty graph is acyclic."); check(tree(g), "The empty graph is tree."); check(bipartite(g), "The empty graph is bipartite."); check(loopFree(g), "The empty graph is loop-free."); check(parallelFree(g), "The empty graph is parallel-free."); check(simpleGraph(g), "The empty graph is simple."); } { Digraph d; Digraph::NodeMap order(d); Graph g(d); Digraph::Node n = d.addNode(); check(stronglyConnected(d), "This digraph is strongly connected"); check(countStronglyConnectedComponents(d) == 1, "This digraph has 1 strongly connected component"); check(connected(g), "This graph is connected"); check(countConnectedComponents(g) == 1, "This graph has 1 connected component"); check(biNodeConnected(g), "This graph is bi-node-connected"); check(countBiNodeConnectedComponents(g) == 0, "This graph has 0 bi-node-connected component"); check(biEdgeConnected(g), "This graph is bi-edge-connected"); check(countBiEdgeConnectedComponents(g) == 1, "This graph has 1 bi-edge-connected component"); check(dag(d), "This digraph is DAG."); check(checkedTopologicalSort(d, order), "This digraph is DAG."); check(loopFree(d), "This digraph is loop-free."); check(parallelFree(d), "This digraph is parallel-free."); check(simpleGraph(d), "This digraph is simple."); check(acyclic(g), "This graph is acyclic."); check(tree(g), "This graph is tree."); check(bipartite(g), "This graph is bipartite."); check(loopFree(g), "This graph is loop-free."); check(parallelFree(g), "This graph is parallel-free."); check(simpleGraph(g), "This graph is simple."); } { Digraph d; Digraph::NodeMap order(d); Graph g(d); Digraph::Node n1 = d.addNode(); Digraph::Node n2 = d.addNode(); Digraph::Node n3 = d.addNode(); Digraph::Node n4 = d.addNode(); Digraph::Node n5 = d.addNode(); Digraph::Node n6 = d.addNode(); d.addArc(n1, n3); d.addArc(n3, n2); d.addArc(n2, n1); d.addArc(n4, n2); d.addArc(n4, n3); d.addArc(n5, n6); d.addArc(n6, n5); check(!stronglyConnected(d), "This digraph is not strongly connected"); check(countStronglyConnectedComponents(d) == 3, "This digraph has 3 strongly connected components"); check(!connected(g), "This graph is not connected"); check(countConnectedComponents(g) == 2, "This graph has 2 connected components"); check(!dag(d), "This digraph is not DAG."); check(!checkedTopologicalSort(d, order), "This digraph is not DAG."); check(loopFree(d), "This digraph is loop-free."); check(parallelFree(d), "This digraph is parallel-free."); check(simpleGraph(d), "This digraph is simple."); check(!acyclic(g), "This graph is not acyclic."); check(!tree(g), "This graph is not tree."); check(!bipartite(g), "This graph is not bipartite."); check(loopFree(g), "This graph is loop-free."); check(!parallelFree(g), "This graph is not parallel-free."); check(!simpleGraph(g), "This graph is not simple."); d.addArc(n3, n3); check(!loopFree(d), "This digraph is not loop-free."); check(!loopFree(g), "This graph is not loop-free."); check(!simpleGraph(d), "This digraph is not simple."); d.addArc(n3, n2); check(!parallelFree(d), "This digraph is not parallel-free."); } { Digraph d; Digraph::ArcMap cutarcs(d, false); Graph g(d); Digraph::Node n1 = d.addNode(); Digraph::Node n2 = d.addNode(); Digraph::Node n3 = d.addNode(); Digraph::Node n4 = d.addNode(); Digraph::Node n5 = d.addNode(); Digraph::Node n6 = d.addNode(); Digraph::Node n7 = d.addNode(); Digraph::Node n8 = d.addNode(); d.addArc(n1, n2); d.addArc(n5, n1); d.addArc(n2, n8); d.addArc(n8, n5); d.addArc(n6, n4); d.addArc(n4, n6); d.addArc(n2, n5); d.addArc(n1, n8); d.addArc(n6, n7); d.addArc(n7, n6); check(!stronglyConnected(d), "This digraph is not strongly connected"); check(countStronglyConnectedComponents(d) == 3, "This digraph has 3 strongly connected components"); Digraph::NodeMap scomp1(d); check(stronglyConnectedComponents(d, scomp1) == 3, "This digraph has 3 strongly connected components"); check(scomp1[n1] != scomp1[n3] && scomp1[n1] != scomp1[n4] && scomp1[n3] != scomp1[n4], "Wrong stronglyConnectedComponents()"); check(scomp1[n1] == scomp1[n2] && scomp1[n1] == scomp1[n5] && scomp1[n1] == scomp1[n8], "Wrong stronglyConnectedComponents()"); check(scomp1[n4] == scomp1[n6] && scomp1[n4] == scomp1[n7], "Wrong stronglyConnectedComponents()"); Digraph::ArcMap scut1(d, false); check(stronglyConnectedCutArcs(d, scut1) == 0, "This digraph has 0 strongly connected cut arc."); for (Digraph::ArcIt a(d); a != INVALID; ++a) { check(!scut1[a], "Wrong stronglyConnectedCutArcs()"); } check(!connected(g), "This graph is not connected"); check(countConnectedComponents(g) == 3, "This graph has 3 connected components"); Graph::NodeMap comp(g); check(connectedComponents(g, comp) == 3, "This graph has 3 connected components"); check(comp[n1] != comp[n3] && comp[n1] != comp[n4] && comp[n3] != comp[n4], "Wrong connectedComponents()"); check(comp[n1] == comp[n2] && comp[n1] == comp[n5] && comp[n1] == comp[n8], "Wrong connectedComponents()"); check(comp[n4] == comp[n6] && comp[n4] == comp[n7], "Wrong connectedComponents()"); cutarcs[d.addArc(n3, n1)] = true; cutarcs[d.addArc(n3, n5)] = true; cutarcs[d.addArc(n3, n8)] = true; cutarcs[d.addArc(n8, n6)] = true; cutarcs[d.addArc(n8, n7)] = true; check(!stronglyConnected(d), "This digraph is not strongly connected"); check(countStronglyConnectedComponents(d) == 3, "This digraph has 3 strongly connected components"); Digraph::NodeMap scomp2(d); check(stronglyConnectedComponents(d, scomp2) == 3, "This digraph has 3 strongly connected components"); check(scomp2[n3] == 0, "Wrong stronglyConnectedComponents()"); check(scomp2[n1] == 1 && scomp2[n2] == 1 && scomp2[n5] == 1 && scomp2[n8] == 1, "Wrong stronglyConnectedComponents()"); check(scomp2[n4] == 2 && scomp2[n6] == 2 && scomp2[n7] == 2, "Wrong stronglyConnectedComponents()"); Digraph::ArcMap scut2(d, false); check(stronglyConnectedCutArcs(d, scut2) == 5, "This digraph has 5 strongly connected cut arcs."); for (Digraph::ArcIt a(d); a != INVALID; ++a) { check(scut2[a] == cutarcs[a], "Wrong stronglyConnectedCutArcs()"); } } { // DAG example for topological sort from the book New Algorithms // (T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein) Digraph d; Digraph::NodeMap order(d); Digraph::Node belt = d.addNode(); Digraph::Node trousers = d.addNode(); Digraph::Node necktie = d.addNode(); Digraph::Node coat = d.addNode(); Digraph::Node socks = d.addNode(); Digraph::Node shirt = d.addNode(); Digraph::Node shoe = d.addNode(); Digraph::Node watch = d.addNode(); Digraph::Node pants = d.addNode(); d.addArc(socks, shoe); d.addArc(pants, shoe); d.addArc(pants, trousers); d.addArc(trousers, shoe); d.addArc(trousers, belt); d.addArc(belt, coat); d.addArc(shirt, belt); d.addArc(shirt, necktie); d.addArc(necktie, coat); check(dag(d), "This digraph is DAG."); topologicalSort(d, order); for (Digraph::ArcIt a(d); a != INVALID; ++a) { check(order[d.source(a)] < order[d.target(a)], "Wrong topologicalSort()"); } } { ListGraph g; ListGraph::NodeMap map(g); ListGraph::Node n1 = g.addNode(); ListGraph::Node n2 = g.addNode(); ListGraph::Node n3 = g.addNode(); ListGraph::Node n4 = g.addNode(); ListGraph::Node n5 = g.addNode(); ListGraph::Node n6 = g.addNode(); ListGraph::Node n7 = g.addNode(); g.addEdge(n1, n3); g.addEdge(n1, n4); g.addEdge(n2, n5); g.addEdge(n3, n6); g.addEdge(n4, n6); g.addEdge(n4, n7); g.addEdge(n5, n7); check(bipartite(g), "This graph is bipartite"); check(bipartitePartitions(g, map), "This graph is bipartite"); check(map[n1] == map[n2] && map[n1] == map[n6] && map[n1] == map[n7], "Wrong bipartitePartitions()"); check(map[n3] == map[n4] && map[n3] == map[n5], "Wrong bipartitePartitions()"); } return 0; }