/* -*- mode: C++; indent-tabs-mode: nil; -*- * * This file is a part of LEMON, a generic C++ optimization library. * * Copyright (C) 2003-2009 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport * (Egervary Research Group on Combinatorial Optimization, EGRES). * * Permission to use, modify and distribute this software is granted * provided that this copyright notice appears in all copies. For * precise terms see the accompanying LICENSE file. * * This software is provided "AS IS" with no warranty of any kind, * express or implied, and with no claim as to its suitability for any * purpose. * */ #include #include #include #include #include #include #include #include #include "test_tools.h" using namespace lemon; char test_lgf[] = "@nodes\n" "label sup1 sup2 sup3 sup4 sup5 sup6\n" " 1 20 27 0 30 20 30\n" " 2 -4 0 0 0 -8 -3\n" " 3 0 0 0 0 0 0\n" " 4 0 0 0 0 0 0\n" " 5 9 0 0 0 6 11\n" " 6 -6 0 0 0 -5 -6\n" " 7 0 0 0 0 0 0\n" " 8 0 0 0 0 0 3\n" " 9 3 0 0 0 0 0\n" " 10 -2 0 0 0 -7 -2\n" " 11 0 0 0 0 -10 0\n" " 12 -20 -27 0 -30 -30 -20\n" "\n" "@arcs\n" " cost cap low1 low2 low3\n" " 1 2 70 11 0 8 8\n" " 1 3 150 3 0 1 0\n" " 1 4 80 15 0 2 2\n" " 2 8 80 12 0 0 0\n" " 3 5 140 5 0 3 1\n" " 4 6 60 10 0 1 0\n" " 4 7 80 2 0 0 0\n" " 4 8 110 3 0 0 0\n" " 5 7 60 14 0 0 0\n" " 5 11 120 12 0 0 0\n" " 6 3 0 3 0 0 0\n" " 6 9 140 4 0 0 0\n" " 6 10 90 8 0 0 0\n" " 7 1 30 5 0 0 -5\n" " 8 12 60 16 0 4 3\n" " 9 12 50 6 0 0 0\n" "10 12 70 13 0 5 2\n" "10 2 100 7 0 0 0\n" "10 7 60 10 0 0 -3\n" "11 10 20 14 0 6 -20\n" "12 11 30 10 0 0 -10\n" "\n" "@attributes\n" "source 1\n" "target 12\n"; enum SupplyType { EQ, GEQ, LEQ }; // Check the interface of an MCF algorithm template class McfClassConcept { public: template struct Constraints { void constraints() { checkConcept(); MCF mcf(g); b = mcf.reset() .lowerMap(lower) .upperMap(upper) .costMap(cost) .supplyMap(sup) .stSupply(n, n, k) .flowMap(flow) .potentialMap(pot) .run(); const MCF& const_mcf = mcf; const typename MCF::FlowMap &fm = const_mcf.flowMap(); const typename MCF::PotentialMap &pm = const_mcf.potentialMap(); c = const_mcf.totalCost(); double x = const_mcf.template totalCost(); v = const_mcf.flow(a); c = const_mcf.potential(n); v = const_mcf.INF; ignore_unused_variable_warning(fm); ignore_unused_variable_warning(pm); ignore_unused_variable_warning(x); } typedef typename GR::Node Node; typedef typename GR::Arc Arc; typedef concepts::ReadMap NM; typedef concepts::ReadMap FAM; typedef concepts::ReadMap CAM; const GR &g; const FAM &lower; const FAM &upper; const CAM &cost; const NM ⊃ const Node &n; const Arc &a; const Flow &k; Flow v; Cost c; bool b; typename MCF::FlowMap &flow; typename MCF::PotentialMap &pot; }; }; // Check the feasibility of the given flow (primal soluiton) template < typename GR, typename LM, typename UM, typename SM, typename FM > bool checkFlow( const GR& gr, const LM& lower, const UM& upper, const SM& supply, const FM& flow, SupplyType type = EQ ) { TEMPLATE_DIGRAPH_TYPEDEFS(GR); for (ArcIt e(gr); e != INVALID; ++e) { if (flow[e] < lower[e] || flow[e] > upper[e]) return false; } for (NodeIt n(gr); n != INVALID; ++n) { typename SM::Value sum = 0; for (OutArcIt e(gr, n); e != INVALID; ++e) sum += flow[e]; for (InArcIt e(gr, n); e != INVALID; ++e) sum -= flow[e]; bool b = (type == EQ && sum == supply[n]) || (type == GEQ && sum >= supply[n]) || (type == LEQ && sum <= supply[n]); if (!b) return false; } return true; } // Check the feasibility of the given potentials (dual soluiton) // using the "Complementary Slackness" optimality condition template < typename GR, typename LM, typename UM, typename CM, typename SM, typename FM, typename PM > bool checkPotential( const GR& gr, const LM& lower, const UM& upper, const CM& cost, const SM& supply, const FM& flow, const PM& pi ) { TEMPLATE_DIGRAPH_TYPEDEFS(GR); bool opt = true; for (ArcIt e(gr); opt && e != INVALID; ++e) { typename CM::Value red_cost = cost[e] + pi[gr.source(e)] - pi[gr.target(e)]; opt = red_cost == 0 || (red_cost > 0 && flow[e] == lower[e]) || (red_cost < 0 && flow[e] == upper[e]); } for (NodeIt n(gr); opt && n != INVALID; ++n) { typename SM::Value sum = 0; for (OutArcIt e(gr, n); e != INVALID; ++e) sum += flow[e]; for (InArcIt e(gr, n); e != INVALID; ++e) sum -= flow[e]; opt = (sum == supply[n]) || (pi[n] == 0); } return opt; } // Run a minimum cost flow algorithm and check the results template < typename MCF, typename GR, typename LM, typename UM, typename CM, typename SM, typename PT > void checkMcf( const MCF& mcf, PT mcf_result, const GR& gr, const LM& lower, const UM& upper, const CM& cost, const SM& supply, PT result, bool optimal, typename CM::Value total, const std::string &test_id = "", SupplyType type = EQ ) { check(mcf_result == result, "Wrong result " + test_id); if (optimal) { check(checkFlow(gr, lower, upper, supply, mcf.flowMap(), type), "The flow is not feasible " + test_id); check(mcf.totalCost() == total, "The flow is not optimal " + test_id); check(checkPotential(gr, lower, upper, cost, supply, mcf.flowMap(), mcf.potentialMap()), "Wrong potentials " + test_id); } } int main() { // Check the interfaces { typedef int Flow; typedef int Cost; typedef concepts::Digraph GR; checkConcept< McfClassConcept, NetworkSimplex >(); } // Run various MCF tests typedef ListDigraph Digraph; DIGRAPH_TYPEDEFS(ListDigraph); // Read the test digraph Digraph gr; Digraph::ArcMap c(gr), l1(gr), l2(gr), l3(gr), u(gr); Digraph::NodeMap s1(gr), s2(gr), s3(gr), s4(gr), s5(gr), s6(gr); ConstMap cc(1), cu(std::numeric_limits::max()); Node v, w; std::istringstream input(test_lgf); DigraphReader(gr, input) .arcMap("cost", c) .arcMap("cap", u) .arcMap("low1", l1) .arcMap("low2", l2) .arcMap("low3", l3) .nodeMap("sup1", s1) .nodeMap("sup2", s2) .nodeMap("sup3", s3) .nodeMap("sup4", s4) .nodeMap("sup5", s5) .nodeMap("sup6", s6) .node("source", v) .node("target", w) .run(); // Build a test digraph for testing negative costs Digraph ngr; Node n1 = ngr.addNode(); Node n2 = ngr.addNode(); Node n3 = ngr.addNode(); Node n4 = ngr.addNode(); Node n5 = ngr.addNode(); Node n6 = ngr.addNode(); Node n7 = ngr.addNode(); Arc a1 = ngr.addArc(n1, n2); Arc a2 = ngr.addArc(n1, n3); Arc a3 = ngr.addArc(n2, n4); Arc a4 = ngr.addArc(n3, n4); Arc a5 = ngr.addArc(n3, n2); Arc a6 = ngr.addArc(n5, n3); Arc a7 = ngr.addArc(n5, n6); Arc a8 = ngr.addArc(n6, n7); Arc a9 = ngr.addArc(n7, n5); Digraph::ArcMap nc(ngr), nl1(ngr, 0), nl2(ngr, 0); ConstMap nu1(std::numeric_limits::max()), nu2(5000); Digraph::NodeMap ns(ngr, 0); nl2[a7] = 1000; nl2[a8] = -1000; ns[n1] = 100; ns[n4] = -100; nc[a1] = 100; nc[a2] = 30; nc[a3] = 20; nc[a4] = 80; nc[a5] = 50; nc[a6] = 10; nc[a7] = 80; nc[a8] = 30; nc[a9] = -120; // A. Test NetworkSimplex with the default pivot rule { NetworkSimplex mcf(gr); // Check the equality form mcf.upperMap(u).costMap(c); checkMcf(mcf, mcf.supplyMap(s1).run(), gr, l1, u, c, s1, mcf.OPTIMAL, true, 5240, "#A1"); checkMcf(mcf, mcf.stSupply(v, w, 27).run(), gr, l1, u, c, s2, mcf.OPTIMAL, true, 7620, "#A2"); mcf.lowerMap(l2); checkMcf(mcf, mcf.supplyMap(s1).run(), gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#A3"); checkMcf(mcf, mcf.stSupply(v, w, 27).run(), gr, l2, u, c, s2, mcf.OPTIMAL, true, 8010, "#A4"); mcf.reset(); checkMcf(mcf, mcf.supplyMap(s1).run(), gr, l1, cu, cc, s1, mcf.OPTIMAL, true, 74, "#A5"); checkMcf(mcf, mcf.lowerMap(l2).stSupply(v, w, 27).run(), gr, l2, cu, cc, s2, mcf.OPTIMAL, true, 94, "#A6"); mcf.reset(); checkMcf(mcf, mcf.run(), gr, l1, cu, cc, s3, mcf.OPTIMAL, true, 0, "#A7"); checkMcf(mcf, mcf.lowerMap(l2).upperMap(u).run(), gr, l2, u, cc, s3, mcf.INFEASIBLE, false, 0, "#A8"); mcf.reset().lowerMap(l3).upperMap(u).costMap(c).supplyMap(s4); checkMcf(mcf, mcf.run(), gr, l3, u, c, s4, mcf.OPTIMAL, true, 6360, "#A9"); // Check the GEQ form mcf.reset().upperMap(u).costMap(c).supplyMap(s5); checkMcf(mcf, mcf.run(), gr, l1, u, c, s5, mcf.OPTIMAL, true, 3530, "#A10", GEQ); mcf.supplyType(mcf.GEQ); checkMcf(mcf, mcf.lowerMap(l2).run(), gr, l2, u, c, s5, mcf.OPTIMAL, true, 4540, "#A11", GEQ); mcf.supplyType(mcf.CARRY_SUPPLIES).supplyMap(s6); checkMcf(mcf, mcf.run(), gr, l2, u, c, s6, mcf.INFEASIBLE, false, 0, "#A12", GEQ); // Check the LEQ form mcf.reset().supplyType(mcf.LEQ); mcf.upperMap(u).costMap(c).supplyMap(s6); checkMcf(mcf, mcf.run(), gr, l1, u, c, s6, mcf.OPTIMAL, true, 5080, "#A13", LEQ); checkMcf(mcf, mcf.lowerMap(l2).run(), gr, l2, u, c, s6, mcf.OPTIMAL, true, 5930, "#A14", LEQ); mcf.supplyType(mcf.SATISFY_DEMANDS).supplyMap(s5); checkMcf(mcf, mcf.run(), gr, l2, u, c, s5, mcf.INFEASIBLE, false, 0, "#A15", LEQ); // Check negative costs NetworkSimplex nmcf(ngr); nmcf.lowerMap(nl1).costMap(nc).supplyMap(ns); checkMcf(nmcf, nmcf.run(), ngr, nl1, nu1, nc, ns, nmcf.UNBOUNDED, false, 0, "#A16"); checkMcf(nmcf, nmcf.upperMap(nu2).run(), ngr, nl1, nu2, nc, ns, nmcf.OPTIMAL, true, -40000, "#A17"); nmcf.reset().lowerMap(nl2).costMap(nc).supplyMap(ns); checkMcf(nmcf, nmcf.run(), ngr, nl2, nu1, nc, ns, nmcf.UNBOUNDED, false, 0, "#A18"); } // B. Test NetworkSimplex with each pivot rule { NetworkSimplex mcf(gr); mcf.supplyMap(s1).costMap(c).upperMap(u).lowerMap(l2); checkMcf(mcf, mcf.run(NetworkSimplex::FIRST_ELIGIBLE), gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B1"); checkMcf(mcf, mcf.run(NetworkSimplex::BEST_ELIGIBLE), gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B2"); checkMcf(mcf, mcf.run(NetworkSimplex::BLOCK_SEARCH), gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B3"); checkMcf(mcf, mcf.run(NetworkSimplex::CANDIDATE_LIST), gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B4"); checkMcf(mcf, mcf.run(NetworkSimplex::ALTERING_LIST), gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B5"); } return 0; }