/* -*- mode: C++; indent-tabs-mode: nil; -*- * * This file is a part of LEMON, a generic C++ optimization library. * * Copyright (C) 2003-2009 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport * (Egervary Research Group on Combinatorial Optimization, EGRES). * * Permission to use, modify and distribute this software is granted * provided that this copyright notice appears in all copies. For * precise terms see the accompanying LICENSE file. * * This software is provided "AS IS" with no warranty of any kind, * express or implied, and with no claim as to its suitability for any * purpose. * */ #include #include #include #include #include #include #include #include #include "test_tools.h" using namespace lemon; char test_lgf[] = "@nodes\n" "label sup1 sup2 sup3 sup4 sup5 sup6\n" " 1 20 27 0 30 20 30\n" " 2 -4 0 0 0 -8 -3\n" " 3 0 0 0 0 0 0\n" " 4 0 0 0 0 0 0\n" " 5 9 0 0 0 6 11\n" " 6 -6 0 0 0 -5 -6\n" " 7 0 0 0 0 0 0\n" " 8 0 0 0 0 0 3\n" " 9 3 0 0 0 0 0\n" " 10 -2 0 0 0 -7 -2\n" " 11 0 0 0 0 -10 0\n" " 12 -20 -27 0 -30 -30 -20\n" "\n" "@arcs\n" " cost cap low1 low2 low3\n" " 1 2 70 11 0 8 8\n" " 1 3 150 3 0 1 0\n" " 1 4 80 15 0 2 2\n" " 2 8 80 12 0 0 0\n" " 3 5 140 5 0 3 1\n" " 4 6 60 10 0 1 0\n" " 4 7 80 2 0 0 0\n" " 4 8 110 3 0 0 0\n" " 5 7 60 14 0 0 0\n" " 5 11 120 12 0 0 0\n" " 6 3 0 3 0 0 0\n" " 6 9 140 4 0 0 0\n" " 6 10 90 8 0 0 0\n" " 7 1 30 5 0 0 -5\n" " 8 12 60 16 0 4 3\n" " 9 12 50 6 0 0 0\n" "10 12 70 13 0 5 2\n" "10 2 100 7 0 0 0\n" "10 7 60 10 0 0 -3\n" "11 10 20 14 0 6 -20\n" "12 11 30 10 0 0 -10\n" "\n" "@attributes\n" "source 1\n" "target 12\n"; enum SupplyType { EQ, GEQ, LEQ }; // Check the interface of an MCF algorithm template class McfClassConcept { public: template struct Constraints { void constraints() { checkConcept(); const Constraints& me = *this; MCF mcf(me.g); const MCF& const_mcf = mcf; b = mcf.reset() .lowerMap(me.lower) .upperMap(me.upper) .costMap(me.cost) .supplyMap(me.sup) .stSupply(me.n, me.n, me.k) .run(); c = const_mcf.totalCost(); x = const_mcf.template totalCost(); v = const_mcf.flow(me.a); c = const_mcf.potential(me.n); const_mcf.flowMap(fm); const_mcf.potentialMap(pm); } typedef typename GR::Node Node; typedef typename GR::Arc Arc; typedef concepts::ReadMap NM; typedef concepts::ReadMap VAM; typedef concepts::ReadMap CAM; typedef concepts::WriteMap FlowMap; typedef concepts::WriteMap PotMap; GR g; VAM lower; VAM upper; CAM cost; NM sup; Node n; Arc a; Value k; FlowMap fm; PotMap pm; bool b; double x; typename MCF::Value v; typename MCF::Cost c; }; }; // Check the feasibility of the given flow (primal soluiton) template < typename GR, typename LM, typename UM, typename SM, typename FM > bool checkFlow( const GR& gr, const LM& lower, const UM& upper, const SM& supply, const FM& flow, SupplyType type = EQ ) { TEMPLATE_DIGRAPH_TYPEDEFS(GR); for (ArcIt e(gr); e != INVALID; ++e) { if (flow[e] < lower[e] || flow[e] > upper[e]) return false; } for (NodeIt n(gr); n != INVALID; ++n) { typename SM::Value sum = 0; for (OutArcIt e(gr, n); e != INVALID; ++e) sum += flow[e]; for (InArcIt e(gr, n); e != INVALID; ++e) sum -= flow[e]; bool b = (type == EQ && sum == supply[n]) || (type == GEQ && sum >= supply[n]) || (type == LEQ && sum <= supply[n]); if (!b) return false; } return true; } // Check the feasibility of the given potentials (dual soluiton) // using the "Complementary Slackness" optimality condition template < typename GR, typename LM, typename UM, typename CM, typename SM, typename FM, typename PM > bool checkPotential( const GR& gr, const LM& lower, const UM& upper, const CM& cost, const SM& supply, const FM& flow, const PM& pi, SupplyType type ) { TEMPLATE_DIGRAPH_TYPEDEFS(GR); bool opt = true; for (ArcIt e(gr); opt && e != INVALID; ++e) { typename CM::Value red_cost = cost[e] + pi[gr.source(e)] - pi[gr.target(e)]; opt = red_cost == 0 || (red_cost > 0 && flow[e] == lower[e]) || (red_cost < 0 && flow[e] == upper[e]); } for (NodeIt n(gr); opt && n != INVALID; ++n) { typename SM::Value sum = 0; for (OutArcIt e(gr, n); e != INVALID; ++e) sum += flow[e]; for (InArcIt e(gr, n); e != INVALID; ++e) sum -= flow[e]; if (type != LEQ) { opt = (pi[n] <= 0) && (sum == supply[n] || pi[n] == 0); } else { opt = (pi[n] >= 0) && (sum == supply[n] || pi[n] == 0); } } return opt; } // Check whether the dual cost is equal to the primal cost template < typename GR, typename LM, typename UM, typename CM, typename SM, typename PM > bool checkDualCost( const GR& gr, const LM& lower, const UM& upper, const CM& cost, const SM& supply, const PM& pi, typename CM::Value total ) { TEMPLATE_DIGRAPH_TYPEDEFS(GR); typename CM::Value dual_cost = 0; SM red_supply(gr); for (NodeIt n(gr); n != INVALID; ++n) { red_supply[n] = supply[n]; } for (ArcIt a(gr); a != INVALID; ++a) { if (lower[a] != 0) { dual_cost += lower[a] * cost[a]; red_supply[gr.source(a)] -= lower[a]; red_supply[gr.target(a)] += lower[a]; } } for (NodeIt n(gr); n != INVALID; ++n) { dual_cost -= red_supply[n] * pi[n]; } for (ArcIt a(gr); a != INVALID; ++a) { typename CM::Value red_cost = cost[a] + pi[gr.source(a)] - pi[gr.target(a)]; dual_cost -= (upper[a] - lower[a]) * std::max(-red_cost, 0); } return dual_cost == total; } // Run a minimum cost flow algorithm and check the results template < typename MCF, typename GR, typename LM, typename UM, typename CM, typename SM, typename PT > void checkMcf( const MCF& mcf, PT mcf_result, const GR& gr, const LM& lower, const UM& upper, const CM& cost, const SM& supply, PT result, bool optimal, typename CM::Value total, const std::string &test_id = "", SupplyType type = EQ ) { check(mcf_result == result, "Wrong result " + test_id); if (optimal) { typename GR::template ArcMap flow(gr); typename GR::template NodeMap pi(gr); mcf.flowMap(flow); mcf.potentialMap(pi); check(checkFlow(gr, lower, upper, supply, flow, type), "The flow is not feasible " + test_id); check(mcf.totalCost() == total, "The flow is not optimal " + test_id); check(checkPotential(gr, lower, upper, cost, supply, flow, pi, type), "Wrong potentials " + test_id); check(checkDualCost(gr, lower, upper, cost, supply, pi, total), "Wrong dual cost " + test_id); } } int main() { // Check the interfaces { typedef concepts::Digraph GR; checkConcept< McfClassConcept, NetworkSimplex >(); checkConcept< McfClassConcept, NetworkSimplex >(); checkConcept< McfClassConcept, NetworkSimplex >(); } // Run various MCF tests typedef ListDigraph Digraph; DIGRAPH_TYPEDEFS(ListDigraph); // Read the test digraph Digraph gr; Digraph::ArcMap c(gr), l1(gr), l2(gr), l3(gr), u(gr); Digraph::NodeMap s1(gr), s2(gr), s3(gr), s4(gr), s5(gr), s6(gr); ConstMap cc(1), cu(std::numeric_limits::max()); Node v, w; std::istringstream input(test_lgf); DigraphReader(gr, input) .arcMap("cost", c) .arcMap("cap", u) .arcMap("low1", l1) .arcMap("low2", l2) .arcMap("low3", l3) .nodeMap("sup1", s1) .nodeMap("sup2", s2) .nodeMap("sup3", s3) .nodeMap("sup4", s4) .nodeMap("sup5", s5) .nodeMap("sup6", s6) .node("source", v) .node("target", w) .run(); // Build test digraphs with negative costs Digraph neg_gr; Node n1 = neg_gr.addNode(); Node n2 = neg_gr.addNode(); Node n3 = neg_gr.addNode(); Node n4 = neg_gr.addNode(); Node n5 = neg_gr.addNode(); Node n6 = neg_gr.addNode(); Node n7 = neg_gr.addNode(); Arc a1 = neg_gr.addArc(n1, n2); Arc a2 = neg_gr.addArc(n1, n3); Arc a3 = neg_gr.addArc(n2, n4); Arc a4 = neg_gr.addArc(n3, n4); Arc a5 = neg_gr.addArc(n3, n2); Arc a6 = neg_gr.addArc(n5, n3); Arc a7 = neg_gr.addArc(n5, n6); Arc a8 = neg_gr.addArc(n6, n7); Arc a9 = neg_gr.addArc(n7, n5); Digraph::ArcMap neg_c(neg_gr), neg_l1(neg_gr, 0), neg_l2(neg_gr, 0); ConstMap neg_u1(std::numeric_limits::max()), neg_u2(5000); Digraph::NodeMap neg_s(neg_gr, 0); neg_l2[a7] = 1000; neg_l2[a8] = -1000; neg_s[n1] = 100; neg_s[n4] = -100; neg_c[a1] = 100; neg_c[a2] = 30; neg_c[a3] = 20; neg_c[a4] = 80; neg_c[a5] = 50; neg_c[a6] = 10; neg_c[a7] = 80; neg_c[a8] = 30; neg_c[a9] = -120; Digraph negs_gr; Digraph::NodeMap negs_s(negs_gr); Digraph::ArcMap negs_c(negs_gr); ConstMap negs_l(0), negs_u(1000); n1 = negs_gr.addNode(); n2 = negs_gr.addNode(); negs_s[n1] = 100; negs_s[n2] = -300; negs_c[negs_gr.addArc(n1, n2)] = -1; // A. Test NetworkSimplex with the default pivot rule { NetworkSimplex mcf(gr); // Check the equality form mcf.upperMap(u).costMap(c); checkMcf(mcf, mcf.supplyMap(s1).run(), gr, l1, u, c, s1, mcf.OPTIMAL, true, 5240, "#A1"); checkMcf(mcf, mcf.stSupply(v, w, 27).run(), gr, l1, u, c, s2, mcf.OPTIMAL, true, 7620, "#A2"); mcf.lowerMap(l2); checkMcf(mcf, mcf.supplyMap(s1).run(), gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#A3"); checkMcf(mcf, mcf.stSupply(v, w, 27).run(), gr, l2, u, c, s2, mcf.OPTIMAL, true, 8010, "#A4"); mcf.reset(); checkMcf(mcf, mcf.supplyMap(s1).run(), gr, l1, cu, cc, s1, mcf.OPTIMAL, true, 74, "#A5"); checkMcf(mcf, mcf.lowerMap(l2).stSupply(v, w, 27).run(), gr, l2, cu, cc, s2, mcf.OPTIMAL, true, 94, "#A6"); mcf.reset(); checkMcf(mcf, mcf.run(), gr, l1, cu, cc, s3, mcf.OPTIMAL, true, 0, "#A7"); checkMcf(mcf, mcf.lowerMap(l2).upperMap(u).run(), gr, l2, u, cc, s3, mcf.INFEASIBLE, false, 0, "#A8"); mcf.reset().lowerMap(l3).upperMap(u).costMap(c).supplyMap(s4); checkMcf(mcf, mcf.run(), gr, l3, u, c, s4, mcf.OPTIMAL, true, 6360, "#A9"); // Check the GEQ form mcf.reset().upperMap(u).costMap(c).supplyMap(s5); checkMcf(mcf, mcf.run(), gr, l1, u, c, s5, mcf.OPTIMAL, true, 3530, "#A10", GEQ); mcf.supplyType(mcf.GEQ); checkMcf(mcf, mcf.lowerMap(l2).run(), gr, l2, u, c, s5, mcf.OPTIMAL, true, 4540, "#A11", GEQ); mcf.supplyMap(s6); checkMcf(mcf, mcf.run(), gr, l2, u, c, s6, mcf.INFEASIBLE, false, 0, "#A12", GEQ); // Check the LEQ form mcf.reset().supplyType(mcf.LEQ); mcf.upperMap(u).costMap(c).supplyMap(s6); checkMcf(mcf, mcf.run(), gr, l1, u, c, s6, mcf.OPTIMAL, true, 5080, "#A13", LEQ); checkMcf(mcf, mcf.lowerMap(l2).run(), gr, l2, u, c, s6, mcf.OPTIMAL, true, 5930, "#A14", LEQ); mcf.supplyMap(s5); checkMcf(mcf, mcf.run(), gr, l2, u, c, s5, mcf.INFEASIBLE, false, 0, "#A15", LEQ); // Check negative costs NetworkSimplex neg_mcf(neg_gr); neg_mcf.lowerMap(neg_l1).costMap(neg_c).supplyMap(neg_s); checkMcf(neg_mcf, neg_mcf.run(), neg_gr, neg_l1, neg_u1, neg_c, neg_s, neg_mcf.UNBOUNDED, false, 0, "#A16"); neg_mcf.upperMap(neg_u2); checkMcf(neg_mcf, neg_mcf.run(), neg_gr, neg_l1, neg_u2, neg_c, neg_s, neg_mcf.OPTIMAL, true, -40000, "#A17"); neg_mcf.reset().lowerMap(neg_l2).costMap(neg_c).supplyMap(neg_s); checkMcf(neg_mcf, neg_mcf.run(), neg_gr, neg_l2, neg_u1, neg_c, neg_s, neg_mcf.UNBOUNDED, false, 0, "#A18"); NetworkSimplex negs_mcf(negs_gr); negs_mcf.costMap(negs_c).supplyMap(negs_s); checkMcf(negs_mcf, negs_mcf.run(), negs_gr, negs_l, negs_u, negs_c, negs_s, negs_mcf.OPTIMAL, true, -300, "#A19", GEQ); } // B. Test NetworkSimplex with each pivot rule { NetworkSimplex mcf(gr); mcf.supplyMap(s1).costMap(c).upperMap(u).lowerMap(l2); checkMcf(mcf, mcf.run(NetworkSimplex::FIRST_ELIGIBLE), gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B1"); checkMcf(mcf, mcf.run(NetworkSimplex::BEST_ELIGIBLE), gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B2"); checkMcf(mcf, mcf.run(NetworkSimplex::BLOCK_SEARCH), gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B3"); checkMcf(mcf, mcf.run(NetworkSimplex::CANDIDATE_LIST), gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B4"); checkMcf(mcf, mcf.run(NetworkSimplex::ALTERING_LIST), gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B5"); } return 0; }